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Abstract

Accurate measurement of the distance separating two adjacent sheet structures, such as femoral cartilage and acetabular cartilage in the hip
joint is important in evaluation of osteoarthritis. A new method, insensitive to the influence of adjacent sheet structures. was developed to improve
the accuracy of hip cartilage thickness measurement. A theoretical simulation for investigating the influence of adjacent sheet structures on the
accuracy of cartilage thickness measurement in MR images was performed. The thickness is defined as the distance between zero-crossings of
the second directional derivatives along the sheet surface normal direction. The simulation measurement showed considerable underestimation in
thickness measurement occurred due to the influence of the adjacent sheet. A new method based on a model of the MR imaging process to eliminate
the influence of adjacent sheet structure was developed and tested using phantoms and two cadaveric human hip joint MR scans. The new method

reduced the influence of the adjacent sheet structure was more accurate than the conventional method for measuring hip cartilage thickness.

© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Accurate thickness measurement of sheet-like (or plate-
like) thin anatomical structures, such as articular cartilage,
has become increasingly important in clinical applications.
Osteoarthritis or posttranmatic articular injuries can result in
changes to the morphology of articular cartilage. Measuring and
monitoring changes of articular cartilage thickness can play a
critical role in the management of patients with disease or injury
to those tissues.

The majority of studies for measuring the articular carti-
lage thickness have focused on the knee joint [1-5], where
the cartilage surfaces do not fit tightly. Only a limited num-
ber of studies have addressed cartilage abnormalities in the hip
joint [6,7]. In the hip, both the femoral head and the acetabu-
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lum are covered with cartilage. The ball and socket constitution
of the hip joint, with strong capsule and ligaments, does not
permit discrimination of the articular cartilage of the femoral
head from the acetabulum. To allow separation of acetabular
and femoral cartilages in MR images, the original continuous
leg traction technique was used during MR imaging [8]. How-
ever, in many cases, the joint space between the femoral cartilage
and acetabular cartilage is narrow despite traction. In a related
study, in case two tubular structures are close to each other,
Krissian et al., analyzed the cause of its influence on center-
line detection of tubular structures [9]. Therefore, for the two
articular cartilages of the hip joint, it is imperative to investigate
whether one can impose a limitation on the accuracy of thick-
ness measurement, but no studies as of yet have assessed this
limitation.

In this paper, we develop a mathematical model for two adja-
cent sheet structures based on the (one-dimensional) 1D signal
intensity profile along the normal direction of two sheet struc-
tures separated by a small distance, and then perform numerical
simulation of MR imaging and postprocessing for thickness
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measurement. The thickness is defined as the distance between
the two sides of the edges, which are the zero-crossings points
of the second directional derivatives along the normal direction.
We compare the measured thickness of a single sheet struc-
ture with that of the sheet structure influenced by the adjacent
sheet structure and confirm that considerable underestimation
error in thickness measurement occurred due to the influence of
the adjacent sheet structure. To improve measurement accuracy,
we propose a new measurement technique based on match-
ing a2 modeled intensity profile with an actual intensity profile
observed in the MR data set. Using the phantoms and two
cadaveric human hip joints, we present results showing that the
influence of the adjacent sheet structure is eliminated, and the
improved technique is more accurate than the conventional zero-
crossings method in measuring the thickness of two adjacent
sheet structures.

2. Methods and materials
2.1. Theoretical simulation studies

2.1.1. Mathematical model definition

Let Sheet; and Sheet, represent the two adjacent sheet struc-
tures, which model the two cartilages in the hip joint. Fig. 1a
shows a 2D representation of two adjacent sheet structures on
the x—y plane. In this study, our investigations will focus on
assessing the influence of Sheet; on thickness measurement of
Sheet in two dimensions (on the x—v plane). In Fig. 1a, the
in-plane rotation angle € is defined as the angle formed by the x-
axis and the sheet normal direction 7y, where 7y = (cos @, sin &).
The 1D profile of the ideal density distributions of two adjacent
sheets, along the x-axis (normal direction of sheet surface), can
be expressed as

Dy, x< —1 —19/2
Dy, —-1—-1/2<x<-1/2
Pp(x; 71,70, 12) = § Do, —n/2<x<1/2 ., (1
Dy, n/2<x<15/24 D
Dy, xX>T/2+1
(a) ¥4

and two adjacent sheets perpendicular to the x-axis, can be mod-
eled as:

So(X: 11. 10, T2) = Pyu(x; 11. To. T2). (2)
where X =(x, ¥)7, 7o, 71 and 1, represent the distance between
two adjacent sheets, Sheet; thickness and Sheetl> thickness,
respectively. Dy, Dy and Dy denote the density distributions of
the background of both sides, two adjacent sheets and the space
between them, respectively (Fig. 1b). Two adjacent sheets with
direction 74 can be written as:

S(X;11, 1. T2.T6) = S(](Xll 71, To, T2), (3)
and
X = ReX. (4)

where Ry denotes a 2 x 2 matrix representing rotation 6 around
the z-axis.

