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ARTICLE

Highly Sensitive Method for Genomewide Detection of Allelic
Composition in Nonpaired, Primary Tumor Specimens by Use
of Affymetrix Single-Nucleotide—-Polymorphism Genotyping
Microarrays

Go Yamamoto,” Yasuhito Nannya,” Motohiro Kato, Masashi Sanada, Ross L. Levine,
Norihiko Kawamata, Akira Hangaishi, Mineo Kurokawa, Shigeru Chiba, D. Gary Gilliland,
H. Phillip Koeffler, and Seishi Ogawa

Lass of heterozygosity (LOH), cither with or without accompanying copy-number loss, is a cardinal feature of cancer
genomes that is tightly linked to cancer development. However, detection of LO is frequently hampered by the presence
of normal cell components within tumaor specimens and the limitation in availability of constitutive DNA. Here, we
deseribe a simple but highly sensitive imethod for genomewide detection of alielic composition, based on the Affymetrix
single-nucleotide-polymaorphism genotyping microarray platform, without dependence on the availability of constitutive
DNA. By sensing subtle distortions in allefe-specific signals caused by allelic imbalance with the use of anonymous
controls, sensitive detection of LOH is enabled with accurate determination of allele-specific copy numbers, event in the
presence of up to 70%-80% normal cell contamination. The performance of the new algorithm, called “AsCNAR” (atlele-
specific copy-number analysis using anonymous references), was demonstrated by detecting the copy-number neutral
LOH, or uniparental disomy (UPD), in a large number of acute leukemia samples. We next applied this technique to
detection of UPD involving the 9p arm in myeloproliferative disorders (MPDs), which is tightly associated with a ho-
mozygous JAKZ mutation. It revealed an unexpectedly high frequency of 9p UMD that otherwise would have been
undetected and also disclosed the existence of multiple subpopulations having distinet 9p UPD within the same MPD
specimen. Tn conclusion, ASCNAR should substantially improve our ability to disscet the complexity of cancer genomes
and should contribute to our understanding of the genetic basis of human cancers.

Genomewide detection of loss of heterozygosity (LOH),
as well as copy-number (CN) alterations in cancer ge-
nomes, has drawn recent attention in the field of cancer
genetics,'* hecause LOH has been closely related to the
pathogenesis of cancers, in that it is a common mecha-
nism for inactivation of tumor suppressor genes in Knud-
son’s paradigm.' Moreover, the recent discovery of the
activating Janus kinasc 2 gene (JAK2 [MIM *147796]) mu-
tation that is tightly associated with the common 9p LOH
with neutral CNs, or uniparental disomy (UPD), in mye-
loproliferative disorders (MPDs)** uncovered a new par-
adigm—that a dominant oncogenic mutation may be fur-
ther potentiated by duplication of the mutant allele and/
or exclusion of the wild-type allele—underscoring the im-
portance of simultaneous CN detection with LOH anal-
ysis. On this point, Affymetrix GeneChip SNP-detection
arrayS, originally developed for large-scale SNP typing,”
provide a powerful platform for both genomewide LOH
analysis and CN detection." 2 On this platform, the use

of large numbers of SNP-specific probes showing lincar
hybridization kinetics alows not only for high-resolution
LOH analysis at ~2,500-150,000 heterozygous SNP Joci
but also for accurate determination of the CN state at each
LOH region.'* " Unfortunately, however, the sensitivity of
the currently available algorithm for LOH detection by
use of SNP arrays may be greatly reduced when they are
applied to primary tumor specimens that are frequently
heterogeneous and contain significant normal cell
components.

In this article, we describe a simple but highly sensitive
method to detect allelic dosage (CNs) in primary tumor
specimens on a GeneChip platform, with its validations,
and some interesting applications to the analyses of pri-
mary hematological tumor samples. It does not require
paired constitutive DNA of tumor specimens or a large set
of normal reference samples but uses only a small number
of anonymous controls for accurate determination of al-
lele-specific CN (AsCN) even in the presence of significant
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proportions of normal cell components, thus enabling re-
liable genomewide detection of LOH in a widé varicty of
primary cancer specimens. - :

Material and Methods
Samples and Microarray Analysis

.

Genomic DNA extracted from a lung cancer cell line (NCi-
H2171) was intentionally mixed with DNA from its paired
lymphoblastoid cell line (LCL) (NCI-BL.2171) to generate
a dilution series, in which tumor contents started at 10%
and increased by 10% up to-90%. The ratios of admixture
were validated using measurements of a microsatellite
(12351279) within a UPD region on chromosome 3 (data
not shown). The nine mixed sampl'cs,' together with non-
mixced original DNAs (0% and_100% tumor contents),
were analyzed with (‘.chc(?hip S0K Xba SNP arrays (Af-
fymetrix}. Microarray data corresponding to-5%, 15%,
25%,..., and 95% tumor content-were interpolated by lin-
carly superposing two adjacent microa}ray_dula_sets after
adjusting the mean array signals of the-two sets. Both cell
lines were ebtained from-the American Type Culture Col-
lection (ATCC). Genomic DNA was also extracted from 85
primary leukemia samples, including 39 acute myeloid
leukemia (AML [MIM #601626]) samples and 46 acute
lymphoblastic leukentia (ALL) samples, and was-subjected
to analysis with 50K Xba SNP"arrays. Of the 85 samples,
34 were analyzed with their matched complete-remission
bone marrow samples. DNA from 53 MPD samples—13
polycythemia vera (PV [MIM #263300]), 21 essential
thrombocythemia (ET [MIM #187950}), and 19 idiopathic
myelofibrosis (IMF [MIM #254450))—43 of which had
been studied for JAK2 mutations,® were also analyzed with
50K Xba SNP arrays. Microarray analyses were performed
according to the manufacturer’s protocol,’ except with
the use of LA Taq (Takara) for adaptor-mediated PCR. Also,
DNA from 96 normal volunteers was used for the analysis.
All clinical specimens were made anonymous and were
incorporated into this study in accordance with the ap-
proval of the institutional review boards of the University
of Tokyo and Harvard Medical School.

ASCN Analyses Using Anonymous Control Saimples
(ASCNAR) ’

SNP typing on the GeneChip pli)tfo;m Li§es two discrete
sets of SNP-specific probes, which are. arbitrarily but con:
sistently named “type A” and “type B” SNPs, at.every SNP
locus, each consisting of an equal number of ‘perfectly
matched probes (PM,s or PM;s) and mismatched probes
(MM s or MM,s). For AsCN analysis, the sums of perfectly
matched probes (PM,s or PM,s) for the ith SNP locus in
the tumor (tum) sample and reference samples (refl,
ref2,..., refN),

Sem = YPMYER, Sym= Y PMi

and
S = DPMEY S = D PMEY (= 1,2,3,...N)

are compared separately at cach SNI locus, ;erdiﬁg to
the concordance of the SNP calls in the tumor sample
(Oy™) and the SNP calls in a given reference sample
(O,

.s'!llln

R ="

R
(for O = (),

.s‘lluu

Kil = A

s

“and the total CN ratio is calculated as follows:

Ry for Op= = (o = AA :
Rl = R for 0™ = O = BB (1 =1,23,... N) .
SRR Tor Opo= (O = AR

For CN estimations, however, Ry, R, and Ry are biased
by differences in mean array signals and different PCR
conditions between the tumor sample and each reference
sample and need to be compensated for these effects to
obtain their adjusted values RyY,, Ry, and Ry, respectively
(appendix-A).'

These values are next averaged over the references that
have a concordant genotype for cach SNP in a given set
of references (K), and we obtain R, RS, and R4, Note
that Ry, and R}, are calculated only for heterozygous SNPs
in the tumor sample (see appendix A for more details).

A provisional total CN profile A, is provided by

A= ‘R,‘;ll,l} '
and provisional AsCN profiles are obtained by

A = {max (‘R,’}‘vi,Rf;',)I

A = Imin Ry, R .

These provisional analyses, however, assume that the tu-

mor genome is diploid and has no gross CN alterations,

when the coefficients are calculated in regressions. In the
next step, the regressions are iteratively performed using
a diploid region that is truly or is expected to be diploid,
to determine the coefficients on the basis of the provi-
sional total CN, and then the CNs are recalculated.
Finally, the optimized set of references is selected that
minimizes the SD of total CN at the diploid region by
stepwise reference selection, as described in appendix A.
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Figure 1. AsCN analysis with of without paired DNA. DNA from a lung cancer cell line (NCI-H2171) was mixed with DNA from an LCL
(NCI-BL2171) established from.the same patient at the indicated percentages and was analyzed with GeneChip 50K Xba SNP arrays.
AsCNs, as well as total CNs, were analyzed using either the paired reference sample (NCI-BL2171) (upper panels, A~C) or samples from
unrelated individuals simultaneously processed with the tumor samples (middle and lower panels, D-I). On each panel, the upper two
graphs represent total CNs and their moving averages for the adjacent 10 SNPs, whereas moving averages of AsCNs for the adjacent
10 SNPs are shown below (red and green lines). Green and pink bars in the middle are heterozygous (hetero) calls and discordant SNP
calls between the tumor and its paired reference, respectively. At the bottom of each panel, LOH regions inferred from AsCNAR (orange),
SNP call-based LOH inference of CNAG (blue), dChip (purple), and PLASQ (light green) are depicted. Asterisks (*) indicate the loci at
which total CNs were confirmed by FISH analysis (data not shown). The calibrations of CN graphs are linearly adjusted so that the mean

CNs of null and single alleles should be 0 and 1, respectively.

