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Abstract

The CpG island methylator phenotype (CIMP) was closely associated with poor overall survival (OS) in Japanese neu-
roblastoma {NBL) cases in our previous study. Here, in German NBL cases, CIMP(+) cases (7 = 95) showed markedly
poorer OS (hazard ratio (HR) = 9.5; P <0.0001) and discase-free survival {DFS) {HR = 5.4; P <0.0001) than CIMP—)
cases {r = 50). All the 23 cases with N-myc amplification had CIMP. Among the remaining cases without N-myc ampli-
fication, CIMP{+) cases (# = 27) had a poorer OS (HR = 4.5; P =0.02) and DFS (HR = 5.2; P <0.0001) than CIMP(~)
cases (n = 935). in multivariate analysis, CIMP and N-myc amplification had an influence on OS and DFS independent of
age and disease stage. CIMP had a stronger influence on DFS than N-myc amplification while N-myc had a stronger influ-
ence on OS.
© 20086 Elsevier Ireland Lid. All rights reserved.
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1. Introduction extreme disease courses, spontaneous regression
and life-threatening progression. To implement ade-

Neuroblastoma (NBL) is one of the most common quate and necessary therapeutics, NBL cases are
pediatric solid tumors, and is characterized by two stratified into low-, intermediate- and high-risk

groups based upon clinical and genetic information,
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into the intermediate-risk group, and development of
a novel prognostic marker is awaited [1,2).

Recently, using a genome-wide screening method
for differences in DNA methylation, methylation-
sensitive representational difference analysis [7-9],
we found that multiple CGIs were methylated in
NBL cases with poor prognosis [10]. By analysis of
140 Japanese NBL cases, methylation of the multiple
CGIs was shown to be dependent upon each other,
and conformed to the concept of the CGI methylator
phenotype (CIMP), originally established in colorec-
tal cancers [11]. Cases could be classified as either
CIMP(+) or CIMP(—), and a very limited number
of cases had an intermediate phenotype. CIMP(+)
cases had a markedly poorer overall survival (OS)
than CIMP(—) cases with a hazard ratio (HR) of
22.1 [95% confidence interval (95%CI) = 5.3-93.4;
P <0.0001). Its influence was independent-of TrkA
expression status, DNA ploidy, and age at diagnosis.
Notably, almost all cases with N-myc amplification
exhibited CIMP (37 of 38 cases), and, even among
the cases without N-myc amplification, CIMP(+)
cases had a poorer OS than CIMP(-) cases
(HR = 12.4; 95%CI = 2.6-58.9; P =0.002). CIMP
status was well associated with the methylation level
of the Protocadherin B (PCDHB) gene family, fol-
lowed by methylation levels of hepatocyte growth fac-
tor-like protein (HLP) gene and Cytochrome p450
CYP26CI (CYP26CI).

Considering that there could be potential ethnic
differences and that genome-wide screenings tend to
produce “too good” results [12), here we took advan-
tage of archived materials of German NBL cases. If
the strong influence of CIMP on OS is also observed
in German cases, we can establish CIMP as a prog-
nostic marker that can be universally used. Also,
the German NBL cases have information on dis-
ease-free survival (DFS), which was not available
for Japanese NBL cases, and the influence of CIMP
on DFS can be clarified.

2. Materials and methods
2.1. Tissue samples

A total of 152 cases were collected between 1998 and
2004, and all patients were enrolled in the German NBL
Trial. The mean age at initial diagnosis was 1082 days
(range 0-9607 days). Thirty-seven, 29, 17, 51 and 17 cases
belonged to stages 1, 2, 3, 4, and 4S (International
Neuroblastoma Staging System), respectively, although
information was not available for one case. The composi-
tion of the cohort in terms of stage, N-myc status and age
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at diagnosis was in agreement with the composition of an
unselected cohort of 1741 patients diagnosed between
1990 and 2003 in Germany [13]. DNA was extracted by
the standard phenol/chloroform procedure, and used for
this study under approval of Institutional Review Boards.