2.1.2. MR imaging model generation

The spatial resolution of MR system can be characterized
by 2D point spread function (PSF). The MR imaging of two
adjacent sheets are given by

Tmoael(X; 71, 7o, 72, ) = S(Xi 11, To, T2, 7)) @ PSF(X; A, Ay),
(5

where Inodel(X: 71, 7o, T2) is the MR imaging of two adjacent
sheets, ® denotes the convolution operation. A, and Ay repre-
sent sampling intervals along the x- and y-axis, respectively. The
2D point spread function PSF (X; Ay, Ay) can be represented by

PSF(x; Ay, Ay) = PSF(x; A;)PSE(y; A,), (6)

The 1D point spread function PSF (x; A,) along the x-axis,
is defined as follows [10]:

] sin (Jr-a‘:)

(b)

x §in (J‘l’ N:AI )
P(x.2,%,.5:)
D, D,
— I(l
+ Ty ~ T
Sheet, Sheet,
D,
D, D,
S >
0 X

Fig. 1. The ideal model of two adjacent sheet structures. (a) 2D representation of two adjacent sheet structures. Sheet; and Sheet; represent the acetabular and
femoral cartilages, respectively. The normal direction of the sheet surface is expressed as Fs = (cos &, sin#), where ¢ is the in-plane rotation angle. (b) 1D profile of
ideal intensity distributions along the normal orientation of sheet surface for two adjacent sheets. 1, 17 and rg are Sheet, thickness, Sheet, thickness and distance
between them, respectively. 1), 1), and Dy denote the ideal intensity of the background of both sides, that of the two adjacent sheets and that of the region between

them. respectively.
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Fig. 2. 1D profile of ideal density values (input data) and MR intensity val-
ues (output data) along the normal direction, with the spatial resolution of
A=A, =0.625. Note that FWHM method underestimated the thickness of
Sheets.

where Ny is the number of samples in the frequency domain. Eq.
(7) is well-approximated by

] sin (3‘1'2!-)

PSF(x; 4,) = — ——£.
(x: Ax) N, L (8)
2.1.3. Distribution of MR intensiry at the normal line
The effects of MR imaging and limited in-plane resolution
can be elucidated by analyzing 1D profile of MR intensity values,
Imodel(X: T1, To, T2), along the normal direction 6. We assume
that a parameter s denotes the position on the straight line, given

by

X=s- ;9. (9)
Thus, by substituting Eq. (9) for X in Inede(X; T1, T0. T2)
Imodel(s: T1. To, T2) = Imodel(S - P43 T1, To, T2) (10)

is derived. Fig. 2 shows 1D profiles of the density values (input
data) Pp(x; 1. to. T2) and MR intensity values (output data)
Imodel(8: T1, To. T2) at the normal direction 8=0°,

Toexplain the influence of Sheet; onthe accuracy in thickness
measurement of Sheet», we exhibit a profile of full-width-half-
maximum (FWHM) [11-13] filter responses besides a profile
of the second derivative responses described in the follow-
ing Section 2.1.4. FWHM calculates a “half height point” on
the left and right sides of the initial determined mid-point of
profile. On each side, the minimum and maximum intensity
values are calculated, and the “half height point” is located
where the profile crosses the mid-point in intensity between
the minimum and maximum. FWHM estimation of the profile
width is defined as the distance between these half height points
(Fig. 2).

2.1.4. Procedure for thickness measurement by
zero-crossings method

To illustrate the potential measurement errors when applying
the zero-crossings method for two adjacent sheets, we measure
the thickness of Sheet, using the zero-crossings method. The
measured thickness is defined as the distance between the left
and right sides of image edges, which are the zero-crossings of
second directional derivatives combined with Gaussian blurring
along the normal orientation of the sheet structure. In actual
situations, Gaussian blurring is employed to reduce the effect
of noise. In this study. we employ a 2D Ilessian matrix-based
filter to enhance the boundaries of the sheet structure Ipoge1(X;
T1, To, T2). Assume that V2 lyede(X; T1, To, T2, o) is a Hessian
matrix of Imodei(X: 71, To. T2, o) blurred by isotropic Gaus-
sian function with a standard deviation o, which can be written
as:

V2 ot (X 11, To, T2, 0)

& a*
ﬁlmodel(X:ﬁ‘TO-Tz‘O') —axavlmod,l(X:r].ro, 7, 0)

R &
M’moddfxifl-ﬂa.fz,a) a_vilmodci(X:rIsrUarLo)

(11)

The second directional derivative along the normal direction
of the sheet structure with respect to the image Imodel1(X: T1. To,
T2, 0), is given by

1 : - ~To2 . —
Fnodel( X T1, 70, T2, 0, 7g) = Ty V- Inoaa(X; 11, To, T2, O)Fg.
(12)

Similarly, the directional first derivative along the normal
direction of the sheet is given by

Logel(Xs 71, T0, T2, 0, 78) = 7 Vimodel(X: 71, 70, 72, 0),  (13)

in which VInedel(X; 71, To, T2, o) is the gradient vector given
by

V Inodel( X 71, 70, T2, 0)

= (Iodel, (X: T15 T0, T2, 0), fyoger, (X571, T0, 72, 0)). (14)

Thickness measurement of the sheet structure can be
performed only through analyzing the 1D profile of the
second directional derivative Igodel(X i T1, T, T2, 0, Fg) along
the straight line. By substituting Eq. (9) for X in
L odel( X3 T1, T0, T2, 0, Fg), the second directional derivative
along the line can be written as:

Imodel (83 T15 70, T2, 0) = Inyoqel(S - 765 1. T, T2, 0, 7). (15)
Similarly, the first derivative along the line can be written as:
Tnodel(8: T15 0, 72, 0) = Ipyoqa(s - Fo; 71, T0, 2, 0, 7). (16)