Allele-specific analysis using a umstltutlve reference,
refSelf, is provided by

Al = {max(R"‘\‘" R;}:;\"“)}

and

Aot — fmm (anu Rumn)) .

Computational details of ASCNAR are pmwded in appen-
dix A.

Comparison with Other Algorithins

dChip'” and PLASQ™ were downloaded from their sites,
and the identical microarray data were analyzed using
these programs. Since PLASQ requires both Xba and Hind
array data, microarray data of mixed tumor contents for
Hind arrays were simulated by lincarly superimposing the
tumor cell line (NCI-H2171) and LCIL (NCI-BL.2171) data
at indicated proportions.

Statistical Analysis

Significance of the presence of allelic imbalance (Al) in a
given region, T, called as having Al by the hidden Markov
model (HMM), was statistically tested by calculating ¢ sta-
tistics for the difference in AsCNs, | log, RA, - log, RS, |, be-
tween T and a normal diploid region, where the tests were
unilateral. Significance between the numbers of UPDs de-
tected by the SNP call-based method and by AsCNAR was
tested by one-tailed binominal tests. I” values for Al de-
tection by allele-specific PCR were calculated by one-tailed
t tests, comparing triplicates of the target snmpie and trip-
licates of five normal samples that have heterozygous al-
leles in the SNP.

Detection of the JAK2 Mutation and Measurements
of Relative Allele Doses

The JAK2 V617F mutation was examined by a restriction
enzyme-based analysis, in which PCR-amplified JAK2
exon 12 fragments were digested with BsaX1, and the pres-
ence of the undigested fragment was examined by gel elec-
trophoresis.® Relative allele dose between wild-type and
mutated JAK2 was determined by measuring allele-specific
PCR products for wild-type and mutated JAK2 alleles by
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Figure 2. Sensitivity and specificity of LOH detection for intentionally mixed tumor samples. Sensitivity of detection of LOH with or
without CN loss (4 and B) in different algorithms were compared using a mixture of the tumor sample (NCI-H2171) and the paired LCL
sample (NCI-BL2171). The results for all LOH regions are shown in panel C, and the specificities of LOH detection are depicted in panel
D. For precise estimation of sensitivity and specificity, we defined the SNPs truly positive and negative for LOH as follows. The tumor
sample and the paired LCL sample were genotyped on the array three times independently, and we considered only SNPs that showed
the identical genotype in the three experiments. SNPs that were heterozygous in the paired LCL sample and were homozygous in the
tumor sample were considered to be truly positive for LOH, and SNPs that were heterozygous both in the paired LCL sample and in the
tumor sample were considered to be truly negative. Proportions of heterazygous SNP calls (%hetero-call) that remained in LOH regions

of each sample are also shown in panels A-C.

capillary clectrophoresis by use of the 3100 Genetic An-
alyzer (Applied Biosystems), as described in the litera-
ture." Likewise, the fraction of tumor components having
9p and other UPDs was measured by either allele-specific
PCR or STR PCR,™ by use of the primers provided in
appendix B [online only]. The percentage of UPD-positive
cells (YOUPD(+)) was also estimated as the mean difference
of AsCNs for heterozygous SNPs within the UPD region
divided by that for homozygous SNPs within an arbitrary
selected normal region:

K 3K
E( |Ru — Rlullrh.-u-m SNEs i Ui rugiml)

E( ' R.‘:.l - Rl’f.ll]: Home SNIPs with storsat (:,\') '

%WUPD(+) =

where AsCNs for the denominator were calculated as if
the homozygous SNPs were heterozygous. [fowever, in
those samples with a high percentage of UPD-positive
components, the heterozygous SNP rate in the UPD region
decreased. For such regions, we calculated the percentage
of UPD-positive cells by randomly selecting 30% (the
mean heterozygous SNP call rate for this array) of all the
SNPs therein and by assuming that they were heterozy-
gous SNDs. Cellular composition of JAK2 wild-type (wt)
and mutant (mt) homozygotes (wt/wt and mt/m¢t) and
heterozygotes (wt/mt) in each MPD) specimen was esti-
mated assuming that all UPD components are homozy-

gous for the JAK2 mutation. The fractions of the wt/mt
heterozygotes in cases with a 9p gain were estimated as-
suming that the duplicated 9p alleles had the JAK2 mu-
tation. Throughout the calculations, small negative values
for wt/mt were disregarded.

FISH

FISH analysis was performed according to the previously
published method, to confirm the absolute total CNs in
NCI-H2171." The genomic probes were generated by
whole-genome amplification of FISH-confirmed RP11 BAC
clones 169N13 (3413; CN = 2), 227F7 (8424; CN = 2),
196H 14 (12q14; CN = 2), 25E13 (13433; CN = 2), 84F24
(17424; CN = 2), 12C9 (19413; CN = 2), 153K19 (3413;
CN = 3), 94D19 (3p14; CN = 1), 80P10 (8422; CN = 1),
and 64C21 (13q12-13; CN = 1), which were obtained
from the BACPAC Resources Center at the Children’s Hos-
pital Oakland Research Institute in Qukland, California.

Results
SNP Call-Based Genonewide LOH Detection by Use of SNP
Arrays

When a pure tumor sample is analyzed with a paired con-
stitutive reference on a GeneChip Xba 50K array, LOH is
easily detected as homozygous SNP loci in the tumor spec-
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Figure 3. The number of UPD regions for acute leukemia and

MPD samples detected by either the SNP call-based method or
AsCNAR. The number of UPD regions for ALL and AML samples
detected by the SNP call-based method or by AsCNAR is shown in
panel A, and the number of 9p UPDs for MPD samples detected
by the two methods is shown in panel B. Some samples have more
than one UPD region. Details of UPD regions are given in table 1.
Significance between the numbers of UPDs detected by the SNP
call-based method and by the AsCNAR method was tested by one-
tailed binomial tests.

imen that are heterozygous in the constitutive DNA (fig.
1A, pink bars). In addition, given a large number of SNPs
to be genotyped, the presence of LOH s also inferred from
the grossly decreased heterozygous SNP calls, even in the
absence of a paired reference (fig. 1), The accuracy of the
LOH inference would depend partly on the algorithm used
but more strongly on the tumor content of the specimens.
Thus, our SNP call-based LOH inference algorithm in
CNAG (appendix C), as well as that of dChip,'” show al-
most 100% sensitivity and specificity for pure tumor spec-
imens. But, as the tumor content decreases, the LOT de-
tection rate steeply declines (Ag. 1G), and, with <50%
tumor cells, no LOH can be detected, even when complete
genotype information for both tumor and paired consti-
tutive DNA is obtained (fig. 1B, 1E, 1H, and 1.

LOH Detection Based on ASCN Analysis

On the other hand, the capability of allelespecific mea-
surements of CN alterations in cancer genomes is an ex-
cellent feature of the SNP array-based CN-detection system
that uses a large number of SNP-specific probe sets. '™
When constitutive DNA is used as a reference, AsCN anal-
ysis s accomplished by separately comparing the SNP-
specific array signals from the two parental alleles at the
heterozygous SNI loci in the constitutive genomic DNAL'™
It determines not only the total CN changes but also the
alterations of allelic compositions in cancer genomes,
which are captured as the split lines in the two AsCN
graphs (fig. 1A and 18). In this mode of analysis, the pres-
ence of LOH can be detected as loss of one parental allele,

ceven inspecimens showing almost no discordant calls (hg.
18).

