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Figure 1. Algorithm for diagnosis of interstitial lung disease {ILD} in non-small cell tung cancer {NSCLC) patients.

As an example, in our work with gefitinib, samples were
taken after obtaining informed consent from a nested case-
control study, i.e., a case-control study performed within a
prospective pharmacoepidemiological cohort of several thou-
sand patients with advanced or recurring NSCLC who had
received at least one prior chemotherapy regimen, and who
were to be treated with gefitinib or chemotherapy. The main
objective of this study was to measure the relative risk of ILD
in Japanese patients with NSCLC using gefitinib compared with
conventional therapy, with the associated aims of determining
the incidence rate of ILD in late stage NSCLC patients and the
principal risk factors for this complication.

Central to both the case-control study and the proteomics
analysis was the use of internationally agreed criteria for the
diagnosis of ILD and an algorithm of diagnostic tests to exclude
alternative diseases.?® Principal investigators in the study were
asked to assess all patients for possible ILD using the diag-
nostic algorithm (Figure 1). Two case review boards of experts
from oncology, radiology, and pulmonary medicine were set
up to independently establish a consistent final diagnosis of
ILD. In additicn, extensive standard clinical and demographic
risk factor data were collected on all registered cases and
controls.

This degree of rigor in establishing accurate phenotypic
diagnosis is critical to develop a robust and reliable personal-
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jzed medicine test, as inaccuracies at this stage will affect all
subsequent data analyses. The avalilability of clinical and risk
factor data, and a rigorous epidemiological study design setting
for the collection of proteomics samples is also of great value
to fine-tune the statistical analysis.

Is Proteomics Ready for Personalized Medicine
Applications?

The Human Proteome Map in Plasma, The impetus to
develop personalized medicine based on blood samples has
encouraged proteomic profiling that identifies individual pro-
teins and multiple “fingerprint” protein patterns. A remaining
limitation has been the lack of integration of the technology
of protein separation with bioinformatics and statistical meth-
ods. Extensive national and international®*' collaborations are
being implemented to address some of these needs. An
important component in this development is the Human
Proteome Organization (HUPQ; www.HUPO.org), a scientific
consortium that supports various programmes to map the
proteins expressed in various human tissues, disease states,
etc.#-% One of these is the Plasma Proteome initiative started
in 2002, aiming to annotate and catalog the many thousands
of proteins and peptides®37 of the human plasma proteome.
Recently results from the pilot phase with 35 collaborating
laboratories from 13 countries®-# and multiple analytical
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groups were made publicly available on the Internet
(www.bioinformatics.med.umich.edu/hupo/ppp; www.ebi.ac.uk/
pride). The combined efforts have generated 15 710 different
MS/MS datasets that were linked to the Intemational Protein
Index (IP)) protein IDs, and an integration algorithm applied
to multiple matches of peptide sequences yielded 9504 1Pl
proteins identified with one or more peptides® and character-
ized by Gene Ontology, InterPro, Novartis Adas, and OMIM,
Such advances provide an important platform for transforming
proteomics from a technology to a useful biomarker tool
applicable to personalized medicine.

Protein Analysis in Blood—The Methods. With respect to
automated studies, multidimensional chromatography is the
main technology used for protein analysis in blood. It is
coupled to mass spectrometry either by electrospray ionization
(ESY) for analysis in solution or matrix assisted laser desorption/
ionization (MALDY) in solid phase applications.394143-47 Alter-
nadvely, ion-trap mass spectrometers are gaining recognition
for high-throughput sequencing. 8~ Linking a Fourier trans-
form ion cyclotrone resonance (FTICR) unit to the linear trap
can increase the resolution profoundly,®54-% one of several
novel principles for strengthening the assignment of protein
annotations with the most commonly used protein search
engines.*84754-61 For protein annotation, the recent develop-
ment of a human protein reference database complements
these technologies.® Studies of protein expression in a variety
of biological compartments ranging from sub-cellular to whole
organismshavebeen undertakenwith these analyticapproaches.22-®
Some key findings from the HUPO initiatives that impact on

_ methodology include:

» For studies using blood samples, plasma rather than serum
is preferred, with ethylenediaminetetraacetic acid (EDTA) as
an anticoagulant.®

« The abundant proteins in plasma should be depleted prior
to analysis.*

» Acceptance of protein annotation, i.e., accepted protein
identities™° should use standard criteria. These include having
two identified peptide sequences from each protein, both with
a statistical significance score high enough to ensure a correct
sequence confirmation when compared with the corresponding
gene sequence entity.®®

Despite the advances in methodology, important hurdles to
using proteomics in a personalized medicine context remain.

Protein Expression Analysis in Blood—Some Important
Hurdles. Although protein profiling technology is highly au-
tomated and interfaced with database search engines to relate
peptide sequences to protein identities and function,*4 there
are many practical reasons why determining the relative
abundance of proteins relevant for prediction purposes is
difficult:

» About 90% of proteins are believed to be present only in
low copy numbexs, i.e., at medium and low abundance levels.®

« There can be variation both in the quantity and form of
protein expression within normal physiological function.

» Between 300 000 and 3 million human protein species exist
as direct gene products or post-transiational modifications.#

« The relative abundance of the post-translational modifica-
tions occurring within the cell is called a Cell-Protein-Index
Number (CPIN).23¢ As an example, if one considers that there
are 30 types of phosphorylation variants of a single phospho-
protein, and a hundred possible fold forms of glycosylation of
a single glycoprotein, the theoretical CPIN varies considerably
depending ob the sample complexity.
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« The dynamic range of protein expression within cells,
between levels of most and least abundant proteins, is in the
order of 1¢8~101034-36

« In a typical clinical proteomics study the total cellular
protein material in a sample seldom exceeds 10—20 milligrams.
Therefore, the least abundant proteins would be present at
starting levels not exceeding picograms.

« Recent studies use technology that can identify several
thousand proteins in plasma samples,® but this still probably
only represents a small fraction of the intermediate and
processed protein forms. This is due to the current limitation
of mass spectrometry not being able to ionize all amino acid
sequences and protein modifications with equal efficiency. In
most situations, a limited region of the full length protein is
sequence annotated.

« The detection of differences in protein expression between
groups of interest {e.g., cases and controls) takes place against
a background of high variation between individuals within a
group, within individuals over time and possible analytic run-
to-run variation. Any method used to address this hurdle
(which will involve “alignment” for spectral methods) directly
impacts the ability to find good protein biomarkers.

Beyond the hurdles above, the fundamental challenge of
protein biomarkers is to link the relative abundance of single
markers or a fingerprint to clinically important biological
processes based on some direct or indirect cause-effect link?
related to normal or aberrant biological pathways.*”*® In the
following sections, we present the approach used for the
identification of protein biomarkers potentially associated with
development of ILD in NSCLC patients within the case-control
study used as our motivating example. We build on the
foundations described above and introduce further analytic
developments and ideas relating to proteomic data generation,
assaying and alignment to build a proteomics toolkit that can
be applied today for personalized medicine approaches.

A State of the Art Clinical Biomarker Analysis System

In the previous section, we described several challenges in
proteomic analysis. Here we describe a system and analysis
approaches that we have successfully implemented to address
some of these issues.

The Components of the Analysis System. The analysis
system (Figure 2) uses liquid chromatography-based high-
resolution separation of peptides with an interface to tandem
MS/MS, a technology which has been attracting great attention
as the “shotgun” method of proteome analysis.*#5~7 With this
technology, after depletion of albumin and immunoglobulin
G (IgG), all extracted plasma proteins are digested into their
specific peptide components by proteolytic enzyme treatment.