Fig. 3a shows the 1D profiles of the second deriva-
tive responses and thickness determination procedure using
a zero-crossings method for the two adjacent sheet struc-
tures. We get zero-crossing points s=¢ and s=p on the
left and right sides of the edges for Sheetr, by solving
1} 4e1(8: 1, To, T2, @) = O (shown in Fig. 3a). Let Zero-crossing
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Fig. 3. Measured thickness of the sheet structures using zero-crossings
method. The in-plane resolution: A, = A, =0.625; Gaussian standard devia-
tion: g =(1/2) Ay, (Ay =0.625 mm). 1 = 1.5 mm, g =0.5mm, r; =r=2.0mm.
(a) Two adjacent sheets. Measured thickness of Sheety: /3 =|p—g|. In the
case of tg =0.5 mm, thickness of 7 = 2.0 mm was measured by approximately
1.76 mm (—12% error). Thickness of Sheet, was underestimated. (b) Single
sheet. Measured thickness: T'= |p — g|. Thickness of t=2.0 mm was measured
by approximately 2.05 mm (2.5% error).

points ¢ and p correspond to the minimum and maximum values
of Il’mde](s; T1, To, T2, 0) among those satisfying the condition
given by I 4.(s:71, To, T2, 0) = 0. The measured thickness,
I, of Sheet; is defined as the distance between p and g, as
follows:

h=|p-gql an

In Fig. 3a, with 1y =1.5mm, ro=0.5mm and t5=2.0 mm,
the true thickness t; = 2.0 mm is measured to be approximately
1.76 mm (—12% error). Fig. 3b shows the measured thickness
of a single sheet. In Fig. 3b, the true thickness t=2.0mm is
measured to be approximately 2.05 mm (2.5% error). Compar-
ing Fig. 3a with Fig. 3b. it can be seen that measured thickness
of Sheets is underestimated as comparison with that of a single
sheet.

2.2. Sample preparation and imaging

In the first experiment we imaged the four acrylic plate phan-
toms of sheet-like objects with known thickness. One was for a
single sheet, the other three were used for two adjacent sheets
with three different intervals of 74 =0.5, 1.0 and 1.5 mm, respec-
tively.

(1) Single acrylic plate: Composed of four acrylic plates of
8Umm x 80 mm with true thickness t=2.0, 1.0, 1.5, and
3.0mm, placed parallel to each other with an interval of
30mm (Fig. 4a).

(2) Two adjacent acrylic plates: each of the three phantoms
consists of four pairs of acrylic plates, placed parallel with
each other. Two adjacent acrylic plates thicknesses and the
interval between them are given as follows:

e Two adjacent sheets with g (interval between Sheet; and
Sheets) = 1 mm: 7> (Sheet, thickness) =2 mm, g = 1 mm
and 71; (Sheet; thickness)=1.5mm; 7>=1mm,
p=1lmm and 7;=1.5mm; 2=15mm, 19=1mm
and 7y =1.5mm; 13 =1.5mm, to=1mm and 7, =3 mm
(see from the top in Fig. 4b).

e Two adjacent sheets with tp=05mm: 12=2mm,
Tp=05mm and 7;=1.5mm; 7o=1mm, t5=0.5mm
and t;=15mm; 1=15mm, 13=05mm and
71=15mm; ry=15mm, t9=0.5mm and 7>=3mm
(not shown).

e Two adjacent sheets with tp=15mm: 71;=2mm,
p=1.5mm and 77=1.5mm; r,=1.0mm, tg=1.5mm
and T1=15mm; t=15mm, 71p=15mm and
71=15mm; r;=1.5mm, tp=05mm and ;=3 mm
(not shown).

In the second experiment we imaged the two normal fresh-
frozen cadaver hip joints (Fig. 5). After making bony defects
artificially in the pelvis and the femur for landmarks, MR imag-
ing was conducted in coronal direction with reference to the
landmarks. After MR imaging, in order to obtain the anatomical
thickness (See [6,14] for the detailed procedure of anatomical
measurement), the hip joint was sectioned into halves, assuming
an exact correlation to the imaging plane from the position of
the landmarks.

MR imaging was performed with fat-suppressed 3D fast
spoiled gradient-echo (SPGR) sequence on a 1.5T MR sys-
tem (Horizon, General Electric). A unilateral surface coil
(TORSO, General Electric, Milwaukee, WI) was used. Four
phantoms were scanned at two different in-plane rotation angles
of #=0%and 30°. Each phantom was imaged in the sagit-
tal plane; repetition time (TR)/echo time (TE)=12.8/5.6 ms;
flip angle=5° filed of view (FOV)=160mm x 160 mm;
matrix = 256 x 256; section thickness = 1.5 mm;: number of sig-
nals acquired = 2; acquisition time =6 min 34 s. Two cadaveric
hips were imaged in the coronal plane; TR/TE =24.4/5.7 ms;
flipangle = 20°; FOV = 160 mm x 160 mm; matrix = 256 x 256;
section thickness=1.5mm; number of signals acquired=2;
acquisition time = 10 min 17s.
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Fig. 4. MR images of acrylic plate phantoms. The horizontal and vertical axes of the images correspond to the y- and x-axis, respectively. (a) Single acrylic plate at
an in-plane rotation angle of & = 0°. Thickness of Sheet; is 1.5 mm (not shown), and thickness of Sheet, is shown.

