等の小規模第 II 相試験が進められているが、まだその有用性は示されていない²³⁾.

まとめ

子宮体がんの化学療法を簡単ではあるがまとめさせていただいた。今後、術後療法も含めた併用化学療法の中でのタキサンの役割が evidence として確立することと予想するが、その後の分子標的薬やホルモン療法をからめた新たな領域の開拓と更なる進歩が期待される。

■ 文 献

- The Japan Cancer Surveillance Research Group: Cancer incidence and incidence rates in Japan in 2000. Jpn J Clin Oncol 36: 474-5, 2006.
- Ioka A, et al: Trends in uterine cancer incidence in Japan 1975-98. Jpn J Clin Oncol 33: 645-646, 2003.
- 3) Randell ME, et al: Randomized phase III trial whole abdominal irradiation versus doxorubicin and cisplatin chemotherapy in advanced endometrial carcinoma; A Gynecologic Oncology Group Study. J Clin Oncol 24: 36-44, 2006.
- 4) Sagae S, et al: Randomized phase III trial of Whole pelvic radiotherapy vs cisplatin-based chemotherapy in patients with intermediate risk endometrial carcinoma. 2005 ASCO Annual Meeting Abstract No.5002.
- 5) Thomas H, et al: A randomized phase-III study on adjuvant treatment with radiation± chemotherapy in early stage high-risk endometrial cancer (NSGO-EC-9501/EORTC 55991). 2007 ASCO Annual Meeting Abstract No.5503.
- 6) Hoskins WJ, et al: Corpus: Epithelial tumors in principles and practice of gynecologic oncology, 2nd ed, Lippincott-Raven, Philadelphia, 859-896, 1997.
- Ball H, et al: A phase II trial of paclitaxel in patients with advanced or recurrent adenocarcinoma of endometrium: A Gynecologic Oncology Group study. Gynecol Oncol 62 (2): 278-81, 1996.
- 8) Lissoni A, et al: Phase II study of paclitaxel

- as salvage treatment in advanced endometrial cancer. Ann Oncol 7:861-863, 1996.
- 9) Katsumata N, et al: Phase II trial of docetaxel in advanced or metastatic endometrial cancer: a Japanese Cooperative Study. British Journal of Cancer 93: 999-1004, 2005.
- 10) Gunthert AR, et al: Phase II study of weekly docetaxel in patients with recurrent or metastatic endometrial cancer: AGO Uterus-4. Gynecol Oncol 104 (1): 86-90, 2007.
- 11) Thigpen JT, et al: A randomized comparison of doxorubicin alone versus doxorubicin plus cyclophosphamide in the management of advanced or recurrent endometrial carcinoma: A Gynecologic Oncology Group study. J Clin Oncol 12 (7): 1408-1414, 1994.
- 12) Thigpen JT, et al: Phase III trial of doxorubicin with or without cisplatin in advanced endometrial carcinoma: a gynecologic oncology group study. J Clin Oncol 22 (19): 3902-3908, 2004.
- 13) Aapro MS, et al: Doxorubicin versus doxorubicin and cisplatin in endometrial carcinoma: definitive result of a randomized study (55872) by the EORTC Gynaecological Cancer Group. Ann Oncol 14:441-448, 2003.
- 14) Flemming GF, et al: Phase III randomized trial of doxorubicin+cisplatin versus doxorubicin+24-h paclitaxel+filgrastim in endometrial carcinoma; a Gynecologic Oncology Group study. Ann Oncol 15:1173-1178, 2004.
- 15) Flemming GF, et al: Phase III randomized trial of doxorubicin plus cisplatin with or without paclitaxel plus filgrastim in advanced endometrial carcinoma; a Gynecologic Oncology Group study. J Clin Oncol 22 (11): 2159-2166, 2004.
- 16) Kauppila A: Progestin therapy of endometrial, breast and ovarian carcinoma. A review of clinical observation. Acta Obstet Gynecol Scand 63: 441-450, 1984.
- 17) Piver MS, et al: Medroxyprogesterone Acetete vs. Hydroxyprogesterone caproate (Delalutin) in women with metastatic endometrial adenocarcinoma. Cancer 45: 268-272, 1980.
- 18) Podratz KC, et al: Effects of progestational agents in treatment of endometrial carcinoma. Obstet Gynecol 66: 106-10, 1985.
- 19) Thigpen JT, et al: Oral Medroxyprogesterone Acetete in the treatment of advanced or recurrent endometrial carcinoma: A dose response study by the Gynecologic Oncology

- Group. J Clin Oncol 17: 1736-1744, 1999.
- 20) Whitney CW, et al: Phase II study of medroxyprogesterone acetate plus tamoxifen in advanced endometrial carcinoma: a Gynecologic Oncology Group study. Gynecol Oncol 92: 4-9, 2004.
- 21) An HJ, et al: Alteration of PTEN expression in endometrial carcinoma is associated with down-regulation of cyclin-dependent kinase inhibitor, p27. Histopathology 41: 437-445, 2002
- 22) Terakawa N, et al: Loss of PTEN expression followed by Akt phosphorylation is a

- poor diagnostic factor for patients with endometrial cancer. Endocrinol Relat Cancer 10: 203-208, 2003.
- 23) Angiolo Gadducci, et al: Old and new perspectives in the pharmacological treatment of advanced or recurrent endometrial cancer: Hormonal therapy, chemotherapy and molecularly target therapies. Oncol Hematol 58: 242-256, 2006.
- 24) Colombo N: A phase II trial of mTOR inhibitor AP23573 as a single agent in advanced endometrial cancer. 2007 ASCO Annual Meeting Abstract No.5516.

Toshiro Mizuno Noriyuki Katsumata Hirofumi Mukai Chikako Shimizu Masashi Ando Toru Watanabe

The outpatient management of low-risk febrile patients with neutropenia: risk assessment over the telephone

Received: 10 February 2006 Accepted: 5 July 2006 Published online: 29 August 2006

© Springer-Verlag 2006

T. Mizuno · N. Katsumata · H. Mukai · C. Shimizu · M. Ando · T. Watanabe Division of Medical Oncology, National Cancer Center Hospital, Tokyo, Japan

T. Mizuno (🖾) Department of Medical Oncology, Mie University Hospital, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan e-mail: tomizuno@clin.medic.mie-u.ac.jp

Tel.: +81-59-2321111 Fax: +81-59-2315200 Abstract Objective: The purpose of this retrospective study is to evaluate the feasibility of the risk assessment over the telephone in the outpatient management of low-risk febrile patients with neutropenia. Materials and methods: Febrile patients with neutropenia were eligible for outpatient management with oral ciprofloxacin if they demonstrated the following characteristics: resolution of neutropenia expected in <10 days, good performance status, controlled cancer, no symptoms or signs suggesting systemic infection other than fever, and no comorbidity requiring hospitalization. Eligible patients received oral ciprofloxacin (400 mg, three times daily) and were monitored as far as possible by telephone. Risk assessment concerning general condition was carried out over the telephone. Results: Of the 60 consecutive patients who received neoadjuvant chemotherapy as a phase II trial of docetaxel (60 mg/m²) and doxorubicin (50 mg/m²) for primary breast cancer, 30 low-risk febrile patients received oral ciprofloxacin. Twenty-seven of these patients (90%) recovered uneventfully without hospitalization and the use of granulocyte colony-stimulating factor. Treatment was considered to have failed in the remaining three (10%) on the account of the need to modify or change their regimens. Conclusions: For carefully selected low-risk febrile patients with neutropenia, risk assessment over the telephone may be convenient, and close daily medical scrutiny may be not routinely required in the outpatient.

Keywords Low-risk · Febrile patients with neutropenia · Outpatient therapy · Oral ciprofloxacin · Risk assessment

Introduction

Febrile neutropenia is the first manifestation of lifethreatening bacterial infection accompanying cancer chemotherapy. Its standard management includes prompt administration of empirical, broad-spectrum, parenteral antibiotics; this substantially reduces morbidity and mortality. However, antibiotic therapy is generally administered in a hospital setting and leads to prolonged hospitalization and increased cost. Recent studies suggest that febrile patients with neutropenia can be stratified into low-risk and high-risk groups, primarily according to the expected duration of neutropenia and the presence or absence of underlying conditions [1, 2]. Low-risk patients do not need to be hospitalized and can be safely treated with oral antibiotics in an outpatient or domestic setting [3–7].

