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Weeks after fracture

Fig. 8. In cases | through 6. the changes of the ET angle showed an exponential pattern. The correlation coefficients
obtained by the regression equation for the ET angle and timme were very high in these cases.

with considerable accuracy. sensitivity and reproducibil-
ity. : .
In patients with radiographically normal healing.
the bending angle decreased exponentially over time.
However, in patients with nonunion. the angle remained
the same over time. According to the results obtained
with previous methods such as the sirain gauge method
and the invasive method of Jernberger (1970), strain or

deformation caused by loading at the healing site has.

been reported to diminish exponentially over time in
patients with normal healing. Among these previous
studies, Bourgois and Bumy (1972) evaluated fracture
healing in hundreds of patients treated with an extemnal
fixator that was instrumented with a strain gauge. They
not only accumulated considerable clinical data on the
strain readings over time, but also theoretically proved
by mathematical simulation that the change of the strain
over time during normal healing could be expressed as a
typical hyperbolic curve. In addition to this, they proved
that the time course of the change in strain could also be
a hyperbolic curve by developing fracture simulation
models with stabilization by intramedullary nailing, plat-
ing and external fixation. As a result, their clinical data
were compatible with those for the theoretical model of
external fixation. They classified the pattern of tracture
healing into seven categories depending on the differ-
ence in the healing process. Among them, normal heal-
ing was defined as healing in which the strain reading vs.
time curve reaches a plateau at 60 to 90 d after tracture.
Slow healing was defined as healing in which the decline

of strain. was very slow compared with the normal pat-
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tern but the healing process was progressive over time.
Nonunion was defined as cessation of the progress of
healing. In two patients treated with a cast in our study,
the ET angle decreased rapidly until 10 weeks after
fracture to a level twice that on the intact side, and then
it decreased slowly. The exponential regression curve for
the echo tracking angle vs. time showed a very strong
correlation (case 1, r = —0.975). Therefore, it can be
concluded that the echo tracking method could be used to
evaluate normal healing as proposed by Burny et al.
(1984). As shown in Fig. 5, the progress of healing in
patients treated with intramedullary nailing and bone
grafting could be assessed by using the ET method. The
ET angle vs. time relation in these cases was also ex-
pressed by exponential curves. However, the ET angle
curve of patient 7 (Fig. 6b) did not show any significant
decrease of the angle and there was no correlation be-
tween the ET angle and time. From this, the healing
process was diagnosed as nonunion. The ET angle of
patient 8, treated with plating, showed an extremely slow
decrease over time from 9 weeks to 33 weeks, but
reduction of the angle was statistically significant until
45 weeks, so the healing process was concluded to be
delayed. . :

Fracture site stiffness was adopted as a parameter
for evaluation that was thought to be correlated with
strength of bone healing. In various earlier studies of
fracture site mechanical properties, stiffness was mea-
sured to estimate the strength of the fracture site. How-
ever, stiffness is not necessarily correlated with strength.
Chehade el al. (1997) investigated this relationship in 24
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sheep. The tibia was stabilized with an external fixator
and then osteotomy was done. Next, the tibiae were
excised at 6, 8 and 10 wk after osteotomy and a 4-point
bending test was done. As a result, in the initial stage of
healing. stiffness showed a strong correlation with
strength (r = 0.89), but there was no correlation between
them in the remodeling stage. However, as Chehade et al.
(1997) stated, because the stiffness of the fracture site is
strongly correlated with the strength until remodeling is
initiated, it is clinically significant to monitor fracture
site stiffness as a substitute for strength to determine the
appropriate level of weight bearing so that patients can
avoid refracture because of overloading the fracture site
during postoperative management. In the remodeling
stage, we need to pay special attention to the relationship
between stiffness and strength, even if stiffness reached
the same value as the intact side.