AYONAR

The previous method for ASCN analysis, however, essen-
tially depends on the availability of constitutive DNA,
since ASCNs are caleulated only at the heterozygous SNP
loci in constitutive DNA.™ Alternatively, allelesspecific sig-
nals can be compared with those in anonymous references
on the basis ot the heterozygous SNI? calls in the tumor
specimen. In the latter case, the concordance of hetero-
zygous SNI' calls between the tumor and the unrelated
sample is expected to be only 37% with a single reference.,
However, the use of multiple references overcomes the low
concordance rate with asingle reference, and the expected
overall concordance rate for heterozygous SNPs and for
all SNPs increases to 86% and 92%, respectively, with ive
unrelated references (appendix D lonline only|). Thus, for
AsCNAR, allele-specific signal ratios are caleulated at all
the concordant heterozvgous SNI Joci for individual ref-
erences, and then the signal ratios for the identical SN’y
are averaged across different references over the entire ge-
nome. For the analysis of total CNs, all the concordant
SNIs, both homozygous and heterozygous, are included
in the calculations, and the two allele-specific signal ratios
for heterozygous SNIY loci are summed together. Since
ASCNAR computes ASCNs only for heterozygous SNI? loci
in tumors, difficulty may arise on analysis of an LOH re-
gion in highly pure tumor samples, in which little or no
heterozygous SNP calls are expected. However, as shown
above, such LOH regions can be casily detected by the
SNP call=based algorithm, where ASCNAR is formally cal-
culated assuming all the SNPs therein are heterozygous,
Thus, the ASCNAR provides an essentially equivalent re-
sult to that from AsCN analysis using constitutional DNA,
with similar sensitivity in detecting Al and LOH (compare
fig. 1A with 1D and 1B with 1FE).

As expected from its principle, ASCNAR is more robust
in the presence of normal cell contaminations than are
SNP call=-based algorithms. To evaluate this quantitatively,
we analyzed tumor DNA that was intentionally mixed
with its paired normal DNA at varying ratios in SOK Xba
SNP arrays, and the array data were analyzed with
ASCNAR. To preclude subjectivity, LOH regions were de-
tected by an HMM-based algorithm, which evaluates dif-
ference in ASCNs in both parental alleles (appendix E). "
As the tumor content decreases, the SN call-based LOFH
inference fails to detect LOH because of the appearance
of heterozygous SNP calls from the contaminated normal
cell component (fig. TE and 1G-11), but these heterozy-
gous SNP calls, in turn, make ASCNAR operate effectively.

Table 1.
Leukemia

CN-Neutral LOH in Primary Acute

The table is available in its entirety in the online
edition of The American Journal of Human Genetics.
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Figure 4. Detection of AI in samples of primary AML and MPD. AsCN analyses disclosed the presence of a small population with 17p
UPD in a primary AML specimen (W150673) (93% blasts in microscopic examination) with either a paired sample (A) or anonymous
reference samples (B). The difference of the mean CNs of the two parental alleles is statistically different between panels A (0.38) and
B (0.55) (P<.0001, by t test), which is explained by the residual tumor component within the bone marrow sample in complete
remission (1% blast) used as a paired reference (W150673CR) ((). Al in the 9p arm was also sensitively detected in JAK2 mutation-
positive MPD cases. UPD may be carried only by a very small population (~20% estimated from the mean deviation of AsCNs in 9p)
(IMF_10) (D), or by two discrete populations within the same case (PV_06), as indicated by two-phased dissociation of AsCN graphs
(pink and green arrows) (F). Al in 9p is mainly caused by UPD but may be caused by gains of one parental allele without loss of the
other allele (), both of which are not discriminated by conventional allele measurements. Blue and pink bars are UPD and Al calls,
respectively, from the HMM-based LOH detection algorithm. Other features are identical to those indicated in figure 1.

In fact, this algorithm precisely identifies known LOI
regions, as well as regions with Al in intentionally mixed
tumor samples containing as little as 20% (for LOH with-
out CN loss) to 25% (LOH with CN loss) tumor contents
(fig. 24-2C). Note that this large gain in sensitivity is ob-
tained without the expense of specificity, which is very
close to 100%, as observed with other algorithms (fig. 21).
In AsCNAR, small regions of Al (<1 million bases in length)
are difficult to detect in samples contaminated with nor-
mal cells. However, such regions are also difficult to detect
using other algorithms (data not shown).

Identification of UPD in Primnary Tumor Samples

To examine further the strength of the newly developed
algorithms for AsCN and LOH detection, we explored UPD
regions in 85 primary acute leukemia samples, including
39 AML and 46 ALL samples, on GeneChip 50K Xba SNP

arrays, since recent reports identified frequent (~20%) oc-
currence of this abnormality in AML. " In the SNP call-
based LOH inference algorithm, 16 UPD regions were
identificd in 14 cases, 8 (20.5%) AML and 6 (13.0%) ALL.
However, the frequencies were almost doubled with the
AsCNAR algorithm; a total of 28 UPD loci were identified
in 25 cases, including 14 (35.9%) AML and 11 (23.9%)
ALL (fig. 314 and table 1). In 5 of the 25 UPD-positive cases,
a matched remission sample was available for AsCN anal-
ysis, which provided essentially the same results as
AsCNAR, except for one relapsed AML case (W150673).
In the latter case, a discrepancy in AsCN shiftsin 17p UPD
occurred between AsCN analysis with and without a con-
stitutive reference, with more CN shift detected with
anonymous references (fg. 44 and 48). The discrepancy
was, however, explained by the unexpected detection of
asubtle UPD change in 17p in the reference sample by
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Table 2. AI of 9p in JAK2 Mutation-Positive MPDs
Detection

9p Status by AsCNAR C:l{—?:’s)ed 9 JAK? Allele-Specific PCR*
Case Type  Break Point*  %UPD* Method* Mutation® SNP %UPD' P
PV_02 Gain 42.9 99 NA 63 rs2009991 84 .004
PV_03 Gain Whole 60 NA 39 rs10511431 63 .008
PV_04 UPD 37.0 93 [} 95 SHomo 5Homo  SHomo
PV_08 urbd 34.2 91 D 93 5Homo 5Homo  5Homo
PV_07 UPD 23.8 88 b 90 5Homo 5Homo  SHomo
PV_06 upPD* 7.1/35.3 83 D 93 5Homo 5Homo  SHomo
PV_11 UPD 31.2 68 D 76 5Homo SHomo  5Homo
PV_13 urD 28.1 66 ND 48 rs1416582 64 .001
PV_01 urD 20.9 56 ND 62 rs10511431 49 .007
PV_09 uPD 30.8 38 ND 30 rs10491558 32 .020
PV_05 UPD 23.5 32 ND 33 rs1374172 31 010
IMF_04 UPD 33.8 79 D 90 SHomo SHomo  5Homo
IMF_05 UPD 37.0 58 ND 57 rs1416582 49" .004
IMF_07 UPD 20.3 52 ND 50 rs1416582 57 .005
IMF_12  upD" 26.8/42.9 52 ND 66 SHomo S5Homo  5Homo
IMF_14  UPD* 22.8/33.8 45 ND 56 1s1374172 35 .015
IMF_19  UPD 34.4 26 ND 43 rs10511431 33 017
IMF_10 uPD 34.6 21 ND 36 1s1374172 21 049
IMF_15 UPD 33.8 21 ND 17 rs10511431 20 .084
IMF_06 UPD 35.3 17 ND 28 151374172 20 .048
IMF_16 () NA NA NA 37 NA NA NA
ET_12 Gain Whole 42 NA 27 52009991 36 046
ET_14 urD 42.9 63 ND 45 151374172 54 .006
ET_01 uPD 35.4 19 ND 59 rs10511431 33 017
ET_05 (-) NA NA NA 23 NA NA NA
ET_08 () NA NA NA 42 NA NA NA
ET_09 (-) NA NA NA 34 NA NA NA
ET_10 (-) NA NA NA 16 NA NA NA
ET_15 (-) NA NA NA 27 NA NA NA
ET_18 (~) NA NA NA 17 NA NA NA
.19 (-) NA NA NA 27 NA NA NA
ET_21  (-) NA NA NA 55 NA NA NA

Note.—NA = not applied; (-) = neither UPD nor gain of 9p was detected by AsCNAR analysis.
* D = UPD was detected by SNP call-based method; ND = not detected.
" Percentage of JAKZ mutant alleles, as measured by allele-specific PCR.

“ SHomo = all five tested SNPs were homozygous.

° Position of the break point from the p-telomeric end (values are in Mb). The location of JAK2

corresponds to 5 Mb.

¢ Percentage of tumor cell populations with either UPD or gain of 9p, as determined by AsCNAR analysis.
' Percentage of tumor cell populations with either UPD or gain of 9p, as determined by the allele-

specific PCR.

° P values were derived from one-tailed t tests comparing triplicate analyses of the target sample and

triplicate analyses of five normal samples.
" Two UPD-positive populations exist.

AsCNAR (P<.0001, by t test) (fig. 4C), which offset the
CN shift in the relapsed sample, although it was mor-
phologically and cytogenetically diagnosed as in complete
remission.