The generated peptides are subjected to capillary reverse-
phase submicro- to micro-flow liquid chromatography {(capil-
lary RP ulC), separated by retention times due to their
physicochemical properties, and then detected and sequenced
by a linear ion-trap tandem mass spectrometer’! (LTQ, Thermo
Fisher Scientific, San Jose, CA) interfaced with a spray needle
tip for ESI of peptides.” A two-dimensional quadrupole ion
trap mass spectrometer”’ is used, operated in a data-dependent
acquisition mode with operational m/z range limits set at 450—
2000 (Figure 3, graphs A and B). Automatic switching to MS/
MS acquisition mode is made in 1-second scanning cycles,
controlled by the XCalibur software. The actual differences
between annotated peptide fragment peaks shown in Figure
3, graph C, correspond to the amino acid residue mass, i.e.,
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Figure 2, Schematic illustration of the clinical proteomics screening process.
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Figure 4. Overview of the data acquisition and database mining process developed within the gefitinib biomarker study.

identify the correct amino acid sequence. Internal standards
are used for alignment of retention-times,

How the Methodolegy Overcomes Some of the Hurdles.
The system described above addresses some of the hurdles
noted previously. The digestion of all extracted plasma proteins
into peptides will reduce the complexity by combining high-
resolution nanoflow chromatographic fractionation with the
separation power of modern mass spectrometry, performing
automated and unattended shotgun sequencing in plasma.®
Peptides are also more soluble and easier to handle than
intact proteins. In addition, the two-dimensional quadrupole
ion trap mass spectrometer’! operates with a high-volume
quadrupole electric field that makes it highly efficient to trap
ions. The result is high sensitivity, high scanning speed, and
better quantification over a wide dynamic range in com-
parison with the conventional three-dimensional ion-trap
instruments.

Finding signals against a background of high variation is a
further challenge, and the next section describes some ap-
proaches for addressing these.

initial Data Handling, Processing, and Analysis

Proteomic data analysis process can be considered as consis-
ting of two components (Figure 4). Quantitative analysis is used
to discover significant differences in peptide signal intensities
by comparing two (or more) sample groups. This process uses
data collected from an entire MS run to quantify the amount
of peptide ions by their respective jon signal intensity. Qualita-
tive analysis is used to identify the amino acid sequence of each
peptide ion, from the respective product ion spectra. To
maximize their value, the results from the two component
analyses should be considered in combination.

A typical quantitative analysis may consist of several steps:

1. Normalization: To account for differences in the original
sample concentrations. Typically, the total signal intensity is
scaled to a constant value for each analyzed sample.

2. Alignment: Correcting for nonlinear fluctuation in reten-
tion time between different samples. A variety of methodologies
are available for aligning LC—MS data sets. We have found the
i-OPAL algorithm (Patent # WO 2004 /090526 Al), which is based
on the single linkage clustering algorithm? and which makes
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use of internal standard signals, to perform well. Other align-
ment algorithms include xems.”

3. Peak picking or signal detection: Identifying individual
peptide ions within the data,

4. Identify discriminating peptides: A number of methods
can be used, often in combination. A common approach is to
apply a Student’s t-test and select peptides which are signifi-
cant, i.e., with a p-value less than the chosen cutoff, and which
also show a fold-change or intensity ratio greater than another
criterion. Further developments of this aspect are discussed
in the Principled Statistical Analysis section.

A popular choice for qualitative analysis is the MASCOT MS/
MS ion search program.” This may be run against a number
of different peptide sequence databases, for example the NCBI
Nr, Refseq, Gene Ontology, HUGO, and Swiss-Prot sequence
databases. The results of the quantitative analysis can then be
combined with the qualitative analysis so that, for example, a
peptide must be both discriminating and have annotation—
i.e., have achieved a high MASCOT score showing confidence
in identification—to be considered a candidate biomarker.

The approaches we have discussed above are focused on
finding potentially discriminating proteins of clinical utility. In
the following section, we describe the next stage in our
thinking, namely how we could rapidly deploy in the clinic a
viable method for exploiting a predictive proteomic fingerprint.

A Proposal for Proteomics in the Clinical Setting: Mass
Spectrometric Biomarker Assays - MSBA

Although today’s technology allows for high-throughput
analyses of many proteins rather than a single protein,* the
details of how such multiplexing assays will be adapted for
clinical use have not been well clarified. The Mass Spectro-
metric Biomarker Assay (MSBA) platform described here was
conceived as one example of a rapid and seamless method to
progress from identification of a diagnostic more directly to a
clinically useful test. MSBA requires only a minute sample
amount {5—20 ul) to obtain a read-out from a handful of
quantified protein biomarkers (typically 3—35) and automati-
cally analyzes proteins using liquid-phase separation and
tandem mass spectrometry with simultaneous quantitation and
identification.
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Figure 5. Entire flow of the operational components of Mass Spectrometric Biomarker Assays {MSBA).

The MSBA builds on a pre-defined Multiplex Biomarker list,
which is stored within the MSBA database. Each marker entity
has the values of masses and the relative retention time index
with tolerance parameters, In running a patient sample, the
predefined biomarker list is scanned to pick up patient sample
signals that match with one of the predefined biomarker signals
by satisfying the tolerance criteria (in general +1 for m/z value
and £2% for relative retention time index). The selected
candidate signals are further confirmed using the product ion
spectrum. That is, the product ion spectrum is represented as
a vector by binning (grouping) the m/z ratio values. Using the
cosine correlation between the sample vectors and the refer-
ence vectors, we can confirm whether the selected candidate
signals are truly assigned as target biomarkers. (A standard
threshold value of the cosine correlation is 0.8.)

The process steps within the MSBA cycle are outlined in
Figure 5. The calculation of the final multiplex biomarker assay
read-out from all of the individual markers can be performed
by a variety of applications, as discussed in more detail in the
Principled Statistical Modeling Approach section. Figures 6A
and B illustrate one approach, calculating a distance score
which indicates to what extent a measured sample is distant
from the case or control template in terms of predefined
multiplex biomarkers.

Scase or =
control

[

o 2
"3 - (z )

i
n(n — 2)

2

i

|5

i

(

239

If the ratio of Sese and Sconwat €xceeds an MSBA threshold
parameter, then the test sample is predicted to be a patient
susceptible to develop ILD (ILD case); if not, the test sample is
predicted to be a non-susceptible patient (control). We are
currently evaluating the MSBA approach in practice.

A Principled Statistical Modeling Approach

We have described an analytical approach based on pro-
teomic data, with various novel developments. However, ad-
ditional insight is needed to further improve model discrimi-
nation and to broaden the focus from the proteomic data to
the ultimate goal of prediction using combinations of data.
Statistical analysis can be used to provide further refinement
by combining information from the full clinical and laboratory
datasets.

An advantage of a multiple biomarker approach (e.g., pro-
teomics) compared with standard single biomarker develop-
ment is the capability to combine information from many
different entities. An example is illustrated in Figure 7A,
Considering each biomarker alone fails to separate the two
groups of subjects, as there is considerable ovetlap for both
biomarkers. Use of two biomarkers in combination completely
separates the two groups.

We can also use clinical variables to advantage in the analysis
of the peptide patterns. For example, the efficacy of gefitinib
appears to be greater in non-smokers, women, patients of Asian
origin, and patients with adenocarcinomas? Figure 7B il-
lustrates how, instead of two protein biomarkers, the combina-
tion of clinical data {e.g.. age) and a proteomic biomarker is
able to separate two groups.

On this basis, we propose using a principled statistical
analysis approach to first explore and understand the data and
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then to model it and understand the quality of any models
produced. A first step is to perform exploratory data analysis
(EDA), for example using principal components analysis (PCA),
to understand the major sources of data variation and the
covariation between clinical parameters and protein intensity
measures. The next step is univariate modeling for each protein
marker individually, for example using analysis of covariance
(ANCOVA), and an assessment of the effect of clinical param-
eters across the whole set of protein biomarkers using, for
example, the False Discovery Rate as a tool.” This provides an
understanding of key clinical variables and soutces of variation
within the data. :

The next step is to perform multivariate predictive modeling
using the proteins and clinical variables identified as being
potentially important. There are a number of mathematical
methods described in the literature for performing supervised
classification, for example Support Vector Machines,” Random
Forests,”” PAM,™ all of which have been successfully applied
to high dimensional genomics data.” It remains an important
unanswered question which modeling approach, or combina-
tion of modeling approaches, will generate the most predictive
and robust models for data generated using this technology
within a prospective study of this design.
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Finally, to confirm that we have a practical prediction, the
predictive power of a mode] must be assessed on a different
set of patients from that used to generate the model. There
are a number of approaches for external validation given a
limited size dataset, for example the sequential approach of
building a model based upon currently available data and
testing on data from new patients when they become available,
or withholding an arbitrary selection of subjects from the
modeling as a test set and testing the model on these subjects.
Internal validation approaches such as cross-validation or
related bootstrapping methods may also be useful to assess
the model selection procedure, but tend to overestimate the
performance of a specific predictive model in subsequent
external validation.®®' The key properties to consider when
selecting an assessment method are to ensure that it will
provide both precise and unbiased information regarding the
prediction error rate of the potential model to be tested for
clinical use. As well as assessing an overall predictive rate, it is
also useful to separately assess the predictive rate for both the
cases and controls and to consider the relative costs of making
these false predictions within a clinical setting. Finally, the
prevalence of the condition in question (here ILD) is also a
critical factor in estimating what proportion of people predicted
to be at risk are truly at risk, and this should also be borne in
mind when evaluating a model for potential clinical use. The
recently published FDA concept paper on drug-diagnostic co-
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development discusses many of the issues around validating
predictive biomarkers.?