Factors indicating low-risk are: controlled cancer, no comorbid complications, resolution of neutropenia expected in <10 days, and no documented infection. These factors are considered to serve as guidelines for selecting patients for outpatient therapy [1]. Outpatient therapy has several advantages including lower cost and improved quality of life. On the other hand, its most important disadvantage is thought to be the risk of serious complications such as septic shock. In previous studies,

low-risk febrile patients undergoing oral treatment were followed up every other day in the outpatient clinic [7].

The combination of docetaxel and doxorubicin is among the most effective chemotherapies for the treatment of breast cancer. In a phase I/II study by a French group [8, 9], 42 patients with metastatic breast cancer received this combination as first-line therapy, and a 3-week schedule of doxorubicin 50 mg/m² plus docetaxel 75 mg/m² was recommended. Leukopenia with subsequent infection was the dose-limiting toxicity, and grade 4 neutropenia occurred in 93% of the patients not receiving granulocyte colony-stimulating factor (GCSF). That study also showed that grade 4 neutropenia lasted not more than 10 days without GCSF, and febrile neutropenia occurred in 40% of the patients with neutropenia. After this trial, GCSF (5 µg/kg) had routinely been given prophylactically in this regimen from day 2 or 3 until a postnadir neutrophil count was obtained [10]. The duration of neutropenia is one of the principal risk factors for the occurrence of infectious complications. Breast cancer patients who receive this regimen in a neoadjuvant setting, namely, those with controlled cancer and good performance status (PS), are the population most likely to be low-risk febrile patients with neutropenia.

We hypothesized that carefully selected low-risk febrile patient with neutropenia, such as the one with primary breast cancer receiving neoadjuvant chemotherapy, can be treated safely as outpatients without daily follow-up. This study was conducted to test this hypothesis.

Materials and methods

Patients were the ones who had primary breast cancer (stages II and III, tumor size >3 cm), who received neoadjuvant chemotherapy as a phase II trial of docetaxel 60 mg/m² and doxorubicin 50 mg/m² at the National Cancer Center Hospital from 1998 to 2000.

The records of febrile patients with neutropenia, who received neoadjuvant chemotherapy for primary breast cancer, were retrospectively reviewed.

In accord with previous studies using this regimen, febrile neutropenia was defined as a single oral or axillary temperature of greater than 38°C occurring between 8 and 14 days after the start of chemotherapy.

We defined low-risk patients as those in whom the duration of neutropenia (absolute neutrophil count <500 cells/ml) was expected to be brief (less than 10 days) and who had no other serious medical conditions, Eastern Cooperative Oncology Group performance status of 0 to 1, the ability to take oral medication, controlled cancer, no symptoms or signs suggesting systemic infection other than fever, and no comorbidity requiring hospitalization. Comorbidity was defined, following the definition of Talcott et al. [2], as another medical condition that independently required inpatient observation.

Exclusion criteria were evidence of hypotension, dehydration requiring intravenous fluid administration, allergy to ciprofloxacin and ceftazidime, severe mucositis that prevented adequate oral hydration, severe gastrointestinal symptoms (nausea, vomiting, and diarrhea), and respiratory distress or other evidence of pneumonia.

Patients who were considered low risk whose temperature exceeded 38°C were given oral ciprofloxacin (400 mg, three times daily). Oral antibiotic therapy was maintained for 5 days, decreasing the fever to below 37°C within 3 days.

Patients were told to report to the hospital if there was no improvement after 3 days of oral antibiotic therapy, or they developed any new signs and symptoms. Outpatients were instructed to maintain close telephone contact. Risk assessment over the telephone was concerned with general condition, namely, PS, oral intake, dehydration, and presence or absence of symptoms.

Figure 1 provides a flow diagram of the patients in this study. The use of GCSF was avoided as much as possible while patients were low risk, but it was immediately administered if a patient was considered to have become high risk, for example, because of low PS or dehydration.

Results

Characteristics of the patients

Of the 60 consecutive patients who received neoadjuvant chemotherapy as a phase II trial of docetaxel and doxorubicin for primary breast cancer at the National Cancer Center Hospital from 1998 to 2000, 35 developed febrile neutropenia during the first cycle. Thirty-one of these patients received first-cycle chemotherapy in the hospital and were discharged immediately thereafter. For the other four patients, chemotherapy was started in the outpatient clinic.

Of the 35 patients, 30, classified as low risk, received oral ciprofloxacin, whereas the others received parenteral

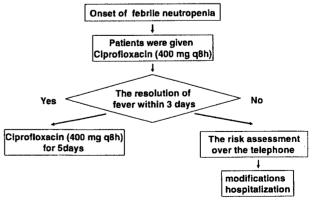


Fig. 1 Flow diagram of patients in this study

antibiotics (ceftazidime or ceftazidime plus amikacin). Of the 30 low-risk patients, 10 were PS 0 and 20 were PS 1 when febrile neutropenia occurred. Their median age was 50.5 years (range 32–67).

Outcome

Treatment outcomes of the 30 febrile patients with neutropenia were divided into success and failure based on previous studies [4, 5]. Our definition of success was resolution of the fever without development of any serious medical condition, no need for modification of treatment such as administration of GCSF, or for antifungal or antiviral agents, or a change of regimen. The need for hospitalization or intravenous supportive therapy for severe mucositis or gastrointestinal symptoms (nausea, vomiting, and diarrhea) was also considered to represent failure. According to these criteria, antibiotic therapy was considered successful in 27 (90%) of the patients and unsuccessful in 3 (10%) of them (Table 1). Records of the duration of fever were available for 22 of the 27 patients who were successfully treated. By day 3 of antibiotic therapy, the fever had disappeared in 16 patients, whereas it persisted for longer than 4 days in the remaining 6. Three cases were considered as treatment failures because one required additional treatment with GCSF and two had their treatment regimen changed to parenteral administration (1 ceftazidime and 1 ceftriaxone sodium). The reasons for this alteration in regimen were mainly gastrointestinal symptoms (including appetite loss, nausea, and vomiting) rather than documented infection or breakthrough bacteremias (Table 2).

Discussions

Several recent studies provide evidence that with careful patient selection and appropriate antimicrobial regimens, outpatient therapy for low-risk febrile patients with neutropenia is safe and effective [13]. Outpatient antibiotic

Table 1 Treatment outcomes

Treatment outcomes	n=30		
Success	27		
Failure	3		
Modification required			
Addition of antiviral agent	0		
Addition of antifungal agent	0		
Addition of GCSF	1		
A change in regimen ^a	2		

^aTwo had their treatment regimen changed to parenteral administration (1 ceftazidime and 1 ceftriaxone sodium). The reasons for this alteration in regimen were mainly gastrointestinal symptoms.

therapy has several advantages, including lower cost and improved quality of life. On the other hand, its most important disadvantage is thought to be the risk of serious complications such as septic shock, as outpatients cannot be monitored closely for secondary infections and adverse effects. In previous studies comparing outpatient oral and inpatient parenteral therapy in low-risk febrile patients with neutropenia, patients undergoing oral treatment were followed up every other day in the outpatient clinic [7]. But is close monitoring really necessary for all low-risk patients?

Between 70 and 80% of low-risk febrile patients with neutropenia had fever of unknown origin [5, 6]. The prognosis in low-risk patients with fever and neutropenia is generally good, particularly when the origin of the fever is unexplained. Patients with documented infections had higher rates of complications than patients with fever of unknown origin. At least 80% of low-risk patients seem to be in no need of follow-up every other day. In terms of quality of life, follow-up every other day is a serious problem for patients who live far away from their hospitals. Risk assessment over the telephone is convenient for such patients and may be useful for evaluating PS, particularly symptoms such as nausea and vomiting that limit oral intake.