Fracture healing was evaluated quantitatively by the
echo tracking method in patients treated conservatively
as well as by internal fixation. All previous methods of
assessment could only be applied to patients treated with
an external fixator that required the insertion of wires or
screw pins, and none of the methods could achieve
evaluation in a totally noninvasive manner. The potential
problem with evaluating patients treated with internal
osteosynthetic devices such as intramedullary nails or
plates is that the stiffness at the fracture site is the sum of
stiffness for both the healing fracture and the implant.
The stiffness of the implant is very high compared with
that of the healing fracture because it is made of a metal
such as stainless steel or titanium-aluminum-vanadium
alloy. Therefore, the combined stiffness at the fracture
site is usually very high compared with that in patients
receiving conservative treatment by casting. In such pa-
tients with internal osteosynthetic devices, comparison of
stiffness with the intact side does not have any meaning
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" for evaluation of fracture healing. Therefore, we have to

be careful with interpretation of the changes of stiffness
over time in such cases. How the implanted material and
the configuration of stabilization affect fracture site stiff-
ness should be investigated in the future so that we can
assess fracture healing more precisely in patients with
internal fixation.

In conclusion, it was demonstrated that the echo
tracking method could be clinically applicable to evalu-
ate fracture healing as a versatile, quantitative and non-
invasive technique. Further development of this method
should be performed so that it can be applied to other
anatomical sites by improving accuracy and precision.
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A Clinical Data logging system of Direct fracture reduction.
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Abstract: Clinical data quantification of a fracture reduction has become important as the development of new fracture reduction
technology such as navigation and robot assisted fracture reduction. A reduction force and a reduction path are the key points in
considering the control and safety of these new reduction methods. We have developed a clinical data logging system(CDLS) of
direct fracture reduction, which reduces using ring-frame connected bone fragment directly. The CDLS synchronously records the
reduction force, the reduction path and two video signals. One records the images from C-arm and the other records whole surgery
process. This paper introduces the structure of CLDS and the resultants of application to fracture model.

Key words: Clinical data, Fracture reduction, Reduction force, Reduction path.
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Abstract

This paper presents the design and implementation of a
parallel nwo-dimensional/three-dimensional (2-D/3-D) im-
age registration method for computer-assisted surgery. Our
method exploits data and speculative parallelism, aiming
at making computation time short enough to carry out reg-
istration tasks during surgery. Qur experiments show that
exploiting both parallelisms reduces computation time on a
cluster of 64 PCs from a few tens of minutes to less than a
- few tens of seconds.

1. Introduction

Image registration is a technique for finding point corre-
spondences between two different images taken usually at
different times, from different viewing points, and/or in dif-
ferent modalities. This technique plays an increasingly im-
portant role in surgery. For example, registration of preoper-
ative images o intraoperative images is essential to perform
. image-guided and robot-assisted surgery [6], which mini-
mizes surgical complications for better surgical outcomes.
~ For this purpose, many researchers have tackled the
problem of 2-D/3-D registration [1], which estimates the
location and orientation of a 3-D volume with respect to
the patient coordinate system using one or more 2-D pro-
jected images. The reason why aligning a 3-D volume to
2-D images is due to the limitations of current 3-D imaging
systems, such as computed tomography (CT) scans, which
have more spatial information but require more acquisition
time and radiation exposure, as compared with 2-D imag-
ing systems. Due to these limitations, the intraoperative
data is usually 2-D X-ray fluoroscopy or ultrasound images,
whereas the preoperative data is 3-D CT volumes, motivat-
ing us to deal with 2-D/3-D registration.

One key challenge for 2-D/3-D registration is to develop
a fast, accurate, and robust algorithm. Prior algorithms can
be classified into two groups: feature- and intensity-based
approaches. The intensity-based approach [1,5,6] has been
shown to provide more accurate and robust results than the

feature-based approach [3,7]. The intensity-based approach
compares the intensity values between the real projected im-
age and the digitally reconstructed radiograph (DRR) gen-
erated from the volume. It requires a large amount of com-
putation to iteratively produce DRRs until a best match be-
tween the projected image and the DRR is found. There-
fore, acceleration strategies are required to minimize surgi-
cal time. )

In this paper, we present the design and implementation
of a parallel 2-D/3-D registration method, aiming at achiev-
ing fast, accurate, and robust alignments for computer-
assisted surgery. Our method parallelizes an intensity-based
algorithm to reduce computation time without degrading the
quality of alignment. The key contribution. of our method
is to provide fast and robust alignments by means of data-
parallel and speculative processing, respectively.