Finally, it is preferable to be able to assign a biological
rationale to the biomarkers. Confidence in the reliability of a
biomarker is greatly enhanced if we can cormrectly under-
stand how it relates to the mechanism and progression of the
disease of interest. Figure 8 illustrates a bioinformatics and
data processing structure that we have developed to allow us
to both conduct interactive exploratory and statistical analyses,
and also investigate the disease and pathway linkage of
discovered biomarker proteins through direct access to refer-
ence databases.

Future Perspectives

Within this paper we have discussed many of the issues that
need to considered in developing a personalized medicine
approach. A key starting point is that rigorous steps are taken
to ensure accurate diagnosis and the careful gathering of both
clinical and proteomic data to facilitate the search for peptide
patterns.

There are many challenges in performing protein analysis
in blood, but mass spectrometry equipment and methods can
now be used to generate peptide data with high sensitivity, high
scanning speed, and improved quantification. Data handling
and processing techniques for steps such as peak alignment
and the subsequent methodologies for statistical modeling and
analysis are now far enough developed to generate high quality
data and robustly analyze these data with confidence.

We have provided details of the MSBA method that can be
used to easily translate protein intensities into a practical
multiplex assay which can be exploited in the clinic without
the need to develop anti-bodies for ELISA. We have also
described how an expanded statistical analysis can be used to
allow for the individual variance of protein expression to enable
us to focus on the proteomic patterns that are actually related
to ILD. Finally, we have emphasized the importance of validat-
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ing the predictive power of a biomarker tool in a way that
reflects the real-life setting of intended clinical use.
Hopefully, this combination of developments over a'range
of different areas brings us one step closer to a practical
personalized medicine.
IRESSA is a trademark of the AstraZeneca group of
companies.
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Introduction

A personalized medicine approach uses appropriate bio-
markers 10 select (reaiments best suited for an individual
patient and disease phenotype. A multiple biomarker approach
fe.g.. proteomics) has the advantage over conventional single
biomarkers of combining many dilferent pieces of information.
Here, we review the key features of stale-of-the-art proteomic
profiling and introducc recent analytic developments to build
a proteomic toolkit for use in personalized medicine, and we
describe how these may be applied in a viable method for
explaiting predictive proleomic fingerprints in the clinic. The
potential of our proteomics toolkit hopelully brings us one step
closer to a practical personalized medicine.

Cancer therapy is moving toward individually selected
treatments, chosen not only according (o wumor cell type but
also based on he patient’s predicted responsiveness (o different
classes of therapy or suscepribility to therapeutic adverse
cvents. This emerging personalized medicine approach draws
on both genotype and phenotype information. including
protein expression. To implement personalized medicine, we
need to develop effective biomarker tests predictive of response
o treatment or suscepltibility to adverse events. The benelits
of personalized medicine are exerplified by considering
interstitial lung disease (ILD) amaong non-small cell lung cancer
(NSCLC) patients, which is associated with various kinds of
chemotherapy treaiment. A personalized medicine approach,
using a simple bload test to predict those NSCLC patients at
risk of developing 1.0, waould clearly be of great value.

We review current thinking and present some novel devel-
opments in a number of areas that have to be integrated to
develop and then practically apply such tests in a clinical
selting:

« The large scale collection of reliable and high quality
phenotypic and clinical data and blood samples.

« Protein analysis in blood.

« Dalta acquisition, handling, combining and analysis.

« Interpretation and utilization of results in a clinical setting.

Clinical Background

A Motivating Example: Gefitinib (IRESSA) Treatment of
NSCLC. The concepts of protcomics-based personalized medi-
cine discussed in this article are very generally applicable. A
motivating example that we will refer (o in order to illustrate
the potential benefits of personalized medicine is ongoing work
in auempting to develop a simple blood test to address the
potential occurrence ol ILD in seriously ill NSCLC patients, the
target group for the NSCLC (reatment gefitinib.

Gefitinib is a “small molecule” inhibitor of the enzyvme
tyrosine kinase of the epidermal growth factor receplor (EGFR)
family. such as erbB1. [t is an approved therapy for advanced
NSCLC in many countries and offers important clinical benefits
(lumor shrinkage and improvement in disease-related symp-
toms) for “end-stage” patients. The large phase I1T ISEL (IRESSA
Survival Evaluation in Lung Cancer) trial demonstrated some
improvement in survival with gefitinib which failed to reach
statistical significance compared with placebo in the overall
population and in patients with adenocarcinoma.! However,
in preplanned subgroup analyses. a significant increase in
survival was shown with gefitinib in patients of Asian cthnicity
and in patients who had never smoked.!

Analysis of the biomarker data from a subset of patients in
the ISEL study suggested that patients with pretreated advanced
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NSCLC who have tumaors with a high LGFR gene copy nummber
(detected by Muorescent in situ hybridization {FISH}) have a
higher likelihood of increased survival when treated with
gefitinib compared with placebo.? Increased HER2 gene copy
number has also been seen in tumors lrom patients who are
responsive (o gefitinib.* Somatic-activating mutations of EGFR
in tumor tissue have also been associated with increased
gefitinib responsiveness in patients with NSCLC.4-7 Such muta-
tions are more commonly found in tumor samples from
patients of Asian origin and non-smokers.?

Following the ISEL subgroup analyses, and the biomarker
cvidence, it has hecome important to clarify which patients
are more suitable for reatment with gelitinib. Analyses for both
somatic-activating mutations and gene copy number require
tumor tissue, which is not always available from the time of
diagnosis; therefore, a blood test may represent a more versatile
option and be of great value (o clinicians.

With respect to (olerability, the search for a blood iest
that might include both genetic and proteomic biomarkers to
define patients at risk of adverse cffects from a drug, for
example interstitial lung disease with gefitinib, is a focus of
research.

Interstitial Lung Discase as a Complication in NSCLC
Patients. 1D is a disecase that afflicts the parenchyma or
alveolar region of the lungs.® The alvealar septa (the walls of
the alveoli) become thickened with fibrotic tissue. Associated
with drug use, it can presen( precipitously with acute diffuse
alveolar damage (DAD). The lungs show so-called “ground
glass” shadowing on chest radiology, and patients complain
ol severe breathiessness. There are no effeciive treatinents but
patients can be supported by oxygen supplementation, corli-
costeroid (herapy, or assisted ventilation. The process ol
alveolar damage is however fatal in some patients. ILD is a co-
morbidity in patients with NSCLC.*'¢ Both discases are
assaciated with cigarette smoking,' 2 and 11.D is also consid-
ered to be associated with various kinds of lung cancer
chemotherapy.? %

In the ISEL study of gefitinib in NSCIL.C mentioned above,
ILD-type events occurred in 1% of both placebo and gefitinib-
treated patients.! Most [L.D-type events occurred in patients
of' Asian origin, where placebo and weated patients had similar
prevalences of respectively 4% and 3%. The rate observed in
the gefitinib-treated ann was in line with ecarlier safery data
from Japan and a large gefitinib post-marketing surveillance
study in Japan (3322 patients}, where the reported rate of 1LD-
type events was 5.8%.%

A simple blood test to predict the potential occurrence of
11D in seriously ill NSCLC patients before initiating treatments
would clearly be ol great value. This article describes the
personalized medicine approach, which could be used (o
provide such a test. Consequently, the proteomics objectives
of the preliminary phase of the study we describe were to verify
the protein expression alierations in blood plasma from case
patients (who developed 1LD) and control patients (without
1.0} treated by gelilinib, using a liquid chromalography—mass
spectrometry/mass spectrometty (LC—-MS/MS) proteomics
platform.