Aunalysis of 9p UPD in MPDs

Another interesting application of the AsSCNAR is the anal-
ysis of allelic status in the 9p arm among patients with
MPD, which includes PV, ET, and IMFE According to past
reports, ~10% (in ET) to ~40% (in PV) of MPD cases with
the activating JAKZ mutation (V617F) show evidence of
clonal evolution of dominant progeny that carry the ho-
mozygous JAK2 mutation caused by 9p UPD.>™* In our

series that included 53 MPD cases, the JAK2 mutation was
detected in 32 (60%), of which 13 (41%) showed >50%
mutant allele by allele measurement with the use of allele-
specific PCR, and thus were judged to have one or more
populations carrying homozygous JAK2 mutations (table
2). This frequency is comparable to that reported else-
where.® However, when the same specimens were ana-
lyzed with 50K Xba SNP arrays by use of the AsCNAR
algorithm, 20 of the 32 JAK2 mutation-positive cases were
demonstrated to have minor UPD subpopulations (table
2 and fig. 3B), in which as little as 17% of UPD-positive
populations were sensitively detected (fig. 41)). In fact,
these minor (<50%) UPD-positive populations in these
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cases were abvo confirmed by allele-specific PCR of SNI's
on 9p table 2). The proportion of 9p UPD-positive com-
ponents estimated both from allelesspecific PCR and from
ASCNAR (see the “Material and Methods” section) shows
a good concordance (table 2). In some cases, 9p UPD-
positive cells account for almost all the JAK2 mutation-
positive population, whercas, in others, they represent
only a small subpopulation of the entire JAK2 mutation-
positive population (fig. 5). AsCNAR analysis also dis-
closed the additional three cases that have 9p gain (9p
trisomy) (Ag. 4F). The 9p trisomy is among the most-fre-
quent cytogencetic abnormalities in MPDs™ and is impli-
cated in duplication of the mutated JAK2 allele” but could
not have been discriminated from UPD or “LOI with CN
loss™ by use of conventional techniques—for example, al-
Icle-specific PCR to measure relative allele dose, Since the
proportions of the mutated JAK2 allele coincide with two-
thirds of the observed trisomy components in all three
cases, the data suggest that the mutated JAK2 allele is du-
plicated in the 9p trisomy cases (table 2). Of particular
interest is the unexpected finding of the presence of two
discrete populations carrying 9p UPD in three cases, in
which the AsCN graph showed a two-phased dissociation
along the 9p arm (fig. 4F). In the previous observations,
homozygous JAK2 mutations have been reported to be
more common in PV cases (~40%) than in ET cases
(=~10%). With AsCNAR analysis, the difference in the fre-

0% OO
U1 wi/wt
B mi/wt
80 O mt/mt/wmt
B mt/mt
6% |
|
40%q
20%,
!
|
0%y :

Figure 5.

quencey of 9p UPD becomes more conspicuous; nearly all
PV cases (11/11) and IMF cases (9/10) with a JAK2 mu-
tation had one or more UPD components or other gains
of 9p material, whereas only 3 of the 11 JAK2 mutation-
positive ET cases carried a 9p UPD compaonent or gain of
Ip (P = 1.3 x 10 %, by Fisher's exact test).

Discussion

The robustness of the ASCNAR method lies in its capacity
to measure accurately allele dosage and thereby to detect
LOH even in the presence of significant normal cell com-
ponents, which often oceurs in primary tumor samples.
In principle, an accurate LOI determination is accom-
plished only by demonstrating an absolute loss of one
parental allele, not simply by detecting Al with conven-
tional allele-measurement techniques. This is especially
the case for contaminated samples, where it is essentially
impossible to discriminate the origin of the remaining
minor-allele component fi.e., differentiating normal cells
and tumor cells)." " Nevertheless, and paradoxically, it is
these normal cells within the tumor samples that enable
determination of AsCNs in ASCNAR. It computes AsCNs
on the basis of the strength of heterozygous SNP calls
produced from the “contaminated” normal component,
which cffectively works as “an internal reference,”
cluding the need for preparing a paired germline reference.

” [1;' /48]
I

pre-

il

Estimation of tumor populations carrying 9p UPD and the JAK2 mutation in MPD samples. The populations of 9p UPD-

positive components in the 53 MPD cases were estimated by calculation of the mean difference of AsCNs within the UPD regions.
Heterozygous (blue bars) or homozygous (red bars) JAK2 mutations in MPD samples were also estimated by measurement of JAK2 mutated
alleles and UPD alleles, under the assumption that all the UPD alleles have a JAK? mutation. Measurement of JAK2 mutated alleles was
performed by allele-specific PCR. For three cases having trisomy components (orange bars), the duplicated allele was assumed to have
a JAKZ mutation, which is the consistent interpretation of the observed fraction of trisomy and mutated JAK2 alleles for case PV_o2
(table 2). mt = JAKZ mutated allele; wt = wild-type allele.
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The figure is available in its entirety in the online
edition of The American Journal of Human Genetics.

Figure 6. Effects of the use of the different reference sets on
signal-to-noise (S/N) ratios in CN analysis. The legend is available
in its entirety.in the online edition of The American Journal of
Human Genetics.

It far outperforms the SNP coli-based LOH-inference
algorithms and other methods and definitively deter-
mines the state of LOH by sensing CN loss of one parental
allele.

In the previously published algorithms, AsCN analysis
was enabled by fitting observed array data to a model con-
structed from a fixed data set from normal samples.'™?
However, the model that explicitly assumes integer CNs
fails to cope with primary tumor samples that contain
varying degrees of normal cell components (PLASQ)™ (fig.
2). Another algorithm (CARAT) requires a large number
of references to consiruct a model by which AsCNs are
predicted, but such a model may not necessarily be prop-
erly applied to predict AsCNs for the newly processed sam-
ples, if the experimental condition for those samples is
significantly different from that for the reference samples,
which were used to construct the model (fig. 6 and data
not shown).* Signal ratios between array data from very
different experiments could be strongly biased, to the ex-
tent that they can no more be properly compensated by
conventional regressions. In contrast, ASCNAR uses just a
small number of references simultancously processed with
tumor specimens, to minimize difference in experimental
conditions between tumor and references, which act as
excellent controls in calculating AsCNs, although refer-
ences analyzed in short intervals also work satisfactorily
(data not shown).

The CN analysis software for the Hllumina array provides
allele frequencies, as well as CNs, by use of a model-based
approach, and, as such, it enables AsCN analysis but seems
to be less sensitive for detection of Als.™ AsCNAR can be
casily adapted to other Affymetrix arrays, including 10K
and 500K arrays, and may be potentially applied to Ilu-
mina arrays.

The probability of finding at least one concordant SNP
between a tumor sample and a set of anonymous refer-
ences is enough with five references, but use of just one

The figure is available in its entirety in the online
edition of The American Journal of Human Genetics.

Figure 7. CN profile obtained with the use of a varying number
of anonymous references. The legend is available in its entirety
in the online edition of The American Journal of Human Genetics.

reference provides almost an equivalent AsCN profile to
that obtained with its paired reference (Rg. 7). The sen-
sitivity and specificity of LOH detection with this algo-
rithm are excellent, even in the presence of significant
degrees of normal cell components (~70%-804%), which
circumvent the need for purifying the tumor compo-
nents for analysis—for example, by time-consuming
microdissection.

Because the AsCNAR algorithm is guite simple, it re-
quires much less computing power and time (several sec- -
onds per sample on average laptop computers) than do
model-hbased algorithms. For example, with PLASQ, it
takes overnight for model construction and an additional
hour for processing cach sample.

The high sensitivity of LOH detection by AsCNAR has
been validated not only by the analysis of tumor DNA
intentionally mixed with normal DNA but also by the
analysis of primary leukemia samples. 1t unveiled other-
wise undetected, minor UPD-positive populations within
feukemia samples. Especially, the extremely high fre-
quency of 9p UPD or gains of 9p in particular types of
JAK2 mutation—positive MPDs, as well as multiple UPD-
positive subclones in some cases, demonstrated how
strongly and efficiently a genetic change (point mutation)
works to fix the next alteration (mitotic recombination)
in the tumor population during clonal evolution in hu-
man cancer. Finally, the conspicuous difference in UPD
frequency among different MPD subtypes (PV and IMF vs.
ET) is noteworthy. This is supported by a recent report
that demonstrated the presence of minor subclones car-
rying exclusively the mutated JAK2 alicle in all PV sam-
ples, but in none of the ET samples, by examining a large
number of erythroid burst-forming units and Epo-inde-
pendent erythroid colonies for JAK2 mutation.*” Our ob-
servation also supports their hypothesis that the biological
behavior of these prototypic stem-cell disorders with a
continuous disease spectrum could be determined by the
components with either homozygous or duplicated JAK2
mutations.

In conclusion, the ASCNAR with use of high-density
oligonucleotide microarrays is a robust method of ge-
nomewide analysis of allelic changes in cancer genomes
and provides an invaluable clue to the understanding of
the genetic basis of human cancers. The ASCNAR algo-
rithm is freely available on our CNAG Web site for aca-
demic users.