2. Intensity-Based 2-D/3-D Registration

The intensity-based algorithm employed in our method
has the following three advantages: (1) automated registra-
tion by comparing a real projected image and a DRR [1];
(2) robust. registration using an information-based similar-
ity measure {5); and (3) accurate registration using biplane
2-D images [2] and region of interest (ROI) [6]. Due to the
limited space, we describe only advantages (1) and (2).

Before describing each advantage, we first define the 2-
D/3-D registration problem. To make it easier, we present
a definition for a single image rather than biplane images.
Given a volume V' and a real projected image I ¢ (sce Fig-
ure 1), the 2-D/3-D registration technique compules the
rigid transformation parameter T that relates the coordi-
nate system of the volume V" and that of the imaging (pa-
tient) environment. Here, the rigid transformation is given
by T = (Tx, Ty, Tz,0x, 0y ,0z), where the first and last
three parameters are the translations and rotations of V.

Figure 2 briefly presents the intensity-based algorithm.
The algorithm resolves the registration problem into an op-
timization problem. That is, in order to register the volume

'V to the 2-D image [, the algorithm optimizes a cost func-

tion ¢’ associated with the location and orientation of V,
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Figure 1. Overview of intensity-based 2-D/3-
D registration. In this case, it aligns a CT
volume of a real spine to a fluoroscopy image
of the spine.

where C represents the similarity measure between the 2-D

image [ and the DRR Ip, generated from V. Furthermore,
this optimization is performed in a hierarchical manner in
order to reduce the amount of computation. This hierarchy
is controlled by the step size A of the optimization.

The algorithm consists of the following technologies.

DRR generation: As illustrated in Figure 1, a ray casting
method generates the DRR Ip. Image intensity Ip(i, j)
at point (Z, ) on the DRR Ip is computed by accumulating

the intensities of the voxels that ray r(7, ) penetrates, where

r(i, j) represents a ray that penetrates point (i, ) from the
- rendering source.

Similarity measure: We use gradient correlation (GC)
for our algorithm acc¢ording to an experimental study {5]
on six similarity measures. Although the study found that
pattern intensity [6] and gradient difference were the most
robust measure for their registration scenario, these mea-
sures require intensity correction [5] to minimize the dif-
ference between the two images Ig and Ip, because they

use a difference image created by subtracting I p from [g. .

In contrast, GC focuses on edge information in the im-
ages, so it essentially does not require intensity correction
to minimize the difference. Furthermore, the study also
showed that GC provided a small failure rate (5%) for clin-
ical datasets, and it was the most robust measure that as-
sumed no intensity correction. Therefore, we use GC as
the simihrity measure between the two images Ip and Ip:
C(T) = G(Ip,Ip). Here, GC G(A. B) between images
4 and B is given by G(A, B) = N/2(8A/0i,0B/di) +
N/2(DA4/85,0B/j), where dA/0i and 8A4/85 (OB/di
and &B/dy) are the gradient images of A (B, respectively),
representing the derivative of the intensity in the horizontal
and vertical axes of the image, and N(A. B) is normalized
cross correlation (NCC) defined over two images A4 and B.

A reaches the finest step size?
No

Yes

Final parameter T

Figure 2. Intensity-based 2-D/3-D registration
algorithm.