Data and Sample Collection

Ta develop a persenalized medicine test, it is essential to
have access to an adequately sized coliection of high quality
tissue samples on which to perform proteomics analysis, with
corresponding reliable diagnostic and clinical data.
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Figure 1. Algorithm for diagnosis of interstitial lung disease {ILD) in non-small cell lung cancer (NSCLC) patients.

As an example, in our work with gefitinib, samples were
taken after obtaining informed consent from a nested case-
control study, i.e., a case-control study performed within a
prospective pharmacoepidemiological cohort ol several thou-
sand palients with advanced or recurring NSCLC who had
received ar least one prior chemotherapy regimen, and who
were to be treated with gefitinib or chemotherapy. The main
objective of this study was (0 measure the relative risk of ILD
in Japanese patients with NSCLC using gefitinib compared with
conventional therapy, with the associated aims of determining
the incidence rate of ILD in late stage NSCLC patients and the
principal risk factors for this complication.

Central to both the case-control study and (he protecomics
analysis was the usc of internationally agreed criteria for the
diagnosis of ILD and an algorithm of diagnostic tests to exclude
alternative diseases.? Principal investigators in the study were
asked to assess all patients for possible ILD using the diag-
nostic atgorithm (Figure 1). Two casc review boards of experts
{rom ancology, radiology. and pulmonary medicine were set
up fo independently establish a consistent final diagnosis of
ILD. In addition, extensive standard clinical and demographic
risk lactor data were collected on all registered cases and
controls,

This degree of rigor in establishing accurate phenolypic
diagnosis is critical to develop a robust and reliable personal-
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ized medicine test, as inaccuracies at this stage will affect all
subsequent data analyses. The availability of clinical and risk
factor data, and a rigorous epidemiological study design seding
for the collection of proteomics samples is also of great value
o fine-tune the statistical analysis.

Is Proteomics Ready for Personalized Medicine
Applications?

The Human Proteome Map in Plasma. The impetus o
develop personalized medicine based on blood samples has
encouraged protcomic profiling that identifics individual pro-
teins and multiple “fingerprint” protein patterns. A remaining
limitalion has been the fack of inlegration of the lechnology
of protein separation with bininformatics and statistical meth-
ods. Extensive national and international?®* collaborations are
being implemented o address some of these needs. An
important component in this development is the Human
Protcome Organization (ITUPO; wwvw 11UPO.0rg), a sciendific
consortium thal supports various programmeces (o map the
proteins expressed in various human tissues, discase states,
etc.3'-%* One of these is the Plasma Proteome initiative started
in 2002, aiming to annotatc and catalog the many thousands
of proteins and peptides®~*? of the human plasma proteome.
Recently results from the pilot phase with 35 collaborating
lahoratories from 13 countries®®% and multiple analytical
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groups were made publicly available on the Internet
{www bioinformatics.med.umich.edu/hupo/ppp; www.ebi.ac.uk/
pride). The combined efforts have generated 15 710 different
MS/MS datascts that were linked to the International Proicin
Index (IPT) protein IDs, and an integration algorithm applied
to multiple matches of peptide scquences yielded 9504 1P1
proteins identified with one or more pepiides®® and character-
ized by Gene Ontology, InterPro, Novartis Atlas, and OMIM.
Such advances provide an important platform for transfotming
proteomics from a technology to a useful biomarker tool
applicable to personalized medicine.

Protein Analysis in Blood—The Methods. With respect to
automated studics, multidimensional chromatography is the
main technology used for protein analysis in blood. It is
coupled (o mass spectrometry either by clectrospray ionization
(:S1) for analysis in solution or matrix assisted laser desorption/
ionization (MALDI) in solid phase applications 3314337 Aler-
natively, ion-trap mass spectrometers are gaining recognition
for high-throughput sequencing.¥4#=5 Linking a Fourier trans-
form ion cyclotrone resenance (FTICR) unit to the linear trap
can increase the resolution profoundly,®3=% one ol several
novel principles for strengthening the assignment of protein
annotations with the most commonly used protein search
engines. 64731261 [Fgr protein annotation, the recent develop-
ment of a human protein reference database complements
these technologies.™ Studies of protein expression in a variety
of bialogical compartments ranging from sub-cellular to whole
organismshavebeenundertakenwith these analyticapproaches.#-#
Some key findings [rom the HUPQO initiatives that impact on
methodology include:

« For studies using blood samples, plasma rather than serum
is preferred, with ethylenediaminetetraacetic acid (EDTA) as
an antcoagulant.s®

« The abundant proteins in plasma should be depleted prior
o analysis.®

« Acceptance of protein annotation, i.c., accepted protein
identities®®* should use standard criteria. These include having
wwo identified peptide sequences from each protein, both with
a slatistical significanice score high ennugh to ensure a correct
sequence conlirmation when compared with the corresponding
gene sequence entity.™

Despite the advances in methodology, important hurdles o
using proteomics in a personalized medicine context remain.

Protein Expression Analysis in Blood—Some Important
Hurdles. Although protein profiling technology is highly au-
tomated and interfaced with database search enginces to relate
peptide sequences to protein identities and function,’ there
are many practical reasons why determining the relative
abundance of proteins relevant for prediclion purposes is
difficult:

* About 90% of proteins are believed to be present only in
low copy numbers, i.e.. at medium and low abundance levels.®

« There can be variation both in the quantity and form of
protein expression within normal physiological function.

« Between 300 000 and 3 million human protein species exist
as direct gene products or post-translational modifications.*

« The relative abundance of the post-translational modifica-
tions occurring within the cell is called a Cell-Protein-Index
Number (CPIN).2%3" Ag an example, if one considers that there
are 30 types of phosphorylation variants of a single phospho-
protein, and a hundred possible fold {orms of glycosylation of
a single glycaprotein, the theoretical CPIN varies considerably
depending on the sample complexity.
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» The dynamic range of protein cxpression within cells,
between levels of most and least abundant proteins, is in the
order of 107—10!03-38

« In a typical clinical proteomics study the total cellular
protein material in a sample seldom exceeds 10-20 milligrams.
Therefore, the least abundant proteins would be present at
starting levels not exceeding picograms.

« Recent studies use technology that can identify several
thousand proteins in plasma samples,™ but this still probably
only represents a small lraction of the intermediate and
processed protein forms. This is due to the current limitation
of mass spectrometry not being able to ionize all amino acid
sequences and protein modifications with equal eflficiency. In
most situations, a limited region of the {ull length protein is
sequence annotated.

» The detection of differences in protein expression between
groups of interest (c.g., cases and controls) takes place against
a background of high variation between individuals within a
group, within individuals over time and possible analytic run-
to-run variation. Any method used to address this hurdle
{which will involve "alignment” for spectral methods) directly
impacts the ability to find good protein biomarkers.

Beyond the hurdles above, the lundamenial challenge of
protein biomarkers is to link the relative abundance of single
markers or a fingerprint to clinically important biological
processes based on some direct or indirect cause-effect link®
related to normal or aberrant biological pathways. ™2 In the
following sections, we present the approach used (or the
identification of protein biomarkers potentially associated with
development of ILD in NSCLC patients within the case-control
study uscd as our motivating cxample. We build on the
foundations described above and introduce further analytic
developments and ideas relating to proteomic data generation,
assaying and alignment Lo build @ proteomics wolkit that can
be applied today for personalized medicine approaches.

A State of the Art Clinical Biomarker Analysis System

In the previous section, we described several challenges in
proteomic analysis. Here we describe a system and analysis
approaclies that we have successfully implemented to address
some of these issues.

The Components of the Analysis System. The analysis
system (Figure 2) uses liguid chromatography-based high-
resolution separation of peptides with an interface to tandem
MS/MS, a technotogy which has been altracting greal atention
as the "shotgun” method of proteome analysis. "% With this
technology, after depletion of albumin and immunoglobulin
G (IgG), all extracted plasma proteins are digested into their
specific peptide components by proteolytic enzyme treatment.

The generated peptides are subjected to capillary reverse-
phase submicro- 10 micro-flow liquid chromatography (capil -
lary RP #1.C), separated by retention times due to their
physicochemical properties, and then detected and sequenced
by a linear ion-trap tandem mass spectrometer” (LTQ, Thermo
Fisher Scientific, San Jase, CA) interfaced with a spray needle
tp for EST of peptides.™ A nwo-dimensional quadrupole ion
trap mass spectrometer” is used, operated in a data-dependent
acquisition mode with operational /i2/z range limits set at 450~
2000 (Figure 3, graphs A and B). Automatic switching 1o MS/
MS acquisition mode is made in l-second scanning cycles.
controlled by the XCalibur sofiware. The actual differences
between annotated peptide fragment peaks shown in Figure
3, graph C, correspond to the amino acid residue mass, i.e.,
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identify the correct amino acid sequence. Internal standards
are used for alignment of retention-times.