2.3. Actual thickness determination by zero-crossings
method

Zero-crossings method was evaluated by using phantoms and
cadaveric human hip joints. The postprocessing procedures for
thickness measurement are given below. See Fig. 6 for a com-
plete overview of thickness measurement.

2.3.1. Interpolation

In order to improve the in-plane resolution, we apply interpo-
lation along the x- and y-directions. There are various alternative
interpolation methods, but only sinc interpolation [15,16] guar-
antees the recovery of original information. In this experiment,
sinc interpolation is used along the x- and y-directions to make
the image matrix size double in the frequency domain. The sam-

pling interval in the interpolated data is 0.3125 (= A=(1/2)Ay,)
mm in the x-, and y-directions.

2.3.2. Extraction of sheet structure

In the actual images, it is necessary to extract the initial sheet
regions before thickness determination. Using an automated
segmentation technique [17,18], the approximated segmented
regions of the sheets are extracted.

2.3.3. Thickness determination

For the extracted sheet structure, the boundaries of sheet
structure surface are enhanced using Hessian matrix filter. This
image filtering is based on the generally acknowledged theory
that an edge corresponded to an abrupt change in image func-
tion, and that the first derivative should have an extreme and the

(b

Fig. 5. Coronal MR images of a cadaver hip joint. (a) Original image. The femoral cartilage (arrowhead) is close to the acetabular cartilage (arrow). (b) Circle fitting
method was employed to find the center (Cy, Cy) of the femoral head, and solid lines were drawn from this center.
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Fig. 6. Flow chart illustrating step for measuring the thickness of sheet structure using zero-crossings method.

second derivate should be equal to zero at the position of the
edge.

In the experiments using the acrylic plate phantoms, the 1D
profiles of the first directional derivative {'(s) and the second
directional derivative I”(s) are obtained along the normal direc-
tion of sheet structure (acrylic plate). In the experiments using
the hip joints (Fig. 5a), a circle fitting method is employed to
find the center (C,, Cy) using the boundaries of the femoral head
(Fig. 5b). The 1D profiles of /'(s) and {”(s) are obtained along
the radial direction originating from the center. Similar to Sec-
tion 2.1.4, we get zero-crossing points s =¢ and s = p on the left

and right sides of the edges for the sheet structure by solving
I"(5)=0. Let Zero-crossing points ¢ and p correspond to the
minimum and maximum values of /'(s) among those satisfying
the condition given by /”(s) = 0. The measured thickness of sheet
structure is defined as the distance between p and g.

2.4. Improvement of measurement accuracy
As described in Section 2.1.4, zero-crossings method can

yield large measurement errors for two adjacent sheet structures,
To correct the measurement errors, we propose a new measure-
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ment method based on a model of the scanning process. We
model the scanning process for the two adjacent sheets and use
this model to predict the shape of gray-level profiles along the
sheet normal direction given in Eq. (10). The difference between
the predicted profile and the actual profile observed in the MR
data is minimized by refining the model parameters. The set
of parameters that minimizes the difference between the model
and the actual data yields the thickness estimation of the sheet
structure.

We assume that Dy, Do and Dy, are constant, while 1y, t¢ and
t7 are variable at the different locations in the hip joint. We use
zero-crossings method for estimating 7y, 7o and 1. Because L,
Dy and Dy, are constant in the entire image, if we have found one
location where measured values of 1y, T, and 1 are regarded
as a good approximation of true values 1, tg and 12, Dy, Do
and Dy at this location can be estimated accurately using this
accurately measured values of 11, 1o, and 2. In our case, when
measured values of 1, 7g and to are 1.35 mm or above, these
measured values can be regarded as a good approximation of
their true values (this will be confirmed later in Section 3.1).
If we might find several locations that satisfied the condition
mentioned above, all Dy, Dy and Dy, estimated at these locations
are averaged, respectively, and these average values are regarded
as the estimated values of Dy, Dy and Dy. Furthermore, 11, 19
and 1 at all locations are estimated accurately using D, D¢ and
Dy, obtained above, since Dy, Dy and Dy are constant in the entire
image. Briefly, the estimation procedure involves the following
two steps: (1) the density values of Dy, Dy and Dy, are estimated
with the accurately measured values of 7, 1o and 17; and 2) 71,
Tp and 2 are estimated using Dy, Dy and Dy, estimated in the
first step. See Fig. 7 for a complete overview for measuring the
thickness using the improved method.

2.4.1. Estimation of Dy, Dg and Dy,

To estimate the density values of Dy, Dy and Dy, the gray-
level profile observed in the actual data needs to be fit to the
modeled profile. Using the model of the MR imaging process,
we can obtain the 1D profile of the predicted gray-level /ioge1(s;
71, Tp, T2) (given in Eq. (10)) from /mogel(X: 1, To, T2) along
the sheet normal direction 7. Similarly, 1D profile of the actual
gray-level /() is derived from MR image /(X) along 7y. The
reconstruction of 1D profile I(s) is performed at the subpixel
resolution by using a bilinear interpolation.