The gradient images are produced by means of the first
derivative of a Gaussian. This filter has the advantage that
it reduces and smoothes noise in the images, improving the
robustness of alignment. In summary, the intensity values
at point (i, j) on the gradient images 9A/di and DA /9j are
given by convolution with the first derivative Gaussian fil-
ters #7(i,§) and £y (i,5): DA(i, 5)/i = Fi(i, ) = AGi, J)
and OA(i,j)/Bj = Fy(i,7) * A(,j), where Fi(i,j) =

e~ (4020 P j) = —-’—e‘('g‘”g)/""’ and o
is the standard dcvxauon of the dlS[l'lbll[lOl‘l and is propor-
tional to the kernel size, namely the size of neighborhood
on which the filter operates.

Summarizing the above description, lhe main computa-
tion phases of the algorithm are (a) DRR generation, (b)
gradient image generation, and (¢) NCC computation.
Optimization: In order to find the optimal transformation
parameter T that maximizes the cost function C, the algo-
rithm employs the steepest descent optimization technique
during registration process: T = T + A@C/OT. This op-
timization stops if a local optimum has been found. The
gradient dC' /AT of the cost function is estimated by using
the finite-difference approximation. Because the transfor-
mation T consists of six independent parameters, the com-
putation phases (a)-(c) are repeated 13 (imes to approxi-
mate the gradient #C'/8T at each optimization step: one
repetition for current transtormation T and 12 repetitions
for finite differences T £+ AA of each parameter.

3. Parallelizing 2-D/3-D Registration

In this section we present the design and unplememanon
of our parallel method.
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3.1. Design Aspects

To accelerate the registration process, we can exploit
three parallelisms as follows.

¢ Speculative parallelism: In the registration algorithm,
speculative parallelism can be exploited by simultane-
ously processing the same registration task with dif-
ferent initial parameters. This is important to prevent
unsuccessful registrations (due to local optimums), be-
cause the surgery cannot progress until the alignment
has correctly finished. Otherwise, the surgery must
be performed without the surgical plan. To prevent
such undesirable situations, an appropriate transforma-
tion is required as the initial parameter T. However,
in general, initial parameters are experimentally deter-
mined according to the surgeon's experience. There-
fore, speculative processing contributes to improve the
robustness and confidence of our method.

¢ Data parallelism: Exploiting this parallelism acceler-
ates a single registration task. It can easily be estab-
lished by using image parallelism [4], where proces-
sors take the responsibility for each subtask associated
with a small part of the 2-D image. The details are
presented later in Section 3.2. ‘

e Task parallelism: This parallelism also contributes to
accelerate a single registration task. It exists in the
finite-difference approximation, where the computa-
tion phases (a)—(c) are repeated 13 times. -However,
this means that the speedup derived by this parallelism
is limited by a small factor of 13. Furthermore, load
balancing is probably not easy if it is exploited, be-
cause 13 cannot divide the number of processors, usu-
ally chosen to be a power of two.

From the above discussion, we have decided to exploit spec-
ulative and data parallelism.
In addition to the computation phases (a)-(c), in-
putfoutput (I/Q) operations also might become a perfor-
mance bottleneck after parallelization. However, /O issues
are not critical in our cluster environment for the following
.two reasons. Firstly, the largest input data, namely the vol-
ume V, is the preoperative data, which can be distributed to
processors before surgery. Therefore, we can assume. that
processors have loaded it into their local memory when reg-
jstration tasks are submitted. Secondly, the remaining data
Ir is small enough to be broadcasted rapidly in our clus-
ter. Therefore, we assume that all processors have the entire
data, V and [, in their local memory.

3.2. Workload Distribution

We now present how our method exploits image paral-
lelism. A good solution to this issune balances workload
among processors and minimizes the amount of messages
transmitted between processors and the number of sends
and receives. To find such a solution. we first investigate the

characteristics of computation phases (a)—(c) with respect to
available parallelism, load balancing, and data access pat-
tern. Table 1 shows these characteristics with a preliminary
timing result measured on a single processor machine.