How the Methodology Overcomes Some of the Hurdles.
The system described above addresses some ol the hurdles
nated previously. The digestion of all extracted plasma proteins
into peptides will reduce the complexity by combining high-
resolution nanoflow chromatographic fractionation with the
separation power of modern mass spectrometry, performing
automated and unattended shotgun sequencing in plasma.™
Peplides are also more soluble and casier to handle than
intact proteins. In addition, the (wo-dimensional quadrupole
ion trap mass spectrometer’™ operates with a high-volume
quadrupole clectric ficld that makes it highly cfficient to trap
ions. The result is high sensitivily, high scanning speed, and
better quantification over a wide dynamic range in com-
parison with the conventional three-dimensional ion-trap
nstruments.

Finding signals against a background of high variation is a
further challenge, and the next section describes some ap-
proaches for addressing these.

Initial Data Handling, Processing, and Analysis

Proteomic data analysis process can be considered as consis-
ting of two components (Figure 4). Quantitative analysis is used
to discover significant differences in peptide signal intensities
by compating two (or more) sample groups. This process uses
data collected [rom an entire MS run o gquantify the amount
of peptide ions by their respective ion signal intensity. Qualita-
tive analysis is used to identify the amino acid sequence of each
peptide ion, Irom the respective product ion spectra. To
maximize their value, the results from the two component
analyses should be considered in combination.

A typical quantitative analysis may consist of several steps:

1. Normalization: To account for differences in the original
sample concentrations. Typically, the tolal signal intensity is
scaled to a constant value for each analyzed sample.

2. Alignment: Correcling for nonlinear fluctuation in reten-
tion time between diflerent samples. A variety of methodologies
are available for aligning LC—-MS data sets. We have found the
i-OPAL algorithm (Patent # WO 2004/090526 Al), which is based
an the single linkage clustering algorithm™ and which makes
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use of internal standard signals, to perform well. Other align-
ment algorithms include xems.™

3. Peak picking or signal detection: Klentilying individual
peptide ions within the data.

4, Identify diseriminating peptides: A number of methods
can be used, often in combination. A common approach is to
apply a Student’s r-test and select peprides which are signifi-
cant, i.e., with a p-value less than the chosen cutofl. and which
also show a fold-change or intensity ratio greater than another
criterion. Further developments of this aspect are discussed
in the Principled Statistical Analysis section.

A papular choice for qualitative analysis is the MASCOT M$/
MS ion scarch program.”™ This may be run against a number
of different peptide sequence databases, for example the NCBI
Nr, Refseq, Gene Ontology. HUGO, and Swiss-Prot sequence
databases. The results of the quantitative analysis can then be
combined with the qualitative analysis so that, for example, a
peptide must be both discriminating and have annotation—
i.e., have achieved a high MASCOT score showing confidence
in identification—to be considered a candidate biomarker.

The approaches we have discussed above are locused on
finding potentially discriminating proteins of clinical utility. In
the following section, we describe the next stage in our
thinking, namcly how we could rapidly deploy in the clinic a
viable method for exploiting a prediciive proteomic fingerprint.

A Proposal for Proteomics in the Clinical Setting: Mass
Spectrometric Biomarlcer Assays - MSBA

Although today’'s technology allows for high-throughput
analyses of many proteins rather than a single protein® the
details of how such multiplexing assays will be adapied lor
clinical use have not been well clarified. The Mass Spectro-
metric Biomarker Assay (MSBA) platform described here was
canceived as onc example of a rapid and scamless method to
progress from identification of a diagnostic more directly to a
clinically useful test. MSBA requires only a minute sample
amount (5-20 «l) o obtain a read-out from a handful of
quantified protein biomarkers (typically 3—35) and automalti-
cally analyzes proteins using liquid-phase separation and
tandem mass spectrometry with simultaneous quantitation and
identification,
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The MSBA builds on a pre-defined Multiplex Biomarker list,
which is stored within the MSBA database. Each marker entity
has the vatues of masses and the refative retention time index
with tolerance parameters. In running a patient sample, the
predelined biomarker list is scanned o pick up patient sample
signals that match with one of the predelined biomarker signals
by satisfving the tolerance criteria (in general &1 for mfz value
and =2% lor relative retention tme index). The selected
candidate signals are further confirmed using the product ion
spectrum, That is, the product {on spectrmn is represented as
a vector by hinning (grouping) the in/z ratio values. Using the
cosine correlalion between the sample vectors and the refer-
ence vectors, we can confirm whether the selected candidate
signals are truly assigned as larget biomarkers. (A standard
threshold value of the cosine correlation is 0.8.)

The process steps within the MSBA cycle are oudined in
Figure 5. The calculation of the final multiplex biomarker assay
read-out from all of the individual markers can he performed
by a varicty of applications, as discussed in more detail in the
Principled Statistical Modeling Approach scction, Tigures 6A
and B illustrate one approach, calculating a distance score
which indicates to what extent a measured sample is distant
from the case or control template in terms of predefined
multiplex biomarkers.
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If the ratio of Sease and Scomrer eXceeds an MSBA threshold
paramelter, then the test sample is predicted o be a patient
susceptible to develop ILD (ILD case); if not, the test sample is
predicted to he a non-susceptible patient (control). We are
currently cvaluating the MSBA approaclf in practice.

A Principled Statistical Modeling Approach

We have described an analytical approach based on pro-
teomic data, with various novel developments. However, ad-
ditional insight is needed to further improve model discrimi-
nation and 10 broaden the focus [rom the proteomic data o
the ultimate goal of prediction using combinations of data.
Statistical analysis can be used to provide further refinement
by combining information from the full clinical and laboratory
datasets.

An advantage of a multiple biomarker approach (e.g., pro-
teomics) compared with standard single biomarker develop-
ment is the capability to combine irformalion [rom many
different entities. An example is illustrated in Figure 7A.
Considering cach biomarker alone fails to separate the two
groups of subjects, as there is considerable overtap for both
biomarkers. Use of two biomarkers in combination completely
separates the two groups.

We can also use clinical variables to advantage in the analysis
ol the peptide pauerns. For example, the efficacy of gefitinib
appears 10 be greater in non-smokers, women, patients ol Asian
origin, and patients with adenocarcinomas.® Figure 7B il-
lustrates how, instead of two protein biomarkers, the combina-
tion of clinical data (e.g.. age) and a pratcomic biomarker is
able to separate (wo groups.

On this basis, we propose using a principled stalistical
analysis approach to first explore and understand the dala and
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then to model it and understand the guality of any models
produced. A first step is to perform exploratory data analysis
(EDA), for example using principal componcents analysis (PCA),
to understand the major sources of data variation aud the
covariation between clinical paramcters and protein intensity
measures. The next step is univariate modeling for cach protein
marker individually, for example using analysis of covariance
(ANCOVA), and an assessment of the elfect of clinical param-
eters across the whole set ol protein biomarkers using. for
example, the False Discovery Rate as a tool.™ This provides an
understanding of key clinical variables and sources of variation
within the data.