In previous studies, patients were thought to need hospitalization when oral antibiotic therapy failed [7]. However, it is uncertain whether hospitalization can prevent rare events such as septic shock and death. Moreover, admission of low-risk patients may expose them to potential iatrogenic complications and drugresistant nosocomial infections. Coagulase-negative staph ylococci (CNS) that cause bacteremia in neutropenic patients are recognized as a major cause of nosocomial infection [12].

In outpatient therapy for low-risk febrile patients with neutropenia, quinolones, such as oral ofloxacin, have also been evaluated as monotherapy in limited studies [3, 7, 11]. They have broad-spectrum antibacterial activity, are particularly effective in treating Gram-negative bacteria, and are well tolerated, with few adverse effects.

In a study conducted in Pakistan, Malik et al. [3, 7] evaluated the efficacy of self-administered oral ofloxacin (400 mg, twice daily) as empirical therapy in low-risk febrile patients with neutropenia. At the University of Texas M.D. Anderson Cancer Center, two studies comparing outpatient oral (ciprofloxacin 750 mg q8h plus clindamycin 600 mg q8h) and parenteral regimens (aztreonam 2 g q8h plus clindamycin 600 mg q8h) in low-risk febrile patients with neutropenia demonstrated that oral antibiotic therapy was as effective as parenteral antibiotic therapy [14]. However, there have been few reports of the use of single-agent oral ciprofloxacin in low-risk febrile patients with neutropenia in the outpatient setting [15]. As ciprofloxacin has better antipseudomonal coverage, it has the advantage that it might prove more

Table 2 Reasons for failure

Case	Age	PS	Reasons	Modification
1	67	i	Appetite loss, mucositis	Parenteral treatment
2	54	1	appetite loss abdominal pain	Parenteral treatment
3	48	1	appetite loss, nausea/vomiting	Addition of GCSF

effective than ofloxacin, although a comparative trial would be required to establish this.

One of the problems with the use of quinolone monotherapy for low-risk febrile patients with neutropenia is its limited activity against Gram-positive infection, which represents over 50% of isolates in major cancer treatment centers of the United States and Europe. Addition of a Gram-positive agent to the initial coverage remains a matter of controversy. CNS and viridans streptococci are the leading Gram-positive causes of bacteremia in neutropenic patients. The viridans streptococcus is associated with severe neutropenia, oral mucositis, administration of high-dose cytosine arabinoside, treatment of peptic ulcer with H2-receptor antagonists, and the prophylactic use of fluoroquinolone [16]. The risk of bacteremia from nosocomial infection with CNS may be reduced by outpatient treatment.

A second problem is the increase in quinolone-resistant Gram-negative infection [17, 18]. Other studies suggest that the prophylactic use of fluoroquinolone increases the occurrence of fluoroquinolone-resistant *Escherichia coli* bacteremia. This resistant form has been reported almost exclusively from European cancer treatment centers and is

still not isolated as frequently in Japan as compared in the West. In view of this, single-agent ciprofloxacin seems to be acceptable in Japan.

Our results are based on a retrospective study and must therefore be interpreted with caution. Although risk has to be very carefully assessed over the telephone, we are optimistic that, in the future, if videophones are in common use, the accuracy of assessment by telephone, including the evaluation of PS, may improve. It is a problem that of the 27 patients considered to be successfully treated by oral ciprofloxacin, 6 had fever that persisted for more than 4 days. We must emphasize the importance of telephone contact with outpatients. Besides a more accurate risk assessment model, there is a need for patient education and the establishment of an emergency support system on the hospital side. If our results can be confirmed in a randomized trial, it may be possible to improve the quality of life of these patients and reduce the cost of their care.

In conclusion, for low-risk febrile patients with neutropenia, risk assessment over the telephone may be convenient, and close daily medical scrutiny may be not routinely required in the outpatient.

References

- 1. Talcott JA, Finberg R, Mayer RJ et al (1988) The medical course of cancer patients with fever and neutropenia: clinical identification of low-risk subgroup at presentation. Arch Intern Med 144:2561-2568
- Talcott JA, Siegel RD, Finberg R et al (1992) Risk assessment in cancer patients with fever and neutropenia: a prospective, two center validation of a prediction rule. J Clin Oncol 10:316– 322
- Malik IA, Abbas Z, Karim M (1992)
 Randomised comparison of oral
 ofloxacin alone with combination of
 parenteral antibiotics in neutropenic
 febrile patients. Lancet 339:1092-1096
- 4. Kern WV, Cometta A, de Bock R et al (1999) Oral versus intravenous empirical antimicrobial therapy for fever in patients with granulocytopenia who are receiving cancer chemotherapy. N Engl J Med 341:312-318
- Freifeld A, Marchigiani D, Walsh T et al (1999) A double-blind comparison of empirical oral and intravenous antibiotic therapy for low-risk febrile patients with neutropenia during cancer chemotherapy. N Engl J Med 341:305— 311
- 6. Talcott JA, Whalen A, Clark J et al (1994) Home antibiotic therapy for low-risk cancer patients with fever and neutropenia: a pilot study of 30 patients based on a validated prediction rule. J Clin Oncol 12:107-114
- 7. Malik IA, Khan WA, Karim M et al (1995) Feasibility of outpatient management of fever in cancer patients with low-risk neutropenia: results of a prospective randomized trial. Am J Med 98:224-231

- Dieras V (1997) Docetaxel in combination with doxorubicin. A phase dose-finding study. Oncology 6(Suppl 6):17-20
- Dieras V, Barthier S, Beuzeboc P et al (1998) Phase I study of docetaxel in combination with doxorubicin as 1st line chemotherapy of metastatic breast cancer. Breast Cancer Res Treat 50:262 (Abstract)
- 10. Šparano JA, O'Neill A, Schaefer PL et al (2000) Phase II trial of doxorubicin and docetaxel plus granulocyte colony-stimulating factor in metastatic breast cancer: Eastern Cooperative Oncology Group Study E1196. J Clin Oncol 18:2369-2377
- Hidalgo M, Hornedo J, Lumbreras C et al (1999) Outpatient therapy with oral ofloxacin for patients with low risk neutropenia and fever. Cancer 85:213– 219

- Pittet D, Wenzel RP (1995) Nosocomial bloodstream infections. Secular trends in rates, mortality, and contribution to total hospital deaths. Arch Intern Med 155:1177-1184
 Hughes WT, Armstrong D, Body GP et
- Hughes WT, Armstrong D, Body GP et al (2002) 2002 Guidelines for the use of antimicrobial agents in neutropenic patients with cancer. Clin Infect Dis 34:730-751
- Rolston KVI (1999) New trends in patient management: risk-based therapy for febrile patients with neutropenia. Clin Infect Dis 29:515-521
- Clin Infect Dis 29:515-521

 15. Aquino VM, Herrera L, Sandler ES et al (2000) Feasibility of oral ciprofloxacin for the outpatient management of febrile neutropenia in selected children with cancer. Cancer 88:1710-1714
- Tunkel AR, Sepkowitz KA (2002) Infectious caused by viridans streptococci in patients with neutropenia. Clin Infect Dis 34:1524-1529
- 17. Cometta A, Calandra T, Bille J et al (1994) Escherichia coli resistant to fluoroquinolones in patients with cancer and neutropenia. N Engl J Med 330:1240-1241
 18. Kern WV, Markus A, Andriof E (1994)
- Kern WV, Markus A, Andriof E (1994)
 Bacteremia due to fluoroquinolone-resistant Escherichia coli in two immuno-compromised patients. Eur J Clin Microbiol Infect Dis 13:161-165

Available online at www.sciencedirect.com

Gynecologic Oncology 108 (2008) 226-233

Gynecologic Oncology

www.elsevier.com/locate/ygyno

Randomized phase III trial of pelvic radiotherapy versus cisplatin-based combined chemotherapy in patients with intermediate- and high-risk endometrial cancer: A Japanese Gynecologic Oncology Group study

Nobuyuki Susumu ^a, Satoru Sagae ^{b,*}, Yasuhiro Udagawa ^c, Kenji Niwa ^d, Hiroyuki Kuramoto ^e, Shinji Satoh ^f, Ryuichi Kudo ^g

School of Medicine, Keio University, Shinjyuku-ku, Tokyo
 Sapporo Railway Hospital, Sapporo, Hokkaido, Tokyo, Japan
 Fujita Health University School of Medicine, Toyoake, Aichi, Japan
 Gifu University School of Medicine, Gifu, Gifu, Japan
 School of Medicine, Kitasato University, Sagamihara, Kanagawa, Japan
 Tohoku University, School of Medicine, Sendai, Miyagi, Japan
 Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan

Received 20 April 2007 Available online 26 November 2007

Abstract

Objective. To establish an optimal adjuvant therapy for intermediate- and high-risk endometrial cancer patients, we conducted a multi-center randomized phase III trial of adjuvant pelvic radiation therapy (PRT) versus cyclophosphamide-doxorubicin-cisplatin (CAP) chemotherapy in women with endometrioid adenocarcinoma with deeper than 50% myometrial invasion.