Acknowledgments

This work was supported by Research on Measures for Intrac-
table Diseases, Health and Labor Sciences Research Grants,
Ministry of Health, Labor and Welfare, by Research on Health
Sciences focusing on Drug Innovation, by the Japan Health
Sciences Foundation, by Core Research for Evolutional Science
and Technology, Japan Science and Technology Agency, and
by Japan Leukemia Research Fund.

122 The American Journal of Human Genetics

Volume 81 |uly 2007 www.ajhg.org



Appendix A
AsCNAR

Quadratic Regression

The log, signal-ratio, log, R}y, is regressed by the gua-
! » 51§ Y82, ) 4

dratic terms (the length [L,] and the GC content [M,] of
the PCR fragment of the ith SNP) as

log, R, = alf + BL, + xM7 +8M, + v + ¢, ,

where g, is the error term and the coefficients of regressions
@, B, x, 8, and v are dependent on the reference used and
are determined to minimize the residual sum of squares
(i.e., ¥,&7). Note that the sum is taken for those SNPs that
have concordant SNP calls between the tumor and the
reference samples., ’

We suppose that both allele A DNA and allele B DNA
follow the same PCR kinetics, and allele-specific ratios
Ry and Ry, respectively, can be regressed by the same
parameters, as

log. Ry = log, Ry — (L} + BL)—{xM? + 8M) -
and

log: Ryt = log. Ry — (L} + BL) — (xM; + M)~ ,
and the corrected total CN ratio is

Ry for O = O = AA
Rt = AR for O/ = O} = BB .
TR0+ Ry} for O = O = AB

Averaging over the References of Concordance SNPs

Concordant reference sets C¥ and Citee for each SNP
S; for a given set of references, K, are defined as follows:
CF = {refl| OF™ = O} refl € K)

C;\,h--an — {refl|()f-"'“ = ();ull = AB,refl c K] ,

and the averaged CN ratio, Ry, ,, is provided by

Z Breti

1
H#ON ddor ARt

Rﬁlf,l =

Ch#9¢

where “#" denotes the number of the elements of the set.
Similarly, AsCN ratios are obtained by

- 1
o wif
R,.Ll - #(4-’;(,In-n-m"'”2' ’fﬁa“:""
((“:\,Iu-h-m * d’) .
N 1 4
Ry = o 2 R

i #(,‘7‘"""""’,4.,,,4(7§,|n-|.'-.

Exceptional Handling with Regions of Homozygous
Deletion, High Amplification, and LOH

To prevent SNPs within the regions that show homo-
zygous deletion or high-grade amplification from being
analyzed as “homozygous SNP's,” o4 homozygous SNP
Sy in the tumor sample is redefined as a heterozygous
SNP with O/ = AB, if max(log, R, log, k%)= 0.1 or
min(Jog, RS, log, R ) = ~0.1, where R, and R4, are cal-
culated supposing SNP S, is heterozygous. These cutoff val-
ues (0.1 and —0.1) are determined by receiver operating
characteristic (ROC) curve for detection of gain of the
larger allele and loss of the smaller allele in a sample con-
taining 20%. tumor cells (data not shown). In addition,
SNPs within inferred LOH regions are also analyzed as
“heterozygous” SNDs.

Reference Selection

The optimized set of references is selected that mini-
mizes the SD of total CN at the diploid region D,

X (log, RS
_ le o .
SDu(D) = \/#(,-;,' eDCF gl -1

To do this, instead of testing all possible 2¥ combinations
of N references, we calculate SD (D) for individual refer-
ences K = {refl}, {ref2}, {ref3}, ..., {refN}, to order the ref-
erences such that SD(D) < ... = SD(D) = SD,, (D)< ... =
SD.(D), where 1, 2, 3,...,s, s+1,..., N denotes the ordered
references. The optimal set K(N,) = {1,2,3,...,N,} is de-
termined by .choosing N, that satisfies SD,, (D)= ... =
SDy (D) < SDyxy s n(D)-

Note that, in principle, a diploid region cannot be un-
equivocally determined without doing single-cell-based
analysis—for example, FISH or cytogenetics. Otherwise, a
diploid region is empirically determined by setting the
CN-minimal regions with no Al as diploid, which provides
correct estimation of the ploidy in most cases (data not
shown).
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The figure is available in its entirety in the online
edition of The American Journal of Human Genetics.

Figure C1. Inference of LOH on the basis of heterozygous SNP
calls. The legend is available in its entirety in the online edition
of The American Journal of Human Genetics.

Appendix C
Inference of LOH Based on Heterozygous SNP Calls

For a given contiguous region £,; between the ith and
jth SNPs (i = j) and for the complete set of observed SNP
calls therein, ((9,)), consider the log likelihood ratio

L O@R, € LOH)
A0 = I @), ¢ LOH) ' A

where the ratio is taken between the conditional proba-
bilities that the current observation, ((€;,), is obtained
under the assumption that (X(Q, ) belongs to LOH or not.
We assume a constant miscall rate (¢ = 0.001) for all SNP
and use the conditional probability that the kth SNP is
heterozygous (/1), depending on the observed k- 1th SNP
call, for partiatly taking the effect of linkage disequilibrium
into account:

20, =

I"AI-)I(‘ = IO+ gl = O
.l‘l__,ll(l = hoCE = gy + IO+ {0 = g+ Il — i - O

in

where # is calculated using the data from the 96 normal
Japanese individuals, whereas (J, takes either 1 or 0, de-
pending on the kth SNP call, with 1 for a homozygous
call and 0 for a heterozygous call. For each chromosome,
a set of regions, Qo< <=l.J,=0)n=123,.) can
be uniquely determined as follows.

Beginning with the SNP at the short arm end (8,), find
the SNP S, that satisfies Z(2, ,) > 0. and Z2(Q,) =0 for
Jii<vi<l, (Aig. C1). Identify the SNP ., sich that
Z(,)>0 for I,<vj< ] and Z(,, .,) < 0,.0r that §,. is
the end of the chromosome (fig. C1). Then, put /, as
arg max, Z(Q, )1, < j=<J")y (Aig. C1). This procedure is
iteratively performed, beginning the next iteration
with the SNP S, ||, until it reaches to the end of the long
arm, generating a set of nonoverlapping regions,
QnRge s - e - LOH inference is now enabled by
testing each Z(Q, , ) against a threshold (25), which is ar-
bitrarily determined from the ROC curve for LOH deter-
mination on a DNA sample from a lung cancer cell line,
NCI-H2171 (fig. €1). This algorithm is implemented in
our CNAG program, which is available at our Web site.

Appendix E
Algorithm for Detection of Al With or Without LOH

The regions with Al are inferred from the AsCN data by
use of an [IMM, where the real state of Al (a hidden state)
is inferred from the observed states of difference in AsCNs
of the two parental alleles, which are expressed as di-
chotomous values (“preset” or “absent”) according to a
threshold (g). The emission probabilities at the ith SNP
locus (57) are

P log, R~ log, Rh,| < plSie Al) = 8
P log, R, —log, Ry | >plSie A =1 -8

and

S P(Hog, Ry, < log, Ry E > plSie Al) = «
P og, RY, = 1og RE | < ulSie Al) = 1 - «

{see also the “Material and Methods” section and appen-
dix A for calculation of RA, and R} ).

The parameters (g, «, and §) are determined by the re-
sults of 10%, 20%, and 30% tumor samples. Sensitivity
and specificity are calculated with varying threshold (),
where sensitivity is defined as the ratio of detected SNPs
of UPD region detected in the 100% tumor sample, spec-
ificity is defined as the ratio of nondetected SNPs in nor-
mal samples, and « and 8 parameters are determined from
mixed tumor-sample data for each threshold value. Sen-
sitivity and specificity are relatively stable and are within
the acceptable range when the threshold is between 0.05
and 0.15 in 20% and 30% tumor samples (fig. El). We
used 0.12, 0.17, and 0.06 for g, «, and 3, respectively, on
the basis of 20% tumor-sample data.

Considering that UPD is caused by a process similar to
recombination, the Kosambi’s map function (1/2)tanh(20)
is used for transition probability, where 0 is the distance
between two SNPs, expressed in ¢M units; for simplicity,
1 ¢M should be 1 Mbp. Thus, the most likely underlying,
hidden, recal states of Al are calculated for each SNP ac-
cording to Vitervi's method, by which Al-positive regions
are defined by contiguous SNI's with “present” Al calls
flanked by either chromosomal-end or an “absent” Al call.
Next, to determine the LOH status for each Al-positive
region ('), AsCN states at each SNP locus within I’ are

The figure is available in its entirety in the online
edition of The American Journal of Human Genetics.