Let 77, Ty and 7> denote measured values of true values 7y,
Tp and 12, respectively, as estimated by zero-crossings method.
Inour case, for 11 > 1.35mm, 7y > 1.35 mmand 1> > 1.35 mm,
these measured values are regarded as a good approximation of
71, To and 72. Let the observed profile be sampled at N discrete
points in the actual image. With Ty, Ty and 7> satisfied the con-
dition 77 = 1.35mm, Ty > 1.35mm and 7> > 1.35mm, Dy, Dy
and Dy, are estimated by finding the values of Dy, Dy and Dy,
minimizing

E(D[ DO. Db)

N
=3 U(s) = Imodet(si: Th, To. To. Dy, Do, Dy)2. (18)

i=1

START

>
>

v
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zero-crossings method

!
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1, z1.35mm
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Estimate /), ., and ), with] . T

“

and 7,

by using one-byv-one search method

h 4

and

, and /), by using

Yield the estimation of 1 . 7,
r, with ), D),

one-by-one search method

Fig. 7. Flow chart illustrating step for measuring the thickness of sheet structure
using the improved method (one-by-one search method).

where s; is the ith sample along the sheet normal direction
in the actual image. An optimization technique based on the
Levenberg-Marquardt algorithm is used to solve this non-linear
least square problem. Initial estimations of model parameters
are required to start the optimization process. The initial values
for Dy, Dy and Dy, are determined from the gray-level of MR
image. We assume that Dy, Dy and Dy, are not locally variable
and thus those are obtained as averages of all the results from
the sequences of the gray-level profiles.

2.4.2. Estimation of t;, g and 13
Using estimated Dy, Dg and Dy, in the first step, 11, 7o and 12
are searched minimizing

N

E(zi, To, ) = Z{I(Si) — Imode1(si; T1, To, T2, Dy, Do, Dy))>.
f=]

(19)

One drawback for Levenberg-Marquardt algorithm is the fact
that the initial values of the model parameters are required to start
the optimization process, and using the poor initial values can
giverise to large estimation biases. As shown in Fig. 3a, the zero-
crossings method exhibited considerable estimation biases for
the two adjacent structures. To this end, the one-by-one search
(exhaustive combination search) method is used for minimize
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Eq.(19). Inthis study, t; and 1> are discretized from 0.5A t0 30A
with 0.02A fixed interval (A =0.3125 mm), respectively, and ¢
is discretized from 0.2A to 10A with 0.02A fixed interval. For
all the combinations of discretized model parameters ty, 75 and
T2, using the estimated Dy, Dg and Dy, in the first step, the cost
function E(ty, 7o, 72) given in Eq. (19) is calculated. Among
all the combinations of the model parameters 71, 7y and 1,
one combination of discretized model parameters ty, tp and 1>
corresponding to minimum value of cost function E(ty, ¢, 72)
is regarded as the estimations of 7y, 79 and 72

3. Experimental results
3.1. Measurement accuracy of zero-crossings method

3.1.1. Simulation and phantom measurements

Theoretical simulations confirm and explain that Sheet,
affects the accuracy in the measured thickness of Sheet;. To
validate the theoretical simulations, we compare the simulated
thickness with the average of actually measured thickness deter-
mined from MR images of acrylic phantoms. We also compare
the measured thickness of Sheetr with that of a single sheet,
assumning that the true thickness t of a single sheet is the same
as the true thickness 7, of Sheet,. In the simulations, we mainly
used the following parameters if not specified:

e True thickness of the sheet structures
* Two adjacent sheets: t; (Sheet;)=15mm, 1,
(Sheet;) =0.5-3.0 mm.
* Single sheel: t=1>=0.5-3.0 mm.
e Interval between two adjacent sheets: 7o =0.25-2.0 mm.
e Density values
* Two adjacent sheets: Dy=100, Dy=10, Dy,=0.*Single
sheet: Ds (density value of sheet object)=100, D, (den-
sity value of left-side background) = D_ (density value of
right-side background) =0.
¢ MR images resolution (square pixel): A= Ay(=Ay)=
(0.625 mm.
o Guassian standard deviation: o = (1/2) Ay,.

Fig. 8 shows the results of simulation and phantom mea-
surements. When the measured thickness values of a single
sheet structure were 1.3 mm or above, these measured values
could be regarded as a good approximation of their true thick-
ness. Compared with the measured thickness of a single sheet
structure, thickness of sheet structure influenced by adjacent
sheet structure was considerably underestimated (Fig. 8a). The
degree of underestimation of thickness was determined with
the distance between the two adjacent sheet structures being
less than 1.3mm. The error between the simulated thickness
and the average of actually measured thickness with phantoms
of two adjacent sheets was smaller than 0.1 mm, and S.D. of
actually measured thickness was within 0.1 mm (Fig. 8b). We
also compared simulated thickness with the average of actu-
ally measured thickness with phantom of a single sheet. A
good agreement between the simulation and phantom measure-
ments was also observed (not shown). The numerical simulation
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Fig. 8. Numerical simulation and phantom measurements with zero-crossings
method. Gaussian standard deviation o =(1/2)A,y (A =0.625 mm) and MR
images of phantoms at # = 0° were used. (a) Relationship between the measured
thickness and the true thickness with sinmlation measurements. (b) Relationship
between the measured thickness and the true interval of the two sheets. The mea-
sured thickness /5 (average + S.D.; n=50) of phantoms also was shown. The
error between the simulated thickness and the average of the actually measured
thickness with phantoms was lower than 0.1 mm, and S.D. of the actually mea-
sured thickness was within 0.1 mm. The simulation was validated by phantom
measurement.

was validated by experiments using actual MR images of
phantoms.