Methods. Among 385 evaluated patients, 193 patients received PRT and 192 received CAP. The PRT group received at least 40 Gy. The CAP group received cyclophosphamide (333 mg/m²), doxorubicin (40 mg/m²) and cisplatin (50 mg/m²) every 4 weeks for 3 or more courses.

Results. No statistically significant differences in progression-free survival (PFS) and overall survival (OS) were observed. The 5-year PFS rates in the PRT and CAP groups were 83.5% and 81.8% respectively, while the 5-year OS rates were 85.3% and 86.7% respectively. These rates were also not significantly different in a low- to intermediate-risk group defined as stage IC patients under 70 years old with G1/2 endometrioid adenocarcinoma. However, among 120 patients in a high- to intermediate-risk group defined as (1) stage IC in patients over 70 years old or with G3 endometrioid adenocarcinoma or (2) stage II or IIIA (positive cytology), the CAP group had a significantly higher PFS rate (83.8% vs. 66.2%, log-rank test P=0.024, hazard ratio 0.44) and higher OS rate (89.7% vs. 73.6%, log-rank test P=0.006, hazard ratio 0.24). Adverse effects were not significantly increased in the CAP group versus the PRT group.

Conclusion. Adjuvant chemotherapy may be a useful alternative to radiotherapy for intermediate-risk endometrial cancer. © 2007 Elsevier Inc. All rights reserved.

Keywords: Endometrial cancer; Intermediate risk; Adjuvant radiotherapy; Adjuvant chemotherapy; Cisplatin-based chemotherapy

Introduction

The number of patients with endometrial cancer is increasing in Japan as well as in the United States and other countries [1].

0090-8258/\$ - see front matter © 2007 Elsevier Inc. All rights reserved. doi:10.1016/j.ygyno.2007.09.029

The number of patients with recurrent endometrial cancer is also increasing. Approximately, 10% to 15% of patients with early-stage endometrial cancer will experience recurrences [2,3]. To reduce the recurrence rate, adjuvant chemotherapy or radiotherapy has been applied, but a definite standard therapy has not yet been established.

For stage III-IV endometrial cancer, Randall et al. [4] reported the results of a Gynecologic Oncology Group (GOG) randomized Phase III trial of whole abdominal irradiation (WAI)

^{*} The participating institutions for all studies described in this report are listed in the Appendix.

Corresponding author. Fax: +81 11 222 9260.
 E-mail address: s-sagae@jrhokkaido.co.jp (S. Sagae).

and platinum—doxorubicin (AP) chemotherapy. This study had a large impact on treatment since adjuvant therapy for advanced endometrial cancer had been limited mainly to radiotherapy, such as whole abdominal irradiation, pelvic irradiation, and vaginal brachytherapy.

Adjuvant therapy for early-stage endometrial cancer has also been limited mainly to radiation therapy. In the National Comprehensive Cancer Network (NCCN) Guidelines for 2006, Version 2 [5], adjuvant therapy was selected based on a combination of characteristics such as surgical staging, grade and risk factors (advanced age, lymphovascular space invasion, tumor size, depth of invasion, etc.). Radiation therapy was recommended for all patients except those with IA/G1 or G2 lesions and those with IB/G1 lesions without risk factors. Chemotherapy was also not included as an adjuvant therapy for stage I/II endometrial cancers. In the FIGO annual report [1], adjuvant radiotherapy was selected roughly twice as often as adjuvant chemotherapy for patients with stage IC, IIA, or IIB endometrial carcinoma.

Recently, some large series of randomized studies regarding adjuvant radiotherapy for early-stage endometrial cancers were performed by Aalders et al. (NRH study) [6], Creutzberg et al. (PORTEC study) [2,7] and Keys et al. (GOG 99 study) [8]. In these three series, the loco-regional recurrence rate was significantly lower in the pelvic irradiation group versus the no adjuvant therapy or brachytherapy groups. However, none of the studies recognized a significant survival benefit. Moreover, the rate of adverse gastrointestinal effects was higher in the pelvic irradiation group after pelvic lymphadenectomy or lymph node sampling in both the PORTEC study [7] and the GOG study [8].

In view of this background, physicians have been concerned as to whether adjuvant therapy is effective for improving the progression-free survival (PFS) and overall survival (OS) of patients with early-stage endometrial cancer. The GOG began a randomized study (GOG 156 study, data not published) consisting of pelvic radiation and chemotherapy (doxorubicin plus cisplatin) treatment groups for patients with stage IB, IC, IIA, and IIB endometrial cancer. However, this trial was closed due to low accrual rates. The Japanese Gynecologic Oncology Group

(JGOG) began a randomized study comparing pelvic radiotherapy to platinum-based combined chemotherapy to clarify which modality was more effective for improving the PFS and OS of endometrial cancer patients with deeper than 50% myometrial invasion, including FIGO stage IC to IIIC. Most of the enrolled patients had IC, IIA, IIB, or IIIA intermediate-risk endometrial cancer.

Methods

Patient selection and eligibility criteria

Patient accrual for this study occurred from 1994 to 2000 at 103 member institutions of the JGOG. The eligibility criteria for this study were International Federation of Gynecology and Obstetrics (FIGO) stage IC-IIIC endometrial carcinoma with deeper than 50% myometrial invasion and absence of any prior chemotherapy, irradiation, or surgery for the treatment of any other cancer. Patients with stage II or III without deeper than 50% myometrial invasion were ineligible for this study. Patients were required to be under 75 years old, to have a WHO performance status of 0 to 3, and to have undergone an initial surgery, including total abdominal hysterectomy and bilateral salpingo-oophorectomy, with no residual tumor. Patients with other active cancers or without adequate liver, renal, or bone marrow functions were excluded. All patients agreed to the randomized study design and provided informed consent. Surgical staging consisted ideally of pelvic and/or paraaortic lymphadenectomy. A central pathology review was not performed. Treatment was initiated within 4 weeks of surgery. Treatment was initiated within 4 weeks of surgery.

Pelvic irradiation was given in an open field using the anterio-posterior parallel opposing technique. The scheduled dose of irradiation was 45 to 50 Gy within 4 to 6 weeks, with 9 to 10 Gy of irradiation administered per week (5 working days per week). Subsequently, additional irradiations were performed in 11 cases (5.7%) with paraaortic lesions and in 6 patients (3.1%) who received brachytherapy.

The chemotherapy group received cyclophosphamide (333 mg/m²), doxorubicin (40 mg/m²), and cisplatin (50 mg/m²) (CAP chemotherapy) every 4 weeks for 3 or more courses. Dose modifications of doxorubicin and cisplatin were as follows: a 25% reduction of both drugs was allowed for body weight less than 40 kg or age greater than 70 years old, and a 50% reduction was allowed in patients with G3 or G4 myelosuppression.