Figure E1. Sensitivity and specificity for determination of Al
LOH, and UPD. The legend is available in its entirety in the online
edition of The American Journal of Human Genetics.
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inferred as “reduced (R)” and “not reduced (R)" for the
smaller AsCNs, and “increased (1)” and “not increased (1)”
for the larger ASCNs, using similar [HIMMs from the “ob-
served CN states” of the smaller and the larger As('ZN's,
which are expressed as dichotomous values according to
thresholds u, and g, respectively. The émission probabil-
ities of these models are )

Plmin (log.RY , log, RSy < pSie R = 1 -8,

Plmin(log,R% , tog, RY ) = u.|Si e R|] = B,

Pimin (log, R, Jog. RS ) < po| Si € R| = v,

Plmin(log, RA log, RS 3 = p,|Si € R} = 1 =

and

Pimax (log, RY ,log, R ) > (Sie l] =1 -8,
Plmax (log, R% ,log, RS ) = p, |Si e =8
Plmax (log, Ry, log, Rhy > w |Sie 1| = o,
Plmax (log, RS log, Rb ) = |Sielj =1 < q, .

These parameters (u,, «, By, m, o, and B,) are deter-
mined by evaluating sensitivities and specificities of the
results for 10%, 20%, and 30% tumor samples, where sen-
sitivities and specificities are calculated the same way as
was Al. Sensitivity and specificity are relatively stable for
us between —0.03 and ~0.13 and are relatively stable for
w. between 0.04 and 0.09 in 20% and 30% tumor samples
(fig. E1). We employed p, = ~0.1, o, = 0.3, 5, = 0.26,
. = 0.08,a, = 0.27, and 3, = 0.31 on the basis of the data
for 20% tumor content.

Web Resources
The URLs for data presented herein are as follows:

ATCC, http://www.atcc.org/common/cultures/NavByApp.cfm

BACPAC Resources Center, http://bacpac.chori.org/

CNAG, http://www.genome.umin.jp/

dChip, hitp://www.dchip.org/

Online Mendelian Inheritance in Man (OMIM), http://www.ncbi
.nlm.nih.gov/Omim/ (for JAK2, AML, PV, ET, and IMF)

PLASQ, http://genome.dfci.harvard.edu/ tlaframb/PLASQ/
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With recent advances in high-throughput single nucleotide polymorphism (SNP) typing technologies,
genome-wide association studies have become a realistic approach to identify the causative genes that
are responsible for common diseases of complex genetic traits. In this strategy, a trade-off between the
increased genome coverage and a chance of finding SNPs incidentally showing a large statistics becomes
serious due to extreme multlple-hypothe515 testing. We investigated the extent to which this trade-off
limits the genome-wide power with this approach by simulating a large number of case-control panels
based on the empirical data from the HapMap Project. In our simulations, statistical costs of multiple hypo-
thesis testing were evaluated by empirically calculating distributions of the maximum value of the x? stat-
istics for a series of marker sets having increasing numbers of SNPs, which were used to determine a
genome-wide threshold in the following power simulations. With a practical study size, the cost of multiple
testing largely offsets the potential benefits from increased genome coverage given modest genetic effects
and/or low frequencies of causal alleles. In most realistic scenarios, increasing genome coverage becomes
less influential on the power, while sample size is the predominant determinant of the feasibility of genome-
wide association tests. Increasing genome coverage without corresponding increase in sample size will only
consume resources without little gain in power. For common causal alleles with relatively large effect sizes
[genotype relative risk >1.7], we can expect satisfactory power with currently available large-scale geno-
typing platforms using realistic sample size (~ 1000 per arm).

INTRODUCTION

Genome-wide association studies have been proposed as a
strategy to identify genetic factors with small to moderate
genctic cffects in the development-of human discases, as typi-
cally assumed for a common disease common variant (CDCV)
model (1). In this strategy, a discasc-associated locus is
identificd through single nucleotide. polymorphisms (SNPs)
that show “significantly” different allele frequencics between
affected (cases) and unaffected (controls) individuals. and a
large number of SNPs are tested for association in an
attempt to realistically identify such SNPs (2.3). Although

only a theorctical perspective a decade ago (1), with the
unprecedented advance in large-scale genotyping technologics
(4-6). it has now become a realistic approach to exploring the
genetic basis of human diseasc (7.8). In addition, recent efforts
in the International HapMap Project to understand the genetic
diversity among human populations (9.10) have greatly con-

_tributed to cldrifying the extent to which the number of

marker SNPs could be reduced to achicve given genome cove-
rage. or how much genome coverage can be obtained with a
given marker SNP set by optimally “tagging™ untyped SNPs
based on the linkage disequilibrium (LD) obscrved in the
human genome (11-16).
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Mcanwhile. the major-interest of the most researchers, who
plan genetic association studies, would be the practical success
rates in such attempts and their efficient study designs, rather
than mere genome coverige (17.18), because increase in
genome coverage might not be lincarly translated into gain
in power (19,20). In addllmn the more SNPs are genotyped
to achicve better genome coverage, the higher hurdie is
imposed for a target allele to be detected.

This dilemma, known as the trade-ofl between inereased
genome coverage and the consequent inflation of null statistics
due to extreme multiple lcsling. is @ unique feature of genctic
association studics, and is best deseribed by considering the
distributions of test statistics for markers truly associated
with a causative allele (*causal distribution’) and for all
other markers (‘nult distribution”) (21). Regardless of the
propertics of the causative SNP and whether one or more
tagging strategics arce used, the null distribution for a given
marker set depends on its genome coverage in the study popu-
lation. In particular, the nufl distribution with complete
genome coverage is related to the overall diversity of the
human genome and should subs’l‘mtially shift to the right
(7.8.22). On the other hand. for a given discase model, the
size of the test statistic expected for the causative SNPs s
limited by the number of samples to be analyzed. once they
arc dircetly captured by one or more marker SNPs. Afier all,
the feasibility of genomce-wide association studies, or the
required sample size 1o obtain realistic power, is determined
by the overall diversity of the human genome. or given
restricted  study  resources, the  diversity of the  human
genome determines the property of discasc-associated SNPs
that can be detected with this approach.

Our questions are, therelore, how diverse is the human
genome in view of conducting genome-wide  association
studics, how much power could be obtained to identify causative
SNPs given that diversity and how the typical study parameters
affeets the power in that situation”? To answer these guestions.
we need to evaluate both null and causal distributions in a quan-
titative manner. Because both distributions mmnslmlly depend
on the LD structure within N (typically >~10° ) interrelated
marker SNPs and the particular location of causative SNPs
within the genome. they cannot be calculated in an algebraic
manncr, but need to be estimated based on the observed data
of human genome variations (10.21). So we approach these
issucs by extensively simulating a large number of case-control
pancls under both null and alternative scenarios based on the
data from the International HapMap Consortiums (9.10). and
assess the feasibility and efficient designs of whole genome
association studics by estimating the genome-wide power that
would be obtained using tlns genetic approach under varying
study conditions.

RESULTS

Estimation of null distributions of the maximum
xz statistics

In considering the issue of multiple testing in genetic associa-

tion studics. it is convenient to evaluate the maximum value of

the x7 statistic [max(x™)] in all the marker SNPs that arc truly
unrclated to the causative SNP (21). Different statistics can be

Human Molecular Geneties, 2007, Vol 16, No. 20 2495

used (23--26), but the power caleulated for this statistic, i.c.
the probability of max(x’) indicating a true association. will
provide a reasonable bottom Tine to discuss the feasibility of
typical genctic association studies (21). When all N marker
SNPs are independent, the null distribution for maxtx®) is
given as

")N}.

eniy’) =

where ¢(x?) is the cumulative density function of the x° dis-
tribution {d.f. = 1), However, since SNPs in real marker scts
are variably degenerated due to the presence of LD between
dd_yd(.klll SNPs, we empirically estimated the distribution of
max(x?) for a series of marker sets by simulating 10 000
null case-control pancls, where cach panel was generated by
randomly  resampling phased  chromosomes  from  the
HapMap data sets. and max(x~) was caleulated for cach case-
control pancl. Although the number of resampled chromo-
somes for cach case-control panel (i.e. the sample size) doces
not significantly affeet the distributions (data not shown),
there arises some concern about the possibility of under-
estimating the null distributions due to resampling from very
limited numbers of chromosomes. because the latter procedure
could restrict the freedom of allelic segregation within the
same chromosome. To address this issuc. we. progressively
divided the whole genome into larger numbers of sub-blocks
consisting of 10000 to 10 SNPs in the HapMap Phase I1
set, and resumpled these sub-blocks to simulate distributions
of max(x*). Reducing the mean block size down to 7.1 kb.
these divisions allow for greater freedom of allelic segre-
gation. but does not significantly affect the max(x?) distri-
butions until the resampled block size becomes smaller than
the mean LD length (27). indicating that our simulations are
not likely to substantially underestimate the null distributions
(Supplementary Material, Figure S1).