Fig. 9 shows the relationship between the true interval 1
and the measured interval 7j with a zero-crossings method.
In Fig. 9, in the case of r;=1.5mm and tp=1.0mm, the
interval between two sheets was measured. A good agreement
between the simulated and the actually measured intervals was
shown in Fig. 9. The results of Fig. 9 show that for mea-
sured interval value Ty > 1.3 mm, these measured values were
approximately equivalent to the true interval t. Similarly, using
7y =1.5mmand 7; = 1.5, 2.0, and 3.0 mm, comparisons between
79 and 1 were performed. The same results as Fig. 9 were
observed.
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Fig. 9. Relation between the true interval t and the measured interval 1} (aver-
age = 5.D.; n =50) using a zero-crossings method. Guassian standard deviation
0=(1/2)Axy (Axy=0.625mm) and MR images of a phantom at #=0" were
used. Graph shows that for Ty > 1.3 mm, these measured values are a good
approximation of their true interval.

3.1.2. Measurements of cartilage thickness and joint space
width

To specify how cartilage thickness and joint space width
can be accurately measured by using zero-crossings method,
we selected 10 positions in the anatomical section and in MR
images, ranging from 135° to 150° (Fig. 5b) and performed
the comparison of anatomic measurement and zero-crossings
measurement (Table 1). The values of the examined 10 posi-
tions averaged 7o =1.35 + 0.04 mm at the anatomical sections
and 7> =1.36 £ 0.08 mm in an MR image for femoral cartilage
thickness, 73 =2.63 £0.09 mm at the anatormical sections and
T1=256+0.12mm in an MR image for acetabular cartilage
thickness, and tp=1.32+0.03mm at the anatomical sections
and 75 =1.36 £+ 0.06 mm in an MR image for joint space width,
respectively. From the experimental results we concluded that
for the measured values of 1.35 mm or above, these values could
be regarded as a good approximation of their true values. This is
consistent with the results predicted by the numerical simulation,

Table 1
Comparison of anatomic measurement and zero-crossings measurement

3.2. Improvement of measurement accuracy

3.2.1. Phantom measurement

Fig. 10 shows the average measurement error and stan-
dard error for the zero-crossings, the improved methods at
#=0" (Fig. 10a) and 30° (Fig. 10b). As shown in Fig. 10a
and b, in the case of ry=0.5mm, the measured thickness
of Sheet; was influenced by Sheet; when using a zero-
crossings method. The improved method (one-by-one search
method) gave measurements with less estimation bias than zero-
Crossings.

3.2.2. Cartilage thickness measurement

Linear regression and correlation analyses are carried out
to examine the relationships between measurements obtained
with our improved method and anatomical measurements, and
between measurements obtained with zero-crossings method
and anatomical measurements. The slope and the intercept of
regression line are analyzed to determine the degree to which
the two methods produced identical results. Regression equa-
tions are compared with the equation of the line of identity
using f-statistics for the slope and the intercept. Differences in
method measurement accuracy are assessed using paired 7-tests.
p <0.05 was considered as the significant level for all statistical
tests.

Fig. 11 indicates the determination procedures of the
improved method for measurement of femoral cartilage thick-
ness. The thickness of femoral cartilage was measured as
2.10mm anatomically, 1.77 mm by zero-crossings method and
2.03 mm by the improved method. For accuracy determination,
anatornical measurement of femoral cartilage thickness was set
as reference. The improved method exhibited smaller estimation
bias than zero-crossings method.

As shown in Fig. 12a, comparison of femoral cartilage thick-
ness estimated by the zero-crossings method with the anatomical
thickness produced a regression relationship (y=0.91x — 0.15)
with both the slop and the intercept differing significantly
from one and zero, respectively (p<0.01). The improved
method shows a regression relationship (y=1.02x —0.03)

Positions Anatomic measurement (mm) Zero-crossings measurement (mm)
Femoral cartilage Joint space Acetabular cartilage Femoral cartilage Joint space Acetabular cartilage
thickness width thickness thickness width thickness