Study design and randomization

This trial utilized a straightforward randomization among two groups: pelvic radiation and chemotherapy. An allocation table was prespecified based on a

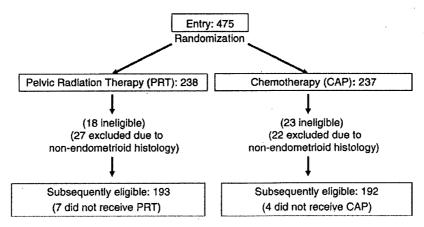


Fig. 1. Flow chart of patients in JGOG study 2033. The initial enrollment was 475 patients, 41 of whom were ineligible due to myometrial invasion of less than 50%, histological diagnosis of sarcoma, or rapid progression of disease after enrollment. An additional 49 patients with non-endometrioid histology were excluded.

Table 1
Patient characteristics

	_	Pelvic radiation therapy (PRT) (%)		Chemotherapy (CAP) (%) 192		Total 385	Univariate P (%)
	n	193					
Age	Average SD	58.7 7.5		59.3 8.6		59.0 8.1	P = 0.431
Managara	Premenopause	35	18.1	35	18.2	70	P=0.981
Menopause	Postmenopause	158	81.9	157	81.8	315	1 0.701
Cdidie.	None	123	63.7	127	66.1	250	P = 0.619
Co-morbidity	Any	70	36.3	65	33.9	135	1 0.017
Desfermence status	0	169	87.6	165	85.9	334	P = 0.562
Performance status	1	22	11,4	19	9.9	41	1 0.502
	2	2	1.0	6	3.1	8	
	3	0	0.0	2	1.0	2	
**	•	55	28.5	40	20.8	95	P = 0.298
Hysterectomy	Simple	94	48.7	108	56.3	202	1 -0.270
	Extended		22.3	42	21.9	85	
	Radical	43			1.0	3 .	
	Other	1	0.5	2		235	P = 0.387
Postoperative stage	IC	123	63.7	112	58.3	233 18	F-0.367
	IIA	10	5.2	8	4.2	35	
	IIB	10	5.2	25	13.0		•
	IIIA	28	14.5	22	11.5	50	
	IIIB	0	0.0	1	0.5	1	
	IIIC	22	11,4	24	12.5	46	D 0.543
Tumor grade	G1	107	55.4	106	55.2	213	P = 0.542
	G2	53	27.5	64	33.3	117	
	G3	33	17.1	20	10.4	53	
	Unknown	0	0.0	2	1.0	2	
Myometrial invasion	>1/2, <2/3	113	58.5	104	54.2	217	P = 0.317
	>2/3, < serosa	72	37.3	76	39.6	148	
•	Serosa	7	3.6	7	3.6	14	
	Beyond serosa	1	0.5	5	2.6	6 ·	
Lymphovascular space invasion	Negative	100	51.8	103	53.6	203	P = 0.892
	Positive	72	37.3	72	37.5	144	
	Unknown	21	10.9	17	8.8	38	
Cervical involvement	Negative	156	80.8	142	74.0	298	P = 0.128
	Positive	37	19.2	49	25.5	86	
Parametrial invasion	Negative	176	91.2	172	89.6	348	P = 0.334
	Positive	7	3.6	11	5.7	18	
	Unknown	10	5,2	9	4.7	19	
Peritoneal cytology	Negative	169	87.6	171	89.1	340	P = 0.749
1 cinonical cytology	Positive	23	11.9	21	10.9	44	
	Unknown	1	0.5	0	0.0	1	
Adnexal metastasis	Negative	181	93.8	178	92.7	359	P = 0.675
Autiexat metastasis	Positive	12	6.2	14	7.3	26	
Dalvia I N metastania	Negative	163	84.4	164	85.4	327	P = 0.901
Pelvic LN metastasis	Positive	21	10.9	22	11.5	43	
			4.7	6 -	3.1	15	
	n.d.	9		55		106	P=0.363
Paraaortic LN metastasis	Negative	51	26.4		28.6 14.9	4	F = 0.303
	Positive	1	0.5	3			
	n.d.	141	73.1	134	7.8	275	

CAP: cyclophosphamide, doxorubicin, and cisplatin.

n.d.: not done.

simple randomization. Each participant was assigned by central telephone system. The primary endpoint was OS and secondary endpoints were PFS and the incidence of toxicity.

The required sample size was estimated as 173 for each group, with a significance level of 5% and a power level of 80% using Schoenfeld's sample size formula [9] for the log-rank test and assuming a 13% difference in the OS rate at 5 years (5-year OS rates of 80% for the CAP group and 67% for the PRT group). These figures for the 5-year OS rate were calculated based on data from the FIGO annual report [10], assuming an eligible case distribution of 60% stage I patients, 20% stage II patients, and 20% stage III patients.

Statistical methods

Statistical analyses were performed for all eligible patients on an intent-to-treat principle. All statistical analyses were performed using SAS Release 8.02 (Statistical Analysis Software, Cary, NC, USA). Prognostic factors were analyzed by chi-square test, and survival curves were calculated by the Kaplan–Meier method [11]. A log-rank test [12] was used to test for survival differences. A multivariate analysis using the Cox proportion hazards model [13] was performed to assess the hazard ratio of the prognostic factors for PFS and OS. All reported P-values are based on two-sided tests with P<0.05 taken as significant.

Results

As shown in the trial profile (Fig. 1), the initial enrollment was 475 patients, 41 of whom were ineligible due to myometrial invasion of less than 50%, histological diagnosis of sarcoma, or rapid progression of disease after enrollment. An additional 49 patients with non-endometrioid histology were excluded. As a result, 385 patients were eligible for this trial. Seven patients in the PRT group did not receive PRT and 4 patients in the CAP group did not receive CAP.

As shown in Table 1, the study groups were well balanced for patient characteristics including age, postmenopausal status, co-morbidity, type of hysterectomy, postoperative stage, tumor grade, myometrial invasion, lymphovascular space invasion, cervical involvement, parametrial invasion, peritoneal cytology, adnexal metastasis, pelvic lymph node metastasis, and paraaortic lymph node metastasis. None of these characteristics was significantly different between groups in univariate analysis. The distribution of postoperative stages was 61.0% IC, 13.8% II, 13.0% IIIA, and 11.9% IIIC. Pelvic lymphadenectomy was performed in 96.1% of the patients, and paraaortic lymphadenectomy was performed in 28.6% of the patients.

The analysis was performed using data finalized on April 14, 2005. The median follow-up periods in the PRT and CAP groups were 59.5 (2.2–60.8) months and 60.8 (5.0–60.8) months, respectively.

Protocol compliance

Treatment was completed in 98.9% (184/186) and 97.3% (183/188) of the patients in the PRT and CAP groups, respectively. We regarded pelvic radiation as being completed when the total radiation dose reached 40 Gy and regarded chemotherapy as being completed when the number of CAP courses reached three. The median total doses were 50 Gy of pelvic irradiation and 1309 mg/m² cyclophosphamide, 120 mg/m² doxorubicin, and 180 mg/m² cisplatin. The median number of CAP courses was 3, ranging from 1 to 7. The median duration of treatment was 5.1 weeks and 11.4 weeks in the PRT and CAP groups, respectively.

Table 2
Multivariate analysis of prognostic factors

Prognostic factors	PFS				OS			
	Hazard 95% confidence ratio interval		P-value	Hazard ratio	95% confidence interval		P-value	
		Lower	Upper			Lower	Upper	
Treatment (CAP vs. PRT)	1.07	0.651	1.762	0.788	0.72	0.399	1.290	0.268
Age (≧ 60 vs. < 60)	1.92	1.142	3.210	0.014	3.30	1.634	6.646	0.001
Co-morbidity	1.61	0.974	2.647	0.063	2.24	1.226	4.109	0.009
Tumor grade	1.55	1.125	2.137	0.007	1.64	1.115	2.418	0.012
Cervical involvement	2.28	1.352	3.829	0.002	n.d.	n.d.	n.đ.	n.d.
Peritoneal cytology	2.07	1.091	3.920	0.026	n.d.	n.d.	n.d.	n. d .
Pelvic lymph node metastasis	n.d.	n.d.	n.d.	n.d.	4.25	2.235	8.072	< 0.001

CAP: cyclophosphamide, doxorubicin, and cisplatin.