Figure 1 A shows the simulated null distributions in the
CEU panel for varying numbers of randomly sclected SNPs
(correlated” SNP sets). The number of segregating or poly-
morphic markers contained in cach random set is designated
as Ns. The theoretical distribution for the same numbers
(Ns) of ‘independent” SNPs. @n.(x7), is also provided
(Fig. 1B). The null distribution increases as the number of ran-
domly sclected SNP markers increases, and in a random
[000K sct containing 681K scgregating SNPs, the threshold
x~ value that provides a genome-wide P-value of 0.05 or
0.01 becomes as large as 27.6 or 30.5. respectively. On the
other hand. reflecting the growing inter-marker LD intensity,
the empirical distributions Lmdu‘llly deviate from the theoreti-
cal ones, gnd(x°)'s, for i increasing Ns within the corresponding
marker seis. underscoring the importance of considering inter-
marker LD to avoid overestimation of the statistical threshold
for multiple testing. especially for higher marker density.

Evaluation of the inter-marker LD

The intensity of the inter-marker LD in a given marker sct is
more simply evaluated by fitting the simulated dlsmbuhon to
a theorctical one for independent Ne makers, en(X’) (sce
Methods). lrrespective of marker sets. fitting is fincly
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Figure 1. Null dhstributions of maxey”) and the effeetive number ol independent SNPs (Ne) for varous marker sets. Distributions of max(x ) for all null SNPs
tnull distributions ) were simulated for mereasing numbers of randomly selected SNP markers in the CEU pancl. Ten thousand null pancls. cach consisting ol
1000 cases and 1000 controls. were penerated for the indicated marker sets by randomly resampling phased autosomal chromosomes Trom the HapMap Phase 1
data i CFU AL Theoretical nall distributions correspanding to cach SNI set, ¢+ x 1 were caleulated assuning all Ns segregating SNPs therem are indepen-
dent (B). The effective numbers of hypothetical independent SNPs (Ne) were estimited by fitting simulared null distributions 1o theoretical ones Tor Ne inde-
pendent SNPs. g (x 1 Tor the mdicated SNIP sels, and are plotted agamst the number of segregating SNPs of the corresponding marker set (Ns) for diflerent

HapMap panels (C).

performed except in the vicinity of the maximal points
(Supplementary Material. Figure S2). In particular. the distri-
bution in extreme x° values is satisfactorily approximated to
provide a rough estimate of the nominal P-value for given

genome-wide thresholds as confirmed by the concordance of

the upper g point in the simulated distribution with the
upper p'Ne point in the x° distribution (dLf. - 1) (Bonferroni)
(Table 1). In this formulation. it is reasonable to regard N¢
as the number of hypothetical independent SNPs equivalent
t the corresponding marker set. where the null distribution
for a large number of mutually degenerated SNPs is described
by an integer and the mean intensity of the inter-marker LI is
measured through the Ne/Ns ratio.

Ne values were caleulated for a variety of randomly
selected SNP marker sets and plotted against the number of
segregating SNP markers therein (Fig. 1C). As the Phase |11
data contain most of the SNPs in commercially available plat-
forms, including Affymetrix®e GeneChip and Humina®
Humanllapie arrays (28 30). Ne values were also evaluated
for these platforms (Supplemental Material. Table S1). Note
that the numbers of segregating SNP markers varies among
different HapMap panels. even though the same numbers of
SNPs are randomly selected for cach panel (Supplementary
Material. Figure S3). Figure 1C illustrates how the degree of
degencration within marker SNPs increases  in different

HapMap  pancls  as more marker  SNPs  are  selected.
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Table 1. Sive of null distributions of max(x™) in various marker sets in the CEU panel
Platform Ns Ne Fold degencration - 0,03 =00
Nominal /* Actal®  Bonferroni' Nominal Actual® Bonferroni®
Random 10K 68K oK K| 799 « 10 " 19.94 19.%0 L7« 100" 23.00 22,95
Random 30K 20.6K 17K 1.2 286~ 10 ° 2191 2185 573 % 10 7 25.00 24,95
Random 50K 310K 27K 1.3 176 » to 2284 2274 401~ 10 7 25,04 2584
Random 125K 8SSUIK 6OK 1.4 730 10 " 24,51 2408 156 < 10 27.51 27.29
* Random 250K 170.7K 103K 1.6 452 % 10 7 2540 2530 004 5 10 ¥ 28.57 2847
Random 300K 340.4K 19K 10 245107 20.04 2039 Sk % 20587 29.50
Random 1000K O80.TK 200K 2.3 14K« 10 7 27.62 27.32 R TR [T 3040 30.44
GieneChip S00K 417.8K 196K 2.1 208x 10 7 20,99 26,50 494 % 10 ® 29.74 29,68
GeneChip Nsp250K - 219.4K 120K 1K 109 = 1" 255 25.02 794 % 10 % 2882 28,73
GeneChip TOOK 101.3K 02K 1.0 77500 1 2442 24.34 13810 7 2778 27.43
HumanMap 300 051K 215K h4 248w 10 7 20,87 26.74 4.00 = 10" a2 20.80
Humanttap 550 SI3.8K JISK 1.6 141> 007 27.71 27.50, 200 1 ¥ 30.77 30.62
HapMap Phase 11 2857.4K 603K 4.2 700 2 10 % 29.04 28,74 LAR = 10 & 32.08 3180
ENCODE 7 regions 79K 1.3K SN

“Nominal /-value (o reach given experiment-wide significance obtained from actuad distribution.

“The upper 1 2 point of the actual null distribution.

“The argument of x* distribution (d.6= 1) for cumulative density | - /N,

For example. 681K scgregating SNPs within a random 000K
sct in the CEU panct are equivalent to independent 290K
SNPs, indicating that in this panel. these SNPs are degencrated
2.3-fold. On the other hand, the degeneration in 1000K
random markers is reduced to 1.8-fold for the YRI pancl, as
expected from the lower inter-marker LD for this panel com-
parced to that of CEU.

The SNPs on the Affymetrix® GeneChip@® mapping array
sets arc degenerated to the same degree as random SNP scets,
reflecting the fact that the SNPs on GeneChip® platforms
are virtually randomly selected. In contrast, the SNPs on the
Humina® HumanHap300 are sclected by efficiently tagping
the HapMap Phase 1 SNPs in CEU, in which redundant
SNPs are cffectively climinated (28). As a result, degencration
in the HumanHap300 is substantially reduced compared to the
corresponding  random marker sets. In CEU. Nc for this
305.1K segregating SNP sct (215K Ne) exceeds that for
417.8K scgregating SNPs on GeneChip® 500K set (196K).
as predicted by the higher genome coverage of the former
set (see Table 1 and Supplementary Material, Figure $4).
The tagging for CEU also increases the N¢ in JPT+CHB.
suggesting that tagging in one panel is also effective 1o a
certain degree for another (31.32). The tagging scems to be
Igss cfficient in YRI, because the Ne value of HumanHap300@
in YRI is less deviated from that of the random marker set
with a comresponding Ns. In HumanHap550®, more tag
SNPs are sclected from YRL which contributes to the relutive
increase in Nc for this marker set compared to that for the cor-
responding random marker SNP set.

Estimation of Ne for common SNPs in complete
genome coverage

It is particularly interesting to calculate the Ne values for the
ENCODE regions, in which human variations have been most
denscly explored. Currently 10 regions have been extensively
genotyped in the ENCODE Project (http://www hapmap.org/
downloads/encode1.html.cn). of which we used 7 regions

that had been randomly chosen from the genome. A total of
7741. 9832 and 7396 SNPs arc scgregated in these seven
ENCODIE regions, and they are equivalent to 1340
(5.8-fold), 2580 (3.8-fold), and 1460 (5.1-fuld) hypothetical
independent SNPs. in the CEU, YRI. and JPT+CHB pancls,
respectively, Assuming the entire genome shows the similar
LD intensity to that in the seven ENCODE regions on
average, the Ne values for common SNPs in complete
genome coverage (Ne®y are roughly estimated to be 1971K
(YRI). 1023K (CEU). and 1115K (JPT+CHB) (Table 2),
although the values would be much more inflated if rare poly-
‘morphisms [minor allele frequency (MAF) <0.01], many of
which could not be found in the HapMap pancls, are taken
into consideration. Ne/Nc® could also be used as another indi-
cator of genome coverage of a given marker sct.