1 1.38 1.30 2.63 1.29 1.43 257

2 1.32 1.27 2.81 1.38 1.35 281

3 1.30 1.32 275 L7 1.45 277

B 1.36 1.31 2.56 1.41 133 245

3 1.29 1.31 2.54 1.39 1.39 2.48

6 1.36 1.32 2.59 1.33 1.36 2.52

7 1.31 1.36 2.62 1.41 1.35 253

8 1.36 1.38 2.57 1.45 1.34 2.50

9 1.37 1.35 2.65 1.42 1.30 251

10 1.42 1.29 2.58 1.38 1.26 249

Mean 1.35 1.32 2.63 1.36 1.36 2.56
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Fig. 10. Comparison of the average of measurement error (measured thickness-
true thickness) obtained with the improved method to the average measurement
error obtained with the zero-crossings method. Graph shows the average mea-
surement error and standard error (#=50). (a) In-plane rotation #=0°. (b)
In-plane rotation # = 30°.
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Fig. 11. Modeled gray-level profile and actual gray-level profile along the 100°
radial direction (see Fig. 5b) after applying an optimization technique (one-
by-one search algorithm). Femoral cartilage thickness, joint space width and
acetabular cartilage thickness were estimated to be 2.10, 0.53 and 2.02 mm with
the anatomical method, to be 1.77, 1.03 and 1.72 with the zero-crossings method,
and to be 2.03, 0.41 and 2.15 mm with the improved method (one-by-one search
algorithm).
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Fig. 12. Comparison of three methods for estimating the femoral cartilage
thickness at the selected 50 positions with joint space width rg < 1.25 mm. (a)
Cartilage thickness measured by zero-crossings method plotted against cartilage
thickness measured by anatomic method at 50 positions. The line of best fit con-
structed at regression analysis and the corresponding regression equation also
are shown. Linear regression analysis shows good agreement between cartilage
thickness measured by zero-crossings method and that measured by anatomic
method (r; = 0.90, p<0.01). However, The slope (0.91) and intercept (—0.15)
of the regression line was significantly different from one and zero, respectively
(p<0.01). The zero-crossings method underestimated the cartilage thickness in
comparison to the anatomic measurement. (b) Cartilage thickness measured by
the improved method plotted against cartilage thickness measured by anatomic
method at 50 positions. The line of best fit constructed at regression analysis and
the corresponding regression equation also are shown. Linear regression analy-
sis yielded r? = 0.94, the slope and intercept of the regression line being 1.02 and
—0.03, respectively. This shows that there is not only a strong linear relationship
between the two measurements, but also very good agreement between the val-
ues obtained with both methods. A paired i-test shows the differences between
the improved measurement from MR images and anatomic measurement is not
statistically significant (p>0.1).

closely approximating the line of identity with neither the
slope nor the intercept (Fig. 12b). The anatomical measure-
ment of cartilage thickness was used as the reference with
which those obtained by the zero-crossings and improved mea-
surements were compared. The results indicated that femoral
cartilage thickness estimated using the improved method was
significantly more accurate than that estimated by the zero-
crossings method (p<0.01). Fig. 13a shows the difference
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Fig. 13. Difference in the measured thickness between the methods. (a) Differ-
ence m the measured thickness between zero-crossings and anatomical methods.
(b) Difference in the measured thickness between the improved and anatomical
methods. The thickness of the femoral cartilage was estimated at 50 different
positions along the radial direction originating from the center of the femoral
head. Graph shows that the improved method gave the results similar to those pre-
sented from anatomical section, while the zero-crossings gave underestimation
relative to the anatomical thickness.

in the measured thickness between the zero-crossings and
anatomical methods. Fig. 13b shows the difference in the mea-
sured thickness between the improved and anatomical methods.
Anatomical measurement of cartilage thickness was used as
reference. The zero-crossings method gave considerable mea-
surement bias (underestimating the cartilage thickness), while
the improved method gave measurements with less estimation
bias.

4. Discussion

As for two adjacent sheet structures (Sheet; and Sheets),
such as femoral cartilage and acetabular cartilage in the hip
joint, we performed the simulation measurement, phantom mea-
surement and articular cartilage thickness measurement. The
experimental results showed considerable underestimation in
thickness measurement occurred due to the influence of the
adjacent sheet structure. In order to remove the influence of
the adjacent sheet and calibrate measurement bias, an improved
measurement method was presented. The main findings of our
work are as follows:

4.1. Observation of profiles by FWHM and zero-crossings
methods

In order to clarify the cause of the influence of the adja-
cent sheet (Sheet;) on the accuracy of thickness measurement
of Sheet>, we showed the profiles of thickness determination
procedures using FWHM (see Fig. 2) and zero-crossings (see
Fig. 3a) methods. The profiles of the two determination pro-
cedures distinctly exhibited the influence of the adjacent sheet
on the accnracy of thickness measnrement Through observing
the profiles produced by FWHM and zero-crossings methods,
we can see that the adjacent sheet resulted in the underestima-
tion of thickness. In this study, we further used zero-crossings
method to analyze the measurement accuracy of the sheet struc-
ture thickness.

4.2. Effect of Gaussian standard deviation o

In the actual image, Gaussian blurring is employed to remove
the noise. The degree of smoothing is determined by the Gaus-
sian standard deviation o. Better effectiveness of Gaussian
smoothing require larger the standard derivation of Gaussian. On
the other hand, we should notice that larger standard derivation
of Gaussian give rise to greater underestimation of thickness.
In this study, we performed the thickness measurement with
0=(1/2)Axy, 0 = (v/2/2)Asy (not shown) and o= A,y (not
shown). When 1o > 3—40, the accuracy of thickness measure-
ment was not affected by the adjacent sheet. This means, the
measured thickness of Sheet> was approximately the same as
that of a single sheet.

4.3. The validity of the simulation

The results of phantom measurements and simulations
showed that the bias between the actually measured thick-
ness and the simulated thickness was nearly within 0.1 mm
(see Fig. 8b). The validity of theoretical simulations was con-
firmed. Thus, we can use mathematical model of two adjacent
sheets and MR imaging parameters to predict the measurement
accuracy. Also, thickness measurement can be performed only
through analyzing 1D profile of the second derivative responses
along the normal direction of sheet surface, so the computa-
tion of the simulations is simplified and its cost is drastically
reduced.

4.4. Normal direction of the cartilage surface

In the present study, two healthy cadaveric specimens of
human hip were used for determining the femoral cartilage
thickness. We assume that the shape of the femoral head
approximates the exact sphere. Therefore, we employed a cir-
cle fitting method to find the center using the boundaries of
the femoral cartilage. The radial directions from the detected
center can be regarded as the normal direction of the cartilage
surface. However, as in the case of diseased hip joint, because
the shape of the femoral head is not perfectly spherical, this
method cannot be used. In such cases, the normal direction
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might be estimated using the eigenvectors of the Hessian matrix
[19].