The next step is Lo perform multivariate predictive modeling
using the proteins and clinical variables identified as being
potentially important, There are a number of mathematical
methods described in the literature for performing supervised
classification, for example Support Vector Machines, Random
Forests,” PAM,™ all of which have been successfully applied
to high dimensional genomics data.” It remains an important
unanswered question which modeling approach. or combina-
tion of modeling approaches, will generate the most predictive
and robust models lor data generated using this technology
within a prospective study of this design.
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Finally, to confirm that we have a practical prediction, the
predictive power of a model must be assessed on a different
set of patients from that used to generate the model. There
are a number of approaches for external validation given a
limited size dataset. for example the sequential approach of
building a model based upon currently available data and
testing on data from new patients when they become available,
or wilhholding an arbitrary selection of subjects from the
modeling as a (est set and testing the model on these subjects.
Internal validation approaches such as cross-validation or
related bootstrapping methods may also be uselul 1o assess
the model sclection procedure, but tend to overestimate the
performance of a specific predictive model in subscquent
external validation.®*® The key propertics to consider when
selecting an assessment method are to ensure that it will
pravide hath precise and unhiased information regarding the
prediction error rate of the potential model to be tested for
clinical use. As well as assessing an overall predictive rate, it is
also useful to separately assess the predictive rate for both the
cases and controls and to consider the relative costs of making
these lalse predictions within a clinical setting. Finally, the
prevalence of the condition in guestion (here LD} is also a
critical factor in estimating what proportion of people predicied
to be at risk are truly at risk, and this should also be borne in
mind when evaluating a model {or potential clinical use. The
recendy published FDA concept paper on drug-diagnostic co-
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Figure 7. (A) Hypothetical example of the combined disease-
linkage effect of two protein biomarkers. {Stars signify affected
case individuals, circles non-affected contral individuals). (B)
Hypothetical example of the combined disease-linkage effect of
a biomarker and a clinical variable. (Stars signify affected case
individuals, circles non-affected control individuals).
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development discusses many of the issues around validating
predictive biomarkers.®

Finally, it is preferable to be able to assign a biological
rationale (o the biomarkers. Confidence in the reliability of a
hiomarker is greatly enhanced il we can correclly under-
stand how it relates o the mechanism and progression of the
discase of interest. Figure 8 illustrates a bioinformalics and
data processing structure thal we have developed o allow us
to both conduct interactive exploratory and statistical analyscs,
and also investigate the disease and pathway linkage of
discovered biomarker proteins through direct access 1o refer-
cnce databases.

Future Perspectives

Within this paper we have discussed many of the issues that
nced to considered in developing a personalized medicine
approach. A key starting point is that rigorous steps are taken
(0 ensure accurate diagnosis and the careful gathering of both
clinical and proteomic data to facilitate the search for peptide
patterns,

There are many challenges in performing protein analysis
in blood, but mass spectrometry cquipment and methods can
now be used (o generate peptide dala with high sensitivity, high
scanning speed, and improved quantification. Data handling
and processing techniques lor steps such as peak alignment
and the subsequent methodologices for statistical modeling and
analysis are now far enough developed Lo generate high quality
data and robustly.analyze these data with confidence.

We have provided details of the MSBA method that can be
used to easily translate protein intensities into a practical
multiplex assay which can be exploited in the clinic without
the need o develop anti-bodies for ELISA. We have also
described how an expanded statistical analysis can be used (0
allow for the individual variance of protein expression to enable
us (o focus on the proteomic patterns that are actually related
w ILD. Tinally, we have emphasized the importance of validat-
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ing the predictive power ol a biomarker tool in a way that
reflects the real-ife setting of intended clinical use.
opcfully, this combination ot developments over a range
of different areas brings us one step closer (o a practical
personatized medicine.
IRESSA is a trademark of the AswraZeneca group of
companics.

Acknowledgments. We thank all involved in the Iressa
study which provided the inspiration Tor this overview of
personalized medicine approaches, including: (he external
Epidemiology Advisory Board (Kenneth J. Rothman, Jonathan
M. Samet, Tashiro Takezaki, Kotaro Ozasa, Masahiko Ando)
for their advice and scientific review of study design, conduct,
and analysis; Professot Nestor Miiller for his expert input into
racliological aspects of TLD diagnosis; all Case Review Board
members individually (M. Suga. T. Johkoh, M. Takahashi, Y.
Ohno, S. Nagai. Y. Taguchi, Y. Inoue, T. Yana, M. Kusumoto,
H. Arakawa, A. Yoshimura, M. Nishio, Y. Ohe, K. Yoshimura,
H. Takahashi, Y. Sugiyama, M. Fbina) [or their valuable work
in blindly reviewing ILD diagnoses, as well as pre-study CT
scans for pre-cxisling comorbidities, the Japan Thoracic Radiol-
ogy Group, Shiga, Japan for their support of CRB work; and all
Haspitals, Clinical Investigators, study monitors, nurses, data
managets, other support staff, and the parlicipating patients
for providing and collecting the data in the study.

References

(0 Thatcher, N Chang, A Parikh, P, Percira, J. R Giuleana, T,
von Pawel, ); ot al. Gefitinib plus best supportive care in
previousty treated patients with refractory advanced non-small-
coell lung cancer: results from a randomised, placebho-controlied,
multicentre study {Iressa Survival Bvaluation in Lung Cancer).
Lancei 2005, 366, 15271537,

Tlirsch, F. R.: Varella-Garcia, M.; McCoy, |; West, {1,; Xavier, A
G Gumerlock, P ¢t al. Increased cpidermal growth factor
reeeptar gene copy number detected by fluorescence in silu
hybridization associates with increased sensitivity to gefitinib in
patients with branchiolnalveolar carcinoma subtypes: a South-
west Oncology Group study. /. Clin, Oneol. 2008, 23, G83R—H845,

(2

Journal of Proteome Research « Vol. 6, No. 8, 2007 2933



perspectives

)

eny
2
-

7

8

=

9

(10)

(an

(12

(13)

{14)

(135}

{16}

(17

{18}

489}

20

(21}

{22

24}

(24}

2934

Cappuzzo, F.; Varclla-Garcia, M.; Shigematsu, H.; Domenichini,
L; Barolini. S.; Ceresoli, Go L et ad, Increased [ER2 gene copy
number is associaled with response to gefitinib therapy in
epidermal growth factor receptor-positive non-small-cell lung
cancer patients. [ Clin. Oncol. 2005, 23, 5007-5018.

Araki, .; Okamoto, 1.; Suto, R.; ichikawa, Y.; Sasaki, J. Efficacy of
the tyrosine kinase inhibitor gefitinib in a patient with melastatic
small cell lung cancer. Lung Cancer 2005, 48, 141-144,

Kim, K. S$.; Jeang, . Y.: Kim, Y. C.; Na, K J; Kim, Y. H; Ahn, S, ).
et al. Predictors of the response 1o gefitinib in refractory non-
small cell lung cancer. Clin. Cancer Res. 2005, 11, 22442251,
Lynch, T. J.. Bell, D. W. Sordella, R.: Gurubhagavawta, S,
Okimoto, R. A Brannigan, B. . ¢t al. Activating mutations in
the epidermal growth factor receptor underlying responsivencss
of non-smail-cell lung cancer o gefitinib. N. Engl. J. Med. 2004,
350, 2129-2139.

Pacz. J. G.; Jinne. P. A Lee, ). C; Tracy. S.: Grealich, I1.; Gabriel,
S, et al, EGFR mutations in lung cancer: correlation with clinical
response to gefitinib therapy. Science 2004, 304. 14971500,
Shigematsu, H; Lin. 1,; Takahashi, T.; Nomura, M.; Suzuki, M.;
Wistuba IT; et at. Clinical and biological featwures associated with
epidermal growth factor receptor gene mutations in lung cancers.
J. Natl. Cancer Inst. 2005, 97, 339—346.

American Thoracic Society: American Thoracic Society/European
Respiratory Society nternational Multidisciplinary Consensus
Classification ol the Idiopathic Interstitial Pncumonias, “This joint
starcraent of the American Thoracic Society (ATS), and the
European Respiratory Socicty (ERS) was adopted by the ATS
Board of Directors, June 2001 and by The ERS Executive Comn-
mittee, funce 2000, Am. . Respir. Crit. Care Med. 2002, 1G5, 277—
304.

Raghu, G.; Nvberg, E; Mocgan, . The ¢pideminlogy of interstitial
lung discase and its association with lung cancer. 8r. J. Canrer
2604, 91 (Suppl. 2), $3-S10.

Asada, K.; Mukai, J.; Ougushi, F. Characteristics and management
of lung cancer in patients with idiopathic pneumonia. fap. J. Thor.
Dis. 1992, 51, 214-219.

flubbard, R,; Venn, A Lewis, S Britton, |. Lung cancer and
cryptogenic fibrosing alvealitis. A population-based cohort study.
Am. J. Respir. Crit. Care Med. 2000, 161, 5--8.