e DRR generation: The intensity value at any point
(%, #) can independently be computed with the values
at other points, because different rays can cast inde-
pendently. The workload associated with each point
is nonuniform due to the different number of pene-
trated voxels. Points around the DRR edge tend to have
less workload. In addition to this image parallelism,
we also can use object parallelism [4], where proces-
sors take the responsibility for each subtask associated
with a small part of the volume and then merge locally
rendered DRRs into a final DRR. This object-parallel
scheme allows processors to load only a small poition
of the volume, but it requires communication to gen-
erate the final DRR. As mentioned earlier, we assume
that all processors have the entire volume, so that our
method uses an image-parallel scheme to prevent com-
munication in this most time-consuming phase.

o Gradient image generation: As same as in DRR gen-
eration, different points can independently be pro-
cessed to obtain their intensities on the gradient image.
The convolution for point (2, j) requires all intensities
A(i + «,j + B) such that —| K /2] < &, 8 < | /2],
where K denotes the kernel size of the filter. Note
here that this.means any point on the gradient image
requires DRR generation of its surrounding K x K
neighborhood, because the gradient images are gener-
ated from the DRR Ip as well as the image Ir. With
regard to load balancing, this computation phase has
uniform workload, because the same kernel size K is
used for every point. Note also here that the kernel
size I is usually a relatively large number, which in-
creases the amount of messages under an inappropriate
workload distribution scheme. For example, we use
K = 19 pixels for typical 2-D ROI sizes ranging from
200 x 200 to 400 x 400 pixels.

e NCC computation: NCC computation can be ap-
proached as a reduction problem, because it can be
rewritten as N(4, B) = 3, ; (A(,7)B(i, j) — A B)

o) —

T (A = TN, (Bl - B,

This equation indicates that NCC can be computed
from six local sums: the local sums of the number
of points; intensities A(¢,j); B(i,j); squared inten-
sities A(i,5)* B(i,j)*: and multiplied intensities
A(i.j)B{i,j). These sums can independently be
computed if processors are responsible for the same
point (7,7) on images 4 and B. The workload is
perfectly balanced if the same number of points is
assigned to each processor. However, communication
is required to reduce local sums into a global sum.

According to the analysis mentioned above, our method
employs a 2-D block distribution scheme with the overlap
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Table 1. Summary of computation phases.

Compntation phase Parallelism Workload | Data required for intensity A(%, §) Time (s)
(a) DRR generation Image/object! | Nonuniform | Penetrated voxels 993.7
' (b) Gradient image generation Image Uniform | Surrounding K x K neighborhood intensities 67.2
(c) NCC computation Image? Uniform | Corresponding intensity B(i, 5) 2.5
1, 2: Communication is required to produce the final DR

I&72]

aun

R,

(b)

Figure 3. qukldad distribution.

region, as shown in Figure 3. Here, the overlap size is given
by the kernel size I, allowing processors to produce gradi-
ent images without any communication. As compared with
other distribution schemes such as 1-D/2-D disjoint block
and cyclic schemes, our scheme has the following advan-
tage/disadvantages: (1) less communication, achieved by
the overlap region; (2) more computation, due to the redun-
dant DRR generation for the overlap regjon; and (3) imbal-
anced workload, as compared with the cyclic scheme.

If the overlap region is not given, communication is re-
quired for block boundaries in order to obtain intensities of
neighbor points computed by other processors. This com-
munication becomes a significant performance bottleneck
in a case where many processors are responsible for the
neighbor points. In this case, processors need to gather the
intensities from many processors and also have to scatter
their own intensities to others, but it is not easy to realize
both fast scatter and gather operations at the same time. Due
to this complex communication pattern, the cyclic scheme
possibly results in poor performance. Furthermore, the 1-
D/2-D block scheme without the overlap will also suffer
from this situation as the number of processors P increases,
because the kernel size K is relatively large compared to
the block size, which decreases as P increases.