2.2. Sodium bisulfite modification and quantitative
methylation-specific PCR ( MSP)

One microgram of DNA restricted with BamHI
underwent sodium bisulfite modification [14], and was
suspended in 20 ul of TE buffer. For quantitative MSP,
1ul of the solution was used for PCR using SYBR
Green PCR Core Reagents (PE Biosystems) and an iCy-
cler Thermal Cycler (Bio-Rad Laboratories). PCR was
performed separately for methylated (M) DNA mole-
cules and for unmethylated (U) DNA molecules with
primers specific to each sequence, and the numbers of
M and U molecules in a test sample were determined
by comparing their amplification with those of standard
samples containing 10-10° molecules. Primer sequences
and standard DNA were previously described [10]. The
“methylation level” was calculated as the fraction of M
molecules in the total DNA molecules (# of M mole-
cules +# of U molecules). All the molecular analyses
were performed blind to clinical information, and meth-
ylation level for a case was obtained as an average of
two independent measurements.

2.3. Statistical analysis

Reproducibility of methylation levels between two
measurements was assessed using the Pearson correlation
coefficient. Survival time was measured from the date of
initial diagnosis to the date of death or last contact. Kap-
lan—Meier analysis and log-rank tests were performed to
compare overall survival (OS) and disease-free survival
(DFS) between groups. HRs were estimated by the Cox
proportional hazards model. These statistical analyses
were performed using SPSS, version 13.0 (SPSS Inc., Chi-
cago, IL).

3. Results
3.1. Determination of CIMP statuses in German NBL cases

Methylation levels were measured in 152 German
NBLs for three CGI (group)s — (i) the 17 PCDHB family
genes, (ii) ALP, and (iliy CYP26CI. They were highly
reproducible with a correlation coefficient >0.99, and
the average levels were used hereafter. The methylation
level of the PCDHB gene family showed a clear bimodal
distribution (Fig. 1A). To avoid artificial bias, CIMP sta-
tuses were diagnosed before having access to clinical
information of the cases. First, since cut-off values
between 40% and 60% gave high HRs in our previous
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Fig. 1. Bimodal distribution of methylation levels of the PCDH B
gene family, au:ﬂ diagnosis of CIMP status. (A) Histogram of
‘number of casés: according to PCDHB methylation levels. The
methylation level of the PCDHB gene family was measured
exactly as in our previous study {10}, and its bimodal distribution
in Germanr NBLs was confirmed. (B) Methylation statuses of the
three CGIs {groups) among the 152 NBLs. Cut-off vatues for the
PCDHB gene family, HLP and CYP26CI were set based on the
previous study, which were 40-60%, 10%, and 70%, respectively.
Closed and open boxes show high and iow methylation levels,
and methylation levels of the PCDHB gene family between 40%
and 60% are shown by grey boxes. Methylation levels of these
three CGls were closely associated with each other.

study [10], cases with methylation levels lower than 40%
and higher than 60% were diagnosed as CIMP(-)
(n=95) and CIMP(+) (n=45), respectively. Only 12
cases had methylation levels between 40% and 60%.
Then, for these 12 cases, methylation levels of HLP
and CYP26CI1, whose predictive powers followed that
of the PCDHB gene family in our previous study [10],
were taken into account. Five of the 12 cases had high lev-
els of methylation of HLP andfor CYP26CI, and were
considered to have CIMP, and seven other cases were left
as unknown for CIMP status (Fig. 1B). Cut-off values for
HLP and CYP26CI were set at the same levels as in our
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previous study, which were 10% and 70%, respectively. As
a result, 50, 95, and 7 cases of the 152 cases were dia-
gnosed as CIMP(+), CIMP(-), and unknown, respec-
tively. Methylation statuses of the three CGI (groups)
showed close correlation with methylation statuses of
the other CGls.