Causal distribution of max(xz)

In view of power estimation. our next interest was the
expected size of causal distributions relative to that of the
inflated null distributions under varying discase/study par-
ameters that affect the former distributions. To illustrate this.
we simulated causal distributions of max(x°) for representa-
tive CEU alleles assumed to be causative (Fig. 2). Two thou-
sand casc-control panels were generated for cach simulation,
in which phased HapMap SNPs within 500 Kb around the cau-
sative locus were randomly resampled assuming a multiplica-
tive model with varving genotype relative risks (GRRs) and
the max(x”) was caleulated for the resampled marker SNPs
on GeneChip® SO00K. Prevalence of the trait was sct to
0.05. While the ¥° threshold for genome-wide p of 0.05
could inflate from 19.9 for the random 10K set (6K Ne: semi-
solid linc) to as high as 29.8 for complete genome coverage
(1023K Nc“; dotted lines). these costs of multiple testing
arc acceptable when LD capture of the causative SNP by
onc or more markers with high correlation” coefficient (2}
can create large causal distributions with practical sample
sizes (Fig. 2D-F), i.c. when the causal allele is common
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Table 2. The number of corresponding independent markers

ENCODE! Whole genome” AN Phase 1¢

YRI 33K0 1971K 1040K
CEU 1340 1023K 003K
IPT i CTIR 14640 FH5K 06A3K

:'Nc values cileulated for combined SNPs from seven regions.
"Ne of ENCODE regions are extrapolated 1o the entire genome.
“Ne af all SNPs in the HapMap Phase 11

(MAF > (0.2) and has a large GRR (- 1.7) (Fig. 2A. D and G).
In contrast, in the case where the causal allele with smaller
MAF value (<<0.2) or with a modest to weak GRR (<1.5)
is 10 be detected. the trade-oft between inercased chance to
capture the allele with higher +* using more markers and the
accompanying cost of multiple testing can offset the power
to varying degrees (Fig. 2A-C, G--1). The effect of “colla-
borative” capture, i.c. the probability of detecting an associa-
tion by one of the multiple surrounding marker SNPs other
than the SNPs showing max(r?), creates measurable gain in
causal distributions and overall power, but does not essentially
influence the above observations (Supplementary Material,
Figure S5).

Estimation of genome-wide power

Based on the above consideration, we estimated the genome-
wide power in genetic association  studics for common
(MAF £ 0.05) causal alleles with weak to moderate genetic
cffeets. To do this, after assuming all the common SNPs in
the human genome being cqually causative. we used two
sets of SNPs, the RefFNCOPE gnd (he Ref Phase 11 5K goqg
(scc Mcthods). as references that are considered as random
sampling from the entire SNPs. For cach putatjive causative
SNP, we simulated casc-control pancls as described in the pre-
vious scction. and calculated the single point power as the pro-
portion of simulated pancls whose max(x°) cxceeded a
predetermined x? threshold corresponding to a genome-wide
P=0.01 or 0.05 for cach marker set. For genome-wide
power. cach single pomnt power was averaged for all common
SNPs within the reference set. For the RefPhase IWSKb gor gver-
representation of the dircet association was adjusted based on
the estimated genome coverage of the Phase H data set (see
Methods). Figure 3 shows the genome-wide power in the
CEU panel that was caleulated for the Ref™ ¢ ' 580 for mod-
crate to small effect sizes (i.e. GRR = 1.7) assuming various
parameter values. The calculation on the Ref"™ V" et pro-
vides a largely cquivalent estimation of the power (Sup-
plementary Material. Figure S6). although the power is
expected to be less reliable for smaller marker sets, reflecting
their poor representation of the genome.

Under strong genetic effects (GRR 2 2.0) and large sample
sizes (2 1500/arm). the power tends to saturate as the number
of randomly selected SNPs increases { = 250K), because most
of the common SNPs would be alrcady captured by one or
more marker SNPs with enough " (Supplementary Material,
Figure S4). and the capture causes large shifls of causal
distributions to the extent that the cost of multiple testing

is trivial (Fig. 2). On the other hand, when causative SNPs
with weak to moderate genetic effects are detected with
insufficicnt  sample numbers, causal distributions  cannot
exceed large thresholds resulting from extreme multiple
testing, even though more and more SNPs are captured by
strong LD. With increasing cffeet size and sample number,
the genome coverage is less influential except for smaller
numbers of marker SNPs (<<250K). The power gain obtained
with increased genome-coverage tends to be offset by the
increased cost of multiple testing. After all, in most scen-
arios, genome coverage is less influential on power when
Z 250K random markers or equivalent tag SNPs are uscd.
In contrast, the cffect of sample numbers is predominant.
To deteet weak genctic effects (GRR = 1.3), the number of
samples becomes critical. More than 4000 samples per arm
will be required, but the requirement of genome coverage
is not substantially increased  when more than 250K
randomly selected SNPs or their cquivalents are used
(Fig. 3A). Given a higher genctic effect. this dependence
on sample size is dramatically amcliorated, but the genome
coverage remains less influential.

Power in different HapMap pancls and in commercially
available platforms

Power is significantly reduced in YRI compared to CEU and
JPT+CHB for any marker sct (Fig. 4A-C). The lower
powcer in YR is mainly due to the lower ‘relative” genome
coverage of the marker set (Ne/Nc'), rather than the higher
cost of type | errors in this population.

The Humina® HumanHap® scries are commercially avail-
able platforms that incorporate the tagging theory, in which
marker SNPs were sclected to cfficiently tag the CEU SNPs
in the Phase | data set. Tagging scems to be cffective, since
HumanHap300® in the Ref™ 1 SKP oot shows slightly
higher power than the GeneChip® 500K in CEU, although
the power is slightly biased by the higher representation of
the Phase I SNPs in the Ref™ ¥ SKP ot (Fig. 4D). Human-
Hap300@ shows comparable power to that of GeneChip®
500K, but the power of HumanHap300® is significantly
reduced in YRI. In HumanHap550®. more tag SNPs from
YRI and JPT+CHB were added to HumanHap300@®. the
power is more improved in YRI and in JPT+CHB, but the
power is also increased to a lesser degree in CEU reflecting
a transferability of tag SNPs between CEU and JPT+CHB.
The power of various commercially available platforms with
various sample sizes are shown in Figure 4E (adaptive
threshold) and in Supplementary Material, Figure S7 (fixed
threshold). Genome coverage and power of HumanHapS50®
in the CEU are comparable to those of the random 1000K
set (Supplementary Material, Figure S4). an equivalent to
Human SNP Array 6.0® that is planned by Affymetrix®
(Fig. 4E). Nevertheless, and in spite of the significant differ-
ence in cost, the gain of power in HumanHap350® is not so
prominent. Also note that the power calculation for Human-
Hap550® could be slightly biased by using the subsct of the
Phase 11 SNPs as a reference.
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Figure 2. Eohancement of causal disnibutions by various parameters. Combined effeets of LD [in maxts ] and etfect size (in GRR ) on causal distributions under

constant sample size (CL000 arm)and MAT value (022500 €1 1D and samiple size under constant effect size (GRR

MAF and effect size under constant sample size 41000 arm) and 1D [maste’)

LSFand MAT value 10225040 F)oand

LOLG Teare ilustrated based onthe simulations for siv representatine C1 1

alleles analysed on GeneChips SOOK [rs9 782915 10 A and Dz e 7343000 in (B and 13 731030 in (0 and )2 0603803 10 (G rs 3082 m (1 e~ 1307490
th] Thresholds for genome-wide P-value of .05 are ndicated for random 10K tsohd linesy, GeneChip SOOK (dashed Tines). and complete genome e erage
(dotted Tines). corresponding 1o Ne values of 6K, 196K, and 1023K (N¢U). respectively, Filects of collaborative capture by nearby markers are incorporated, bt

they are gencrally small (Supplementary Material, Figure §5).

Power depends on allele frequencies of causative alleles

Power strongly depends on MAT of causative alleles. and
deteeting rare causative alleles is very difficult (Fig. 2)
(8.20) for two reasons. First, rare variants are difTicult to
capture in high + values. With currently available platforms
(GeneChipa SOOK or Humanblap55090), most SNPs with
more than (.10 MAF values are captured in high . which
could be effectively detected in high power given moderate
GRRs (= L5)and sample size ¢ = 1000%arm) (Fig. 5). In con-
trast. capturing rare causal SNPs (MAF =2 0.10) requires many

more marker SNPs or their combinations than  capturing
common SNPs at the more cost of multiple hypothesis
testing. Sceond. even when captured in high # with onc or
more marker SNPs. associations with these rare SNPs are
more diflicult 1o deteet than those with common SNPs
(Fig.5). In common discases. the existence of multiple pheno-
copy variants would further compromise detection (multiple
rare variants) (33.34). Thus. regardless of genome coverage.
power is consistently fower for less common SNPs (Fig. 6A
and C). To detect rare causative SNPs. we need not only to
invest in genotyping large numbers of marker SNPs with