3.3. Proposed Method

Wedenoteby R = {(7,j) |1 i< 5,1 <5< 8y}
the domain of the ROI specified on the 2-D image, where
S; and S are the horizontal and vertical size of the ROI,
respectively. Let R, where 1 < p < P, be the p-th subdo-
main partitioned by the 2-D disjoint block scheme such thal

R = U5=1 Rpand RpNRy = 0. forall 1 < p< g < P:

Let Rf; be the p-th subdomain with its overlap region.
~ Given P processors, our parallel method aligns the vol-
ume V' to theimage Iz as follows. '

R and to perform reduction operations, respectively.

1. Dataload: Foralll < p < P, processor p loads the
volume V from its local disk info main memory, and
waits for registration tasks to be submitted. Then, pro-
cessor 1 serves as a gateway receiving a registration
task with its input data: the projected image I, the
initial parameter T, and the initial step size A. After
this, the gateway broadcasts the data to all processors.

2. DRR generation: For all 1 < p < P, processor p
locally generates a DRR for subdomain R;‘.

3. Gradient image generation: Foralll < p < P, proces-
sor p locally generates the gradient images for disjoint
subdomain R.,,. :

4. NCC computation: For all 1 < p < P, processor p
locally computes six local sums from subdomain R ,,.
Then, every processor participates in a reduction com-
munication to combine local sums from all proces-
sors and distribute the global sum back to all proces-
sors. After this communication, every processor has
six global sums, so that locally computes NCC.

5. Optimization: Repeat 2.—4. 13 times to update the pa-
rameter T by using the steepest descent optimization.
Repeat this step until a local optimum has been found.

4. Experimental Results

To evaluate the performance of our parallel method, we
have implemented it using the C++ language and Message
Passing 1nterface (MPI) standard.

We used a cluster of 64 PCs, each equipped with two
Pentium III 1-GHz processors. The interconnection be-
tween nodes is a Myrinet switch, yielding a bandwidth of 2
Gb/s. Our implementation runs ona Linux-operating system
with the MPICH-SCore library, a fast MPI implementation.
On timing results. We performed registration tasks us-
ing datasets of a femur phantom and a real spine (sec Table
2). The biplane images are generated as the front (coronal)
view and the side (sagittal) view of the body. The kernel size
K of the Gaussian filter was experimentally determined as
K = 19 pixels (¢ = 3). ‘

We produced the CT volume and distributed it with its
ROI information to each node before running our registra-
tion program. This distribution takes 1.7 and 3.8 s on the
Myrinet network for the femur and the spine datasets, re-
spectively. On the other hand, the 2-D fluoroscopy images
are produced immediately before registration and then are
broadcast by the registration program itself. It takes 37 and
119 ms to broadcast each dataset, respectively.

'
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Table 2. Dataset specification.

Femur phantom- Real spine
3-D volume size | 256 x 256 x 367 | 512 x 512 x 204
File size 45MB 102 MB
ROI size 53 x 47 x 54 | 299 x 299 x 47
2-D image size 640 x 512 1024 x 1024
File size 320KB 2MB
ROI size (front) 353 x 276 340 x 204
ROI size (side) 344 x 272 336 x 200

Table 3. Regisiration time and speedups.

# of procs Femur phantom Real spine

P Time (s) | Speedup | Time (s) | Speedup

1 - 320 1 1066 1

8 52 6 171 6

16 31 10 101 11

32 19 17 62 17

64 13 26 44 24

128 9 35 35 31

Table 3 shows experimental timing results on different
numbers of processors. We can see that our implementa-
tion running on P = 128 reduces computation time for the
spine dataset from 17 m (1066 s) to 35 s. It also achieves a
shorter time of 9 s for the femur dataset with a smaller ROI.
Times of less than 60 s are compatible with time constraints
required for snrgery. Thus, our parallel method enables us