'3.2. Univariate analysis with OS and DFS

In univariate analysis, the 50 CIMP(-+) cases exhibited
markedly and significantly poorer OS (HR =9.5;
95%ClI = 3.2-28.1; P<0.0001) and DFS (HR =354,
95%CI = 2.9-10.3; P <0.0001) than the 95 CIMP(-)
cases. Cases with N-myc amplification (# = 23) also exhib-
ited markedly and significantly poorer OS (HR = 11.8;
95%Cl =49-28.7;, P<00001) and DFS (HR =3.1;
95%C1 = 1.6-6.0; P = 0.0007) than 122 cases without N-
myc amplification. All of the 23 German cases with N-
myc amplification had CIMP, as observed in a Japanese
population.

Therefore, the German NBL cases were classified into
three groups: (a) CIMP(—) cases {(n =95), all of which
were without N-myc amplification, (b) CIMP(+) cases
withoat N-myc¢ amplification {rz = 27), and (¢} CIMP{+)
cases with N-myc amplification {7 =23). As for OS
(Fig. 2A), the three groups exhibited a step-wise increase
of risk, showing the influence of N-myc amplification in
addition to CIMP. Among the cases without N-myc
amplification (groups {a) and (b)), CIMP had a significant
influence on OS (HR =4.5; 95%CI = 1.3-16.1; P=0.02).
As for DFS (Fig. 2B), CIMP had a significant influence
(HR = 5.2; 95%Cl = 2.6-10.6; P <0.0001} by compari-
son of groups (a) and (b). However, additional influence
by N-myc amplification was unclear by comparison of
groups (b) and (). These suggested that N-myc amplifica-
tion had a strong influence on OS while CIMP had a
strong influence on DFS.

3.3. Multivariate analysis

Since CIMP and N-myc amplification were dependent
upon each other, multivariate analysis was first performed
using age at diagnosis, disease stage, and either CIMP or
N:imyc amplification (Table 1A and B). It was confirmed
that either CIMP or N-myc amplification had a significant
influence on OS and DFS independent of age at diagnosis
and disease stage.

Then, multivariate analysis was performed using age at
diagnosis, disease stage, and both CIMP and N-myc
amplification to compare the influences of them (Table
1C). As for OS, N-myc amplification retained its power
while CIMP lost its power. In contrast, as for DFS, CIMP
retained its power while N-myc amplification lost its
power. This result was in accordance with the finding that
CIMP had a strong influence on DFS while N-myc
amplification had a strong influence on OS.
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Fig. 2. Kaplan-Meier analysis of (a) CIMP(~) cases without N-
myc amplification (n =95), (b) CIMP(+) cases without N-myc
amplification (n=27), and (c¢) CIMP(+) cases with N-myc
amplification (n=23). (A) Kaplan-Meier analysis using OS.
Using group (a) as a reference, group (b) had a HR of 4.5
(95%CI = 1.3-16.1; and P = 0.02), and group (c) had a HR of
21.7 (6.8—69.3; <0.0001). Using group (b) as a reference, group (c)
had a HR of 4.8 (1.7-13.6; 0.003). (B) Kaplan-Meier analysis
using DFS. Using group (a) as a reference, group (b) had a HR of
5.2 (2.6-10.6; <0.0001), and group (c) had a HR of 5.7 (2.6-12.2;
<0.0001). There was no significant difference between groups (b)
and (c¢) (P = 0.82).

4. Discussion

Methylation levels of the PCDHB gene family
showed a bimodal distribution in German NBL
cases, as in our initial analysis of Japanese NBL
cases [10), and the presence of two groups of NBLs
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from the viewpoint of CIMP was confirmed. The
CIMP statuses of individual German NBL cases
were determined using criteria established in Japa-
nese NBL cases to avoid falsely “too good” results,
which tend to happen in genome-wide analyses [12].
Nevertheless, the strong influence of CIMP on OS
in all the NBL cases (HR = 9.5) and also in those
without N-myc amplification (HR =4.5) was con-
firmed. After finishing all the analysis we searched
for a PCDHB methylation level that would give
the highest HR for the 152 German NBL cases,
and it was 30% with a HR of 9.8 (95%CI =2.9-
33.0; P <0.0001), followed by 40% with a HR of
9.4 (95%CI = 3.2-27.6; P <0.0001). Based on the
precise reproduction of the initial findings in Japa-
nese NBL cases in German NBL cases, CIMP is
highly likely to be a novel prognostic marker that
can be universally used in cases without N-myc
amplification. A prospective study is warranted.