Table 3
Sites of initial recurrence

Recurrence sites*	PRT	CAP		
·	n=193	n=192		
Pelvis	11	5		
Vagina only	2	9		
Intrapelvic recurrence	13 (6.7%)	14 (7.3%)		
Peritoneal cavity	2 .	2 ,		
Liver	. 3	1		
Lung	11	15		
Paraaortic lymph node	3	10		
Others	7	3		
Extrapelvic recurrence	26 (13.5%)	31 (16.1%)		
Total recurrent cases	30 (15.5%)	33 (17.2%)		

^{*}Including multiple recurrence.

CAP: cyclophosphamide, doxorubicin, and cisplatin.

PRT: pelvic radiation treatment.

Adverse effects

G3 and G4 toxicities were experienced in 1.6% (3/193) of the PRT and 4.7% (9/192) of the CAP groups. Bowel obstructions were the main complication in the PRT group, and myelosuppression was detected in the CAP group. No treatment-related deaths occurred in either group.

Prognostic factors

We performed univariate analyses to detect prognostic factors in all eligible patients. The statistically significant prognostic factors predicting worse PFS were age (\geq 60 years vs. <60 years), co-morbidity, clinical staging (IIIA vs. II vs. IB vs. IA), tumor grade (G2/3 vs. G1), myometrial invasion (beyond serosa vs. serosa vs. \geq 2/3 to < serosa vs. \geq 1/2 to <2/3), pelvic lymph node metastasis, adnexal involvement, cervical involvement, peritoneal cytology, and surgical staging (IIIC vs. IIIA vs. IIB vs. IIA vs. IC). For OS, the statistically significant prognostic factors were age, co-morbidity, clinical staging, tumor grade, myometrial invasion, pelvic lymph node metastasis, lymphovascular space invasion, and surgical staging.

PRT: pelvic radiation treatment.

n.d.: not done.

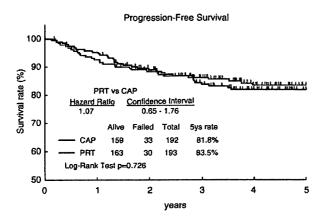


Fig. 2. Progression-free survival rates of all patients in the PRT (pelvic radiation treatment) group and CAP (cyclophosphamide, doxorubicin, and cisplatin) group. Kaplan-Meier analysis. Data for both groups nearly overlap, with no statistical difference.

The significant prognostic factors were used to perform a multivariate analysis with a Cox regression model (Table 2). The multivariate analysis showed that age (≥ 60 years) and tumor grade (G2/3) were the most important poor prognostic factors for both PFS and OS in this trial.

Recurrence sites

Table 3 presents data on sites of initial recurrence. Thirty recurrences (15.5%) occurred in the PRT group, and 33 recurrences (17.2%) occurred in the CAP group. The patterns of recurrence were similar in both treatment groups. Specifically, the incidence of intrapelvic recurrence sites, such as the pelvis or vagina, was 6.7% (13/193) in the PRT group and 7.3% (14/192) in the CAP group, while the incidence of extrapelvic recurrence sites, such as the peritoneal cavity, liver, lung, paraaortic lymph nodes, and others, was 13.5% (26/193) and 16.1% (31/192) respectively.

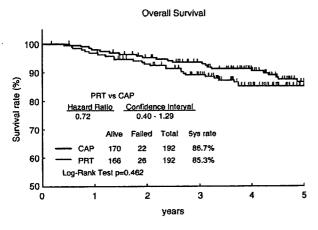


Fig. 3. Overall survival rates in the PRT (pelvic radiation treatment) group and CAP (cyclophosphamide, doxorubicin, and cisplatin) group. Kaplan-Meier analysis. Overall survival rates in both groups were also similar, with no statistical difference.

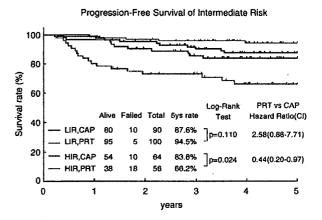


Fig. 4. Progression survival rates of intermediate risk in the PRT (pelvic radiation treatment) group and CAP (cyclophosphamide, doxorubicin, and cisplatin) group. Low-intermediate risk (LIR) was defined as stage IC patients under 70 years of age and with G1/2 endometrioid adenocarcinoma. High-intermediate risk (HIR) was defined as (1) stage IC patients over age 70 years or having G3 endometrioid adenocarcinoma or (2) stage II or IIIA (positive cytology) patients with deeper than 50% myometrial invasion in the corpus. Among LIR patients, PFS rates at 5 years in the PRT and CAP groups were not statistically different. However, among HIR patients, the CAP group had significantly higher PFS rate.

Outcome

Fig. 2 presents the PFS rates of all patients in both randomized treatment groups. Data for the two groups nearly overlap. PFS rate at 5 years was 83.5% in the PRT group and 81.8% in the CAP group. The hazard ratio was 1.07 (95% CI, 0.65-1.76; P=0.726).

Fig. 3 shows that the OS rates in both groups were also similar, with no statistical difference. The OS rate at 5 years was

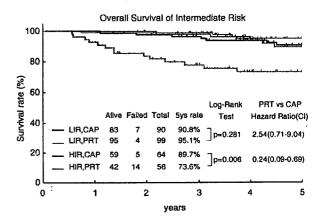


Fig. 5. Overall survival rates of intermediate risk in the PRT (pelvic radiation treatment) group and CAP (cyclophosphamide, doxorubicin, and cisplatin) group. Low-intermediate risk (LIR) was defined as stage IC patients under 70 years of age and with G1/2 endometrioid adenocarcinoma. High-intermediate risk (HIR) was defined as (1) stage IC patients over age 70 years or having G3 endometrioid adenocarcinoma or (2) stage II or IIIA (positive cytology) patients with deeper than 50% myometrial invasion in the corpus. Among LIR patients, OS rates at 5 years in the PRT and CAP groups were not statistically different. However, among HIR patients, the CAP group had significantly higher OS rate.

85.3% in the PRT group and 86.7% in the CAP group (log-rank test P=0.462). The hazard ratio was 0.72 (95% CI, 0.40–1.29; Cox proportion hazards model P=0.268).

Overall, 48 patients died, of whom 26 had been assigned to the PRT group and 22 to the CAP group. In the PRT group, 21 deaths were related to endometrial cancer, 1 death to another cancer, and 2 deaths to other diseases. In the CAP group, 13 deaths were related to endometrial cancer, 4 deaths to other cancers, and 4 deaths to other diseases.

We performed a subgroup analysis, defining the criteria for low- to intermediate-risk (LIR) and high- to intermediate-risk (HIR) subgroups. When LIR was defined as stage IC patients under 70 years of age and with G1/2 endometrioid adenocarcinoma, among 190 LIR patients, PFS rates at 5 years in the PRT and CAP groups were 94.5% and 87.6% respectively (P=0.110) (Fig. 4), and OS rates at 5 years in the PRT and CAP groups were 95.1% and 90.8% respectively (P=0.281) (Fig. 5). The HIR subgroup was defined as (1) stage IC patients over age 70 years or having G3 endometrioid adenocarcinoma or (2) stage II or IIIA (positive cytology) patients with deeper than 50% myometrial invasion in the corpus. Among these 120 patients, the CAP group had significantly higher PFS rate (83.8%) (hazard ratio 0.44, 95% CI, 0.20-0.97; P=0.024) (Fig. 4) and OS rate (89.7%) (hazard ratio 0.24, 95% CI, 0.09–0.69; P=0.006) (Fig. 5) versus the PRT group (66.2% and 73.6%, respectively).