to utilize registration technique during surgery without de-

grading the quality of alignment.
On workload distribution. If we change our distribution
scheme to a 1-D block scheme with overlap, the size of dis-
joint blocks and that of overlapping blocks on P = 128 be-
come 3 x 276 and 21 x 294 pixels, respectively. Therefore,
this 1-D scheme requires about 7.5 times more computation,
resulting in a lower speedup. Moreover, since the vertical
length of 1-D blocks becomes shorter than that K of the fil-
ter, processors need to communicate with more processors
to obtain intensities of vertical neighbors, having a more
complex communication pattermn with network contention.
Although our overlapping scheme requires redundant
computation for DRR generation, this disadvantage is cov-
ered by the advantage of less communication. If a 2-
D disjoint block scheme is employed, every processor
needs to communicate its boundary data with its verti-
cal/horizontal/diagonal neighbors. Though this can be im-
plemented by repeating shift communication operations,
these operations could be a performance bottleneck. For
example, when using 128 processors for the femur dataset,
this scheme causes 2.7 KB (41 - 53 — 23 - 35 pixels, each
in 2 bytes) of incoming data and the same amount of out-
going data at every processor, which must be sequentially
processed in eight shift communication operations.
On speculative processing. In our experiments, we found
that the speedup was limited by a relatively smaller value,

as compared with P. In this situation, where the speedup
is theoretically limited by a small value, using more proces-
sors for data-parallel processing resuits in a lower utilization
of computing nodes. To deal with this, our method tries to
raise the speedup by means of speculative processing. This
strategy will lead to a higher speedup if registration tasks are
repeatedly processed with different initial parameters due to
unsuccessful alignments.

Another important motivation to exploit speculative par-
allelism comes. from the fact the registration algorithm
sometimes fails to align objects due to local optimums.
Therefore, our strategy will also improve the confidence of
registration technique, providing more robust alignment for
a wide variety of clinical scenarios.

5. Conclusions and Future Work

We have presented a parallel method for 2-D/3-D regis-
tration, aiming at realizing intraoperative alignment. Our
method exploits data and speculative parallelism in an
intensity-based algorithm, so that can perform fast, accu-
rate, and robust registration during surgery. Our implemen-
tation on a cluster of 64 PCs aligns a 299 x 299 x 47 voxel

. volume to 340 x 204 pixel images in a few tens of seconds,

a clinically compatible time.

In the future, our parallel implementation could be im-
proved by exploiting task paralielism in order to achieve
further acceleration.
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Abstract: Clinical data quantification of a fracture reduction has become important as the development of new fracture reduction
technology such as navigation and robot assisted fracture reduction. A reduction force and a reduction path are the key points in .
considering the control and safety of these new reduction methods. We have developed a clinical data logging system(CDLS) of
direct fracture reduction, which reduces using ring-frame connected bone fragment directly. The CDLS synchronously records the
reduction force, the reduction path and two video signals. One records the images from C-arm and the other records whole surgery
process. This paper introduces the structure of CLDS and the resultants of application to fracture model.
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Flueroscopic Bone Fragment Tracking for Surgical
Navigation in Femur Fracture Reduction by Incorporating
Optical Tracking of Hip Joint Rotation Center

Yoshikazu Nakajima*, Takahito Tashiro, Nobuhiko Sugano,
Kazuo Yonenobu, Tsuyoshi Koyama, Yuki Maeda, Yuichi Tamura,
Masanobu Saito, Shin’ichi Tamura, Mamoru Mitsuishi,
Naohiko Sugita, Ichiro Sakuma, Takahiro Ochi. and

Yoichiro Matsumoto

Abstract—A new method for fluoroscopic tracking of a proximal bone
fragment in femoral fracture reduction is presented. The proposed method
combines 2-D and 3-D image registration from single-view fluoroscopy with
tracking of the head center position of the proximal femoral fragment to
improve the accuracy of fluoroscopic registration without the need for re-
peated manual adjustment of the C-arm as required in stereo-view regis-
trations. Kinematic knowledge of the hip joint, which has a positional cor-
respondence with the femoral head center and the pelvis acetabular center,
allows the position of the femoral fragment to be determined from pelvis
tracking. The stability of the proposed method with respect to fluoroscopic
image noise and the desired continuity of the fracture reduction opera-
tion is demonstrated, and the accuracy of tracking is shown to be superior
to that achievable by single