A strong influence of CIMP on DFS was
revealed for the first time in this study because data
on DFS were available only for German NBL cases.
In univariate analysis, CIMP had a strong influence
on DFS in all the NBL cases (HR = 5.4) and in the
cases without N-myc amplification (HR =5.2)
(groups (a) and (b} in Fig. 2B). In multivariate anal-
ysis involving age at diagnosis, disease stage, and
both N-myc amplification and CIMP, CIMP
retained its power on DFS while N-myc amplifica-
tion retained its power on OS. This suggested that
the recurrence of NBL cases was strongly associated
with CIMP, but that NBL cases without N-myc
amplification had higher chances to be induced into
the second remission.

The almost complete inclusion of cases with N-
myc amplification within the CIMP(+) cases in
our two independent studies indicates that these
two abnormalities are very closely associated with
each other. If we assume a single abnormality that
underlies a poor prognosis of NBL cases, it is likely
that CIMP is caused by it, and some of CIMP(+)
NBLs develop N-myc amplification. If we assume
multiple abnormalities, it is likely that CIMP is
consistently associated with the devastating status
of NBLs, which can be induced by N-myc amplifi-
cation and other causes. Clarification of what
molecular abnormality causes CIMP and how
CIMP and N-myc amplification are related is
important.

The presence of CIMP was considered tolead toa
poor prognosis by induction of methylation of
promoter CGls of various tumor-related genes. We
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Table 1
Multivariate analysis of prognostic factors for overall and disease-free survival
Variable oS DFS
HR 95% CI for HR P HR 95% CI for HR . P
(A) :
Age at diagnosis 6.2 0.8-48.7 0.082 1.8 0.8-4.1 0.171
Disease stage 1.8 0.6-5.8 0.319 1.8 0.8-4.0 0.152
CIMP 49 1.5-15.8 0.008 33 1.5-7.0 0.002
(B)
Age at diagnosis 13.6 1.8-104.3 0.012 2.5 1.1-5.6 0.025
Disease stage 1.5 0.5-5.0 0.501 2.6 1.2-54 0.013
N-myc amplification 115 3.9-33.8 <0.001 21 1.04.2 0.043
(@) ' ' v
Age at diagnosis 12.1 1.6-94.4 0.017 19 0.8-4.5 0.137
Disease stage 1.2 0.3-4.1 0.796 1.7 "0.8-39 0.179
N-myc amplification 8.0 2.5-258 <0.001 1.3 0.6-2.7 0.563
CIMP 2.3 0.6-89 0.226 3.0 1.3-69 0.00%

HR, hazard ratio; CIl, confidence interval; OS, overalil survival; DFS, disease-free survival.

previously observed association between CIMP and pro-
moter methylation of tumor-suppressor RASSFI A
and BLU genes [10]. It is reported that an anti-apop-
totic gene, TMS1, a homeobox gene, HOX A9, a cell
cycle gene, CCND2, and candidate tumor-suppressor
genes, EMP3 and NRI12, are more frequently meth-
ylated in NBL cases with a poor prognosis [15-17).
However, the risk given by methylation of one of
these individual genes is much smaller than that given
by CIMP. This is in accordance with our
hypothesis that CIMP leads to consistent methyla-
tion of marker CGIs, such as exonic CGlIs of the
PCDHB gene family, and occasional methylation
of promoter CGIs of tumor-related genes. Silencing
of an individual gene accounts for a poor prognosis of
only a fraction of NBL cases with CIMP. It is known
that exonic CGls are more susceptible to methylation
than promoter CGIs [9], and it is expected that they
are more useful as a prognostic marker.

In summary, the faithful reproduction in German
NBL cases of the highly significant findings obtained
in Japanese cases demonstrated that CIMP is a strong
and universal prognostic marker for NBL cases, espe-
cially for those without N-myc amplification. The
close association between CIMP and DFS was
revealed for the first time in this study.
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