4.5, An improved measurement method

Toimprove the accuracy of thickness measurement, we devel-
oped a new technique based on a model of the MR imaging
process for two adjacent sheet structures separated by a small
distance. Thickness estimation problem is formulated as a least
square fittfing of an actual gray-level profile ohserved in the MR
data set to a modeled gray-level profile. The difference between
the modeled profile and the actual gray-level profile observed
in the MR data is minimized by refining the model parame-
ters. We employed an exhaustive one-by-one search algorithm
to minimize this difference, not using the Levenberg-Marquardt
algorithm. One drawback for Levenberg-Marquardt algorithm
is the fact that the initial values of the model parameters are
required to start the optimization process, and using the poor
initial values can give rise to large estimation biases. The zero-
crossings method exhibited considerable estimation biases for
the two adjacent sheet structures (see Fig. 8). An atternpt was
made to obtain the initial values of 7y, 7p, and t2 using zero-
crossings method. Levenberg-Marquardt algorithm yielded the
poor estimations of ty, 7o, and 7> when applying the zero-
crossings method to obtain the initial values. Thus, one-by-one
search method was used to minimize the difference between the
modeled profile and the actual gray-level profile observed in the
MR data.

Our new improved technique is not only available for two
adjacent sheets but also available for a single sheet. There are
inherent limitations on the accuracy in thickness measurement of
a single sheet due to finite spatial resolution of imaging scanners
and blurring involved in edge detections [20,21]. For two adja-
cent sheets, there is a limitation of the influence of the adjacent
sheet, as well as those mentioned above. Our improved method
can overcome these limitations. Using zero-crossings method,
for the sheet structure affected by the adjacent sheet, the mea-
sured thickness value is an underestimation relative to its true
thickness. whereas for the unaffected sheet with a small thick-
ness, its measured value is an overestimation relative to its true
thickness (see Fig. 8). The improved method gave the accurate
measurements in both cases.

In conclusion, in this paper, we confirmed that for two adja-
cent sheet structures, considerable underestimation in thickness
measurement occurred due to the influence of the adjacent sheet
structure. A new technique based on a model of the MR imaging
process was proposed to improve the measurement accuracy.
In our present work, in the case of isotropic resolution, mea-
surement accuracy analysis and improvement of accuracy were
performed. In generally, the resolution of medical 3D data
along z-direction (the direction perpendicular to the slice plane)
is lower than within slices, this means that the voxel of 3D
image is anisotropic. Therefore, in the future work, the effect
of anisotropic voxel on measurement accuracy requires inves-
tigation, and then the calibration of measurement bias would
be needed to perform. Finally, our work will focus on clinical
validation using a large set of data for applications.

5. Summary

In the hip joint, in which the femoral and acetabular car-
tilages are adjacent to each other. To investigate whether the
accuracy in thickness measurement of femoral cartilage is influ-
enced by acetabular cartilage, we developed a mathematical
model for two adjacent sheet structures, which simulated the
femoral and acetabular cartilages in the hip joint. MR imag-
ing process and post\processing for thickness measurement
are also modeled and simulated Thickness is defined as the
distance between the two sides of the edges, which are the
zero-crossing points of the second derivatives combined with
Gaussian blurring along the normal direction. The result of sim-
ulation measurements shows that considerable underestimation
in thickness measurement occurred due to the influence of the
adjacent sheet structure. In order to remove the influence of the
adjacent sheet and calibrate measurement bias, we propose a new
measurement method based on a model of the MR imaging pro-
cess. Using this model, we can predict the shape of the gray-level
profile along the normal direction of the sheet surface. Thick-
ness estimation problem is formulated as a least square fitting
of an actual gray-level profile observed in the MR data set to a
predicted gray-level profile. Using a one-by-one search (exhaus-
tive combination search) technique, the model parameters are
adjusted to minimize the differences between the predicted and
the actual gray-level profiles observed in the MR data. The set
of parameters that minimizes the differences yields the thick-
ness estimation of the sheet structure. In the experiments, we
imaged the acrylic plate phantoms and two normal cadaver
hip joints. All MR images were acquired with a resolution of
0.625mm x 0.625 mm x 1.5mm. In the first experiment, we
tested the accuracy of the conventional zero-crossings method
using phantoms. The result of phantom measurements shows
that the zero-crossings method underestimated the thickness of
two adjacent sheet structures. The error between simulation mea-
surement and phantom measurement was smaller than 0.1 mm,
and S.D. of actually measured thickness was within 0.1 mm. A
good agreement between the simulation and phantom measure-
ments was observed. The numerical simulation was validated by
experiments using actual MR images of phantoms. In the second
experiment, we performed the comparison of the zero-crossings
method and the new improved method. In the experiment using
phantoms, the results show that our new improved method
was more accurate than zero-crossings method. In the experi-
ment using two cadaveric human hip joints, the results obtained
by the new improved method for cartilage thickness mea-
surement were significantly different from those generated by
zero-crossings method (p < 0.01) and were more accurate when
compared using paired r-tests. In conclusion, in this paper,
we confirmed that for two adjacent sheet structures, consider-
able underestimation in thickness measurement occurred due to
the influence of the adjacent sheet structure. Using phantoms
and two normal cadaver hip joints, we present results show-
ing that the new improved method removed the influence of the
adjacent sheet and was more accurate than the conventional zero-
crossings method in estimating thickness of two adjacent sheet
structures.
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