Matsushita, H.; Tanaka, S.: Saiki, Y. Wara, M. Nakata, Ko
Tanimura, S.: et al. Lung cancer associated with usual interstitial
puewinonia. Pathol. Int, 1993, 45, 925932,

Ogura, T.; Kondo, A; Sato, A Ando, M.; Tamuora. M. Incidence
and clinical features ol lung cancer in patients with idiopathic
interstitial pncumonia. Nikwon Kyobu Shikkan Gakkai Zasshi 1997.
35, 294299,

‘Takeuchi, T.; Yamaguchi, T.; Moti. M.: Tanaka, §.: Nakagawa, M.;
Yokota, S.: et al. Characteristics and management of patients with
lung cancer and idiopathic interstitial pnewmonia, Nihion Kyoln
Shikkan Gakkai Zasshi 1996, 34, 653—658.

Turner-Warwick, M.; Lebowitz, M.; Burrows. B.; johnson, A.
Cryptogenic fibrosing alveolitis and lung cancer. Thorax 1980,
35, 496—499,

Baumgarmer, K. B.: Samet, J. M. Sddley, C. A Colby, 1. V.
Waldron, ). A Cigarette smoking: a risk factor for idiopathic
pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 1997, 153, 242—
248,

Britton, J.; Hubbard, R. Recent advances in the actiology of
cryptogenic (ibrosing alveaolitis. Histopathology 2000, 37, 387—
392.

Iwai, K; Mori, T; Yamada, N; Yamaguchi, M Hosoda, V.
Idiopathic pulmonary fibrosis. Epidemiologic approaches o
accupational exposure. A J. Respir. Crit. Care Med. 1994, 150,
670—675.

Nagai, S Hoshino, Y. Hayashi, M.; ho, 1. Smoking-related
interstitial tung discascs. Curr. Opin. Pulm. Med. 2000, 6, 415--
419.

Lilly. Gemcitabine prescribing information. b/ /pilily.com/
gemzar.pdf, 2003,

Kunitoh, H.; Watanabe, K.; Onoshi, T Furuse, K Niitani, H,;
Taguchi, T. Phase Il wuial of docetaxel in previously untreated
advanced non-small-cell tung cancer: a Japanese cooperalive
study. /. Clin. Oncol. 1996, 14, 1649~ 1655.

Merad, M.: Te Cesne, A,; Baldeyrou, P.: Mesurolle, B;; Le Chevalier,
T. Docetaxcl and interstitial pulmonary injury. A, Oneol. 1997,
8, 191-194.

Wang, G.-S.; Yan, K.-Y.: Perng, R.-D. Life-threatening hypersen-
sitivity pneumonitis induced by docetaxet (taxotere). Br. J. Cancer
2001, 85, 1247-1250. :

Journal of Proteome Research « Vol. 6, No, 8, 2007

253

(25)

(26)

(27}

(28!

(29

(30

31

(32)

(33

£34)
{35)

(36)

37

S

(39

(40}

(A4}

(45}

(46}

(47}

(48)

Marlko-Varga ct al.

Erasmus, J. }.; McAdams, H. P.; Rossi, S. E. Drug-induced lung
injury. Semin. Roentgenol. 2002, 37, 72—8\.

Aviram, G.; Yu, E; Tai. P.; Lefcoe. M. S, Computed tomography
Lo assess pulmonary injury associated with concurrent chemo-
radiotherapy for inoperable non-small cell lung cancer. Can.
Assoc. Radial, |. 2001, 52, 385-391.

Yoshida, S. The results of gefitinib prospective investigation. Med.
Drug J. 2005, 41, 772--789.

Mueller, N. L.; White, D. A; Jiang, FL; Gemma, A. Diagnosis and
management of drug-associated interstitial fung discasc. Br. J.
Cancer 2004, 91, S24—S830.

Marko-Varga, G.; Fehniger, T. E. Proteomics and discase~the
challeuges for lechnology and discovery. j. Proteonie Res, 2004,
3. 167-178.

Marko-Varga, G.: Lindberg, H,; Lofdahl. C. G.; Jonsson, P. H. 1.;
Dahiback, M. Lindquist. I et al. Discovery of biomarker
candidates within discasc by protein profiling: principles and
concepts. J. Proteome Res. 2005, 4, 1200-1212.

Omenn, G. S. The Human Protcome Organization Plasima Pro-
teome Project pilot phase: reference specimens, technology
platform comparisons, and standardized data submissions and
analyses. Proteomics 2004, 4, 1235~1240.

Omenn, G. S. Advancersent of biomarker discovery and validation
through the HUPQO plasma proteome project. Dis. Markers 2004,
20, 131~ 134,

Orchard, S.; Hermjakob, [.; Binz, P, A Hooglaud, C.; Tayvlor, C.
. Zhu, W et al. Further steps towards data standardisation: the
Proteomic Standards Initiative HUPO 3{rd) annual congress,
Beijing 25-270th) Qcobey, 2004, Proteomics 2005, 5, 337—
339,

Anderson, N, G Matheson, A; Anderson, N. L. Back to the
futare: the human protein index (HPI) and the agenda for post-
profeomic biology. Proteomics 2001, 1, 3-12.

Anderson. N. L; Anderson, N. G, The lwman plasma proteome:
history, character, and diagnostic prospects. Mol. Cell. Proteomics
2002, /, 845867,

Jacobs, J. M.; Adkins, J. N.; Qian, W. §; Liu. T; Shen, Y5 Camp,
D. G et al. Utdilizing human blood plasma (or protcomic
biomarker discovery. ). Profcome  Res. 2005, 4, 73—
1085.

Anderson, N. G.; Anderson, L. The Human Protein Index. Clin.
Chem. 1982, 28, 739-748.

} Haab, B. B Geierslanger, B. HL; Michailidis, G.; Vitzthum, F;

Forrester, S Okon, R, ct al. Immunogssay and andbody mi-
croarray analysis of the HUPO Plasma Proteonie Project reference
specimens:  systematic variation between sample types and
calibration of mass spectrometry data. Proteomics 2005, 5, 3278~
3291,

Martens, L.; Hermjakob. H.; Jones, P; Adamski, M. Taylor. C;
States, D etal. PRIDE: the proteamics identifications database.
Proteontics 2008, 5, 35373545,

Omenn, G. S.; States, D. L; Adamski, M. Blackwell, T. W,; Menon,
R.: Henmjakob, H.; et al. Overview of the HUPO Plasma Proteome
Project: results from the pilot phase with 35 collaborating
laboratories and multiple analytical groups, gencrating a core
datasct of 3020 proteins and a publicly-available databasc.
Proteamics 2008, 5, 3226—3245.

Patterson, S. . Data analysis—the Achilles heel of protcomics.
Nat, Biotechnol. 2003, 21, 221-222.

Rahbar, A. M; Fenselau. C. Integration of Jacobson’s pellicle
method into proteomic strategies for plastma membrane proteins.
1. Proteome Res. 2004, 3. 12671277,

Ho, Y.; Gruhler, A, Heilbut, A Bader, G. D.; Moore, L.; Adams,
S. 1soet al Systematic identilication ol protein complexes in
Saccharomyces cerevisiac by mass spectrometry. Natire 2002,
415, 180—183.

Acbersold, R Mann, M. Mass spectrometry-based proteoniics.
Nature 2003, 122, 198-207.

Anderson, N. L; Polanski, M.; Picper, R.; Gatlin, T.; Tirumalai, 8.
S Conrads, T. P et al. The human plasma proteome: a
nonredundant list developed by combination of four separate
sources. Mol Cell. Proteoinics 2004, 3, 311326,

Olsen, §. V., Mann, M. huproved peptide identification in pro-
teomics by (wo consecutive stages of mass spectrometric frag-
mentation. Proc. Natl, Acad. Sci. U.5.A. 2004, 101, 13417-13422,
Sadygov, R. G.; Liu, H.; Yates, . R. Statistical models for protein
validation using (andem mass spectral data and protein amino
acid scquence databases. Anal. Chem. 2004, 76, 1664— 1671,
IFujii. K.; Nakano, T.; Kanazawa, M.; Akimoto, 8; Hirano, T.; Kato,
1 et al. Clinical-scale high-throughput human plasma proteome
analysis: lung adenocarcinoma. Proteonzics 2008, 5, 1150-1159,



Personalized Medicine and Proteomics—ILessons from NSCLC

{49)

54}

{58)

(39)

(GY)

61)

(62)

{63

{G:8)

Campbell, 1. M.: Collings. B. A.; Douglas. D. J. A new linear ion
trap time-of-flight system with tandem mass spectrometry
capabilities. Rapid Commun. Mass Spectrom. 1998, 12, 1463—
1474,

Cha. B. C; Blades. M.: Douglas, D. [. An interface with a linear
quadropole ion guide (or an electrospray-ion trap mass spec-
trometer system. Anal. Clhiem. 2000, 72, 5647-5654.