We performed another analysis for high-risk group. For 75 cases in high-risk group, OS rates and PFS rates were not statistically different between PRT group and CAP group. The OS rate at 5 years was 75.8% in the PRT group and 71.1% in the CAP group (log-rank test P=0.667). The hazard ratio was 1.123 (95% CI, 0.42–3.04; P=0.819). The PFS rate at 5 years was 78.6% in the PRT group and 64.4% in the CAP group (log-rank test P=0.169). The hazard ratio was 1.847 (95% CI, 0.73–4.65; P=0.193).

Discussion

This study by the Japan Gynecologic Oncology Group is the first report of a randomized controlled study comparing adjuvant pelvic RT with chemotherapy for early-stage endometrial cancer with deeper than 50% inyometrial invasion. We observed no statistically significant differences in survivals in the two regimens. We also found that adverse effects were not significantly increased in a platinum-based combined chemotherapy group, and we showed that chemotherapy significantly improved PFS and OS in HIR patients, versus pelvic radiation.

The eligibility criteria for this study were FIGO stage IC-IIIC endometrial carcinoma with deeper than 50% myometrial invasion. The majority (77.4%) of registered patients had stage IC or II lesions, and only 11.9% had stage IIIC lesions. We therefore believe that the efficacy of pelvic radiation and chemotherapy as adjuvant treatments for early-stage endometrial cancer was compared appropriately.

All patients had undergone a hysterectomy and bilateral adnexectomy, and pelvic lymphadenectomy and paraaortic lymphadenectomy were performed in 96.1% and 28.6% of patients respectively. Paraaortic lymphadenectomy was not

performed when no paraaortic lymph nodes were palpable and no enlarged paraaortic lymph nodes were detected preoperatively by computed tomography. We therefore regard our surgical staging as appropriate. However, our eligibility criteria were somewhat heterogeneous for the inclusion of post-surgical stage IC, IIA, IIB, IIIA, IIIB, and IIIC lesions.

To verify the efficacy of chemotherapy in intermediate- and high-risk groups, a subgroup analysis is potentially important. Generally, prognostic risk factors have been classified as low, intermediate, or high risks using different criteria [2,3,6,8,14,15]. In these previous reports, stage IC was definitely classified as intermediate risk. Stage III and IV were usually classified as high-risk, locally advanced. The GOG defined stage IC and II, without inclusion of IIIA (positive cytology) as intermediate risk. GOG Study 99 [8] defined HIR as (1) G2/3 tumors with lymphovascular space invasion and outer-third myometrial invasion, (2) age of 50 years or greater in addition to any two factors listed above, or (3) age of at 70 years or greater with any risk factor listed above. FIGO stages IB, IC, and II (occult disease) were defined as LIR.

In our subgroup analysis an LIR group comprised stage IC patients under 70 years of age with G1/2 endometrioid adenocarcinoma. Our HIR group comprised (1) stage IC patients who were over 70 years of age or had G3 endometrioid adenocarcinoma and (2) stage II or IIIA (positive cytology) patients with deeper than 50% myometrial invasion in the corpus. Our high-risk group comprised other stage IIIA patients with factors other than a positive peritoneal cytology and stage IIIB and IIIC patients.

PFS and OS rates for the PRT and CAP groups were the same in the LIR subgroup. In the HIR subgroup, however, we found significantly higher PFS and OS rates in the CAP group versus the PRT group. Since patients with FIGO stage IIIA endometrial cancer only with positive washing cytology have a better prognosis [5,16], we included patients with positive washing cytology in the HIR group, along with stage II disease patients. However, we recognize that the validity of this subset analysis is limited. Demonstration of a true advantage of chemotherapy requires a large-scale randomized controlled trial with stratification for risk factors including age and tumor grade prior to randomization.

In the early 1990s, the CAP regimen was used as the standard chemotherapy for endometrial cancer and ovarian cancer in Japan. Most Japanese gynecologists adopted CAP as the standard adjuvant chemotherapy rather than AP. In our trial, the dosage of doxorubicin was lower than in other trials using AP, such as GOG study 107/122/177 (60 mg/m²) and GOG study 184 (45 mg/m²) [17-19]. Due to this relatively low dose, G3 and G4 adverse effects were rare (4.7%), and protocol compliance was very high (95.3%) in the CAP group. The number of CAP courses was relatively small (median: 3 courses). Thus, cisplatin-based chemotherapy may be a feasible alternative to adjuvant pelvic radiation therapy for patients with intermediate-risk endometrial cancers. However, validation of a true efficacy of adjuvant chemotherapy for early-stage endometrial cancer, especially for LIR patients, requires a randomized controlled trial of no-treatment versus chemotherapy.

In HIR patients, chemotherapy was superior to radiation therapy. In patients with low-risk and LIR endometrial cancer, most recurrence sites are vaginal or intrapelvic, making pelvic radiation or vaginal vault brachytherapy effective for reducing the loco-regional recurrence rate [7,20,21]. The reason for the superiority of chemotherapy in HIR patients is partly that extrapelvic recurrence cannot be prevented by pelvic radiation, as reported by Creutzberg et al. [7,14] and other investigators [6,8,20-22]. In this study, the incidence of recurrences at vaginal wall was lower in PRT group compared with CAP group, however, there was no significant difference in the incidences of extrapelvic recurrence between the PRT and CAP groups. In Japan, different types of hysterectomy, such as simple hysterectomy, extended hysterectomy (type II modified radical hysterectomy), and radical hysterectomy (type III), were performed in each institution. However, radical hysterectomy is selected only for those patients with macroscopically apparent cervical involvement in most of JGOG institutions. In addition, in this study, we included simple hysterectomy with a small amount of removal of vaginal cuff into extended hysterectomy. For this reason, the percentage of radical hysterectomy and modified radical hysterectomy is not thought to be high, and the influence of surgical procedure over the incidence of vaginal recurrence may be limited in our study.

In our study, we performed pelvic lymphadenectomy in 96% cases. Local recurrence rate was 2.6% in the cases of LIR and HIR with pelvic radiation treatment. Local recurrence rate in the radiotherapy group was 3.9% in PORTEC study [2,7] with no pelvic lymphadenectomy and 1.6% at 2 years in GOG study 99 [8] with selective pelvic and paraaortic lymphadenectomy. It seems that there is a tendency of low local recurrence rate in the intermediate-risk patients with pelvic lymphadenectomy in pelvic radiation treatment, however, we cannot simply compare those data as there are differences in the definition of intermediate risk.

The superiority of chemotherapy in HIR patients must also be considered in relation to the conclusions of GOG study 122 on advanced-stage endometrial cancer [4]. In stage III/IV endometrial cancer, AP chemotherapy was superior to whole-abdominal radiation as a therapeutic modality. Further investigation of the use of chemotherapeutic agents in patients with HIR endometrial cancer or high-risk endometrial cancer is needed. The JGOG has just finished accruing for a comparative phase II trial comparing three combined chemotherapy regimens (paclitaxel and carboplatin vs. docetaxel and cisplatin vs. docetaxel and carboplatin). These results are forthcoming.

In patients with early-stage endometrial cancer and deeper than 50% myometrial invasion, adjuvant platinum-based combined chemotherapy and pelvic radiation therapy each led to a good prognosis. In patients with HIR endometrial cancers, the aforementioned chemotherapy improved the prognosis significantly compared to pelvic radiation. Additional phase III randomized controlled trials are required to establish a standard adjuvant chemotherapy regimen including anthracyclin, taxane or platinum for intermediate-risk or high-risk endometrial cancer.

Acknowledgments

We thank the patients who participated in this study and their families. We thank Ms. Kyoko Tanaka (Kyowa Media Service) for her statistical review and comments.

The participating institutions for all studies described in this report are listed in Appendix A.

Appendix A

The following member institutions participated in this study: Akita City Hospital, Aomori Prefectural Central Hospital, Asahi General Hospital, Asahikawa Medical College, Asahikawa Red Cross Hospital, Chiba Kaihin General Hospital, Chiba Social Insurance Hospital, Chiba University, Daiyukai General Hospital, Dokkyo University School of Medicine, Fujita Health University, Gifu Prefectural Tajimi Hospital, Gifu University, Hakodate Goryokaku Hospital, Hamamatsu Medical Center, Himeji Red Cross Hospital, Hiroshima University, Hyogo Medical Center for Adults, Hyogo Prefectural Awaji Hospital, Hyogo Prefectural Tsukaguchi Hospital, Iwate Medical University, Iwate Prefectural Kuji Hospital, JA Kochi Hospital, Japanese Red Cross Akita Hospital, Jiaikai Imamura Hospital, Juntendo University Urayasu Hospital, Kagawa University, Kanazawa Medical University, Kanazawa University, Kanebo Memorial Hospital, Kansai Medical University, Kanto Central Hospital of the Mutual Aid Association of Public School Teachers, Kawasaki Medical School, Keio University, Keiyu Hospital, Kinki University, Kitasato University, Kobe University, Kokura Memorial Hospital, Kumamoto City Hospital, Kumamoto University, Kurashiki Central Hospital, Kurume University, Kyosai Tachikawa Hospital, Kyoto Prefectural University of Medicine, Kyoto Second Red Cross Hospital, Kyoundo Hospital, Kyushu University (Medical Institute of Bioregulation), Miyazaki Prefectural Nichinan Hospital, Nagaoka Red Cross Hospital, Nagasaki University, Nagoya Daini Red Cross Hospital, Nantan General Hospital, Nara Medical University, Nara Prefectural Hospital, National Hospital Organization Hokkaido Cancer Center, National Hospital Organization Iwakuni Clinical Center, National Hospital Organization Matsumoto National Hospital, National Hospital Organization Saitama National Hospital, National Hospital Organization Sendai Medical Center, National Hospital Organization Tokyo Medical Center, Ogaki Municipal Hospital, Ohta General Hospital (Nishinouchi Hospital), Oita University, Okayama Red Cross General Hospital, Okayama Saiseikai General Hospital, Osaka City General Hospital, Osaka General Medical Center, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka Medical College, Osaka Police Hospital, Saga University, Saiseikai Central Hospital, Saiseikai Utsunomiya Hospital, Saitama Shakai-Hoken Hospital, Sapporo Medical University, Sapporo-Kosei General Hospital, Sasebo City General Hospital, Seirei Yokohama Hospital, Senboku Kumiai General Hospital, Shimane Prefectural Central Hospital, Shimane University, Shizuoka General Hospital, Shonai Hospital, Showa University, Showa University Fujigaoka Hospital, Social Insurance Tagawa Hospital, St. Marianna University School of Medicine, St. Marianna University School of Medicine Yokohama City Seibu Hospital, Takamatsu Red Cross Hospital, Teikyo University Ichihara Hospital, Tohoku University, Tokyo Medical and Dental University, Tokyo Medical University, Tokyo Women's Medical University, Tosei General Hospital, Tottori Municipal Hospital, Tottori University, Toyama Medical and Pharmaceutical University, Toyama Prefectural Central Hospital, University of Tokushima, Yamagata University, Yamaguchi Grand Medical Center.

References

- [1] Creasman WT, Odicino F, Maisonneuve P, et al. Carcinoma of the corpus uteri. Int J Gynecol Obstet 2003;83(suppl 1):79-118.
- [2] Creutzberg CL, van Putten WL, Koper PC, et al. Surgery and postoperative radiotherapy versus surgery alone for patients with stage-1 endometrial carcinoma: multicentre randomized trial. PORTEC Study Group. Post Operative Radiation Therapy in Endometrial Carcinoma. Lancet 2000;355: 1404-11.
- [3] Morrow CP, Bundy BN, Kurman R, et al. Relationship between surgical-pathological risk factors and outcome in clinical stage I and II carcinoma of the endometrium: a Gynecologic Oncology Group study. Gynecol Oncol 1991;40:55-65.
- [4] Randall ME, Filiaci VL, Muss H, et al. Randomized phase III trial of whole-abdominal irradiation versus doxorubicin and cisplatin chemotherapy in advanced endometrial carcinoma: a Gynecologic Oncology Group study. J Clin Oncol 2006;24:36-44.
- [5] Teng N, Rustum NA, Bahador A, Bookman MA, Campos S, Cho KR, Copeland L, Eifel P, Fiorica J. NCCN Practice Guidelines in Oncology v.2.2006. Uterine cancers (http://www.nccn.org/professionals/physician).
- [6] Aalders J, Abeler V, Kolstad P, et al. Postoperative external irradiation and prognostic parameters in stage I endometrial carcinoma: clinical and histopathologic study of 540 patients. Obstet Gynecol 1980;56:419-27.
- [7] Creutzberg CL, van Putten WL, Koper PC, et al. The morbidity of treatment for patients with stage I endometrial cancer: results from a randomized trial. Int J Radiat Oncol Biol Phys 2001;51:1246-55.
- [8] Keys HM, Roberts JA, Brunetto VL, et al. A phase III trial of surgery with or without adjunctive external pelvic radiation therapy in intermediate risk endometrial adenocarcinoma: a Gynecologic Oncology Group study. Gynecol Oncol 2004;92:744-51.
- [9] Schoenfeld DA. The asymptotic properties of nonparametric tests for comparing survival distributions. Biometrika 1981;68:316-9.
- [10] Annual report on the results of treatment in gynecological cancer. Twenty-first volume. Statements of results obtained in patients treated in 1982 to

- 1986, inclusive 3 and 5-year survival up to 1990. Int J Gynaecol Obstet 1991;36:S132-237.
- [11] Kaplan EL, Meier P. Nonparametric estimation from incomplete observations. J Am Stat Assoc 1958;53:457-81.
- [12] Mantel N. Evaluation of survival data and two new rank order statistics arising in its consideration. Cancer Chemother Rep 1966;50:163-70.
- [13] Cox DR. Regression model and life tables. J R Stat Soc B 1972;34: 187-220.
- [14] Creutzberg CL, van Putten WL, Warlamrodenhuis CC, et al. Outcome of high-risk stage IC, grade 3, compared with stage I endometrial carcinoma patients: the postoperative radiation therapy in endometrial carcinoma trial. J Clin Oncol 2004;22:1234-41.
- [15] Creasman WT, Morrow CP, Bundy BN, et al. Surgical pathologic spread patterns of endometrial cancer. A Gynecologic Oncology Group study. Cancer 1987;60:2035-41.
- [16] Mariani A, Webb MJ, Keeney GL, et al. Assessment of prognostic factors in stage IIIA endometrial cancer. Gynecol Oncol 2002;86:38–44.
- [17] Thigpen JT, Brady MF, Homesley HD, et al. Phase III trial of doxorubicin with or without cisplatin in advanced endometrial carcinoma: a Gynecologic Oncology Group study. J Clin Oncol 2004;22:3902-8.
- [18] Fleming GF, Brunetto VL, Cella D, et al. Phase III trial of doxorubicin plus with or without paclitaxel plus filgrastim in advanced endometrial carcinoma: a Gynecologic Oncology Group study. J Clin Oncol 2004;22: 2159-66
- [19] A randomized phase III study of volume directed pelvic plus or minus para-aortic irradiation followed by cisplatin and doxorubicin or cisplatin, doxorubicin and paclitaxel for advanced endometrial carcinoma. GOG study #184 (http://www.gog.fccc.edu/).
- [20] Carey MS, O'Connel GJ, Johanson CR, et al. Good outcome associated with a standardized treatment protocol using selective postoperative radiation in patients with clinical stage I adenocarcinoma of the endometrium. Gynecol Oncol 1995;57:138-44.
- [21] Elliot P, Green D, Coates A, et al. The efficacy of postoperative vaginal irradiation in preventing vaginal recurrence in endometrial cancer. Int J Gynecol Cancer 1994;4:84-93.
- [22] Zaino RJ, Kurman RJ, Diana KL, et al. Pathologic models to predict outcome for women with endometrial adenocarcinoma. The importance of the distinction between surgical stage and clinical stage—a Gynecologic Oncology Group study. Cancer 1996;77:1115-21.