Hager, J. W. Product ion spectral simpliflication using time-
delayed {ragmention capture with tandem linear ion waps. Rapid
Conmunun. Mass Spectrom. 2603, 17, 1385—1398.

Syka, I. E.: Marto, ). A; Bai, D. 1.; Horning, S.: Senko, M. \W.;
Schwartz, ]. C,; ct al. Novel lincac quadrupote ion trap/I°T mass
spectrometer:  performance characterization and use in the
comparative analysis of histone H3 post-translational modifica-
tions. J. Proteome Res. 2004, 3, 621-G626.

Shen, Y.; Zhao, R.: Belov, M. E.; Conrads, 1. P,; Anderson, G. A;
Tang, K.; et al. Packed capitlary reversed-phase liquid chroma-
tography with high-performance clectrospray ionization Fourier
transform ion cyclotron resonance mass spectrometry (or pro-
teomics. Anal, Chen. 2001, 73, 1766—1775.

Wu, S. L. Kim, [; Hancock, W. 8.; Karger, B. Extended Range
Prowcomic Analysis (ERPA}: a new and seasitive LC-MS platform
for high sequence coverage of complex proteins with extensive
post-traaslational modifications-comprehensive analysis of beta-
cascin and epidermal growih factor receptor (EGFR). 1. Protesme
Res. 2005, 14, 1155~1170.

Olsen, 1. V. de Godoy, 1. M. i, G; Macek, B.; Mortensen, P;
Pesch, R.; et al. Parts per million mass accuracy on an Orbivap
mass spectromieter via lock mass injection into a C-trap. Mol.
Cell. Proteomics 2005, 4, 2010—2021.

Yates. J. R Cociorva, 1), Liao, §.; Zabrouskov, V. Performance of
a lincar ion trap-Qrbitrap hybrid for peptide analysis. Anal. Chem.
2006, 78, 493-300.

Anderson, D. C.; Li, \V,; Payan, D. G.; Noble, W. 8. A new algorithm
for the evaluation of shotgun peptide sequencing in proteomics:
supporl vector machine classification of peptide MS/MS specira
and SEQUEST scores. J. Proteome Res. 2003, 2, 137-146.

Carr, S.; Aebersold, R.; Baldwin, M.; Burlingame, A.; Clauser, K.;
Nesvizhskil, A. The need for guidelines in publication of pepude
and protein identification data: working group on publication
guidcelines lor peptide and protein identification dala, aMol, Cell.
Proteondics 2004, 3. 531—-533.

Fenyo, I3; Beavis. R. C. A method for assessing the statistical
signiticance of mass spectrometry-based protein identifications
using general scoring schemes. Anal. Chen. 2003, 75, 768—~774.
Nesvizhskii, A, 1; Keller, A.: Kolker, F.; Aebersold, R. A stadstical
motlel for identifying proteins by tandem mass spectrometry.
Anal. Chem. 20603, 75, 4646—-4658.

Peri, S.; Navarvo, 1. D Kristiansen, T. Z,; Amanchy, R.; Suren-
dranath, V.; Muthusamy, B, et al. Human protein reference
database as a discovery resource for proteomics. Nucleic Acids
Res. 2004, 32, D497-D501.

Krawchmarova, 1; Blagoev. B, Haack-Sorensen, M. Kassem, M.;
Minn, M. Mechanism of divergent growth factor effeets in
mesenchymal stem cell differendation. Scfence 2008, 308, 1472~
1477.

Dreger, M. Benglsson, L Schéneberg, T Oua, T Hucha, B
Nudlear envelope proteomics: novel integral membrane proteing
of the inner nuclear membrane. Proc. Natl. Acad. Sci. 11.8.4. 2001,
98, 11943-114948.

Giot, L Bader, J. 8 Brouwer, C; Chaudburd, A; Kuang, B, 1,
Y.: etal. A profein interaction map of Drosophilia melanogaster,
Science 2003, 302, 17271736,

254

63)

(66

(67)

(68)

(69)

gy

(71)

(72)

{73)

(74

@n

(82

perspectives

fohnson. J. R.: Florens, L.; Caruced, D. J; Yates, §. R., 11). Proteomics
in mataria. J. Proteome Res. 2004, 3, 296—-306.

Hirsch, J.; Hansen, Ko C.; Burdingame, A, L; Matthay, M. A
Proteomics: current techniques and potential applications to
lung disease. Am. J. Physiol. Lung Cell Mol. Physiol. 2004, 287,
Li-123.

Malstrim, J.; Larsen, K. Hansson, L Léfdahl, C.-G.; Norregard-
Jeasen, 0.; Marko-Varga, G.: el al. Protcoglycan and proteome
profiling of central human pulmonary fibrotic tissue utilizing
minaturized sample preparation: A leasibility swdy, Proteomics
2002, 2, 394—404.

Malmswém, J.; Larsen, Ko Malmstrom, L.; Tufvesson, E.; Parker.,
K.; Marchese, [.; et al. Proteome annotations and identifications
of (ke human pulmonary fibroblast. /. Proteome Res. 2004, 3,
525-537. .

Oh, P.; Li, Y. Yu. [ Dure, E; Krasinska, K. M.; Carver, 1. A. et al.
Subtractive protcomic mapping of the endothelial surface in lung
and solid wmours for tissue-specific therapy. Narure 2004, 429,
629-635.

Fujii, K; Nakano. T.: Kawamura, T.; Usui, I°.; Bando, Y.: Wang,
R.; et al. Mulddimensional protein proliling (echnology and i
application to human plasma proteome. J, Proteome Res. 2004,
3. 712714,

Schwartz, §. C; Senko, M. W.; Syka, J. E. A (wo-dimensional
guadrupole ion trap mass spectromeler. L Am. Soc. Mass Spec-
trom. 2002, 13, 659—669.

Sncath, P LA Sokai, R R, Nuimerical Taxonamy. The principles
and practice of numerical classification; W. ¥, Freeman and Co.:
San Francisco, 1973,

Smith, C. A Waat, B [ O'Maille. G.; Abagyan, R.: Siuzdak, G.
XCMS: processing mass spectrometry data for metabolite profil-
ing using nonlinear peak alignment, matching, and identification.
Anal. Chem. 2006, 78, 779787,

Perkins, 1. N Pappin, D. I; Creasy, D. M; Cottrell, 1. S.
Probability-based protein identification by searching sequence-
databases using mass spectrometry data. Electrophoresis 1999,
20, 3551-3567.

Storey, J. A direct approach to false discovery rates. /. R Stat.
Soc. Ser. B 2002, 64, 479.

Vapnik, V. Statistical Lecorning theory; Wiley: Chicliester, UK,
1998. .
Breiman, L. Random torests. Mach. Learn. 2001, 43, 5-32.
Tibshirani, R.; Hastie, T.; Narasimhan, B.; Chu, G. Diagnosis of
multiple cancer types by shrunken centioids of gene expression.
Proc. Natl. Acad. Sci. 11.5.A. 2002, 99, 6567-6572.

) Lea, WS Lee, 1L B Park, ML Song, S, T An extensive comparison

of recent classification tools applied to microarray daa. Comp.
Star. Data Anal. 2005, 48, 869885,

Steyerberg, E. W,; Harrell, F. E., jr.; Borsboom, G. J.; Eijkemans,
M. |i Vergouwe, Y.; Habbema, J. D. Internal validation of
predictive madels: efficiency of some procedures for logistic
regression analysis, [ Clin. Epidemiol. 2001, 54, 774—781.
Blecker. 8. IE; Moli, H. A; Steverberg, E. W, Donders, A. R;
Derksen-Lubsen, G.; Grobbee, D. 13 et al. External validation is
necessary it prediction rescarch: a clinical example. J. Clin.
Epidemiol. 2003, 56, 826—832.

Food and Drug Administration {FDA): Drug-diagnostic co-
developiient concept paper. Draft—not for implementation.
hatp:/ v fda.gov/eder/genomics/pharmacoconcepifn.pdf, 2005.

PRO70046S

Journal of Proteome Research » Vol. 6, No. 8, 2007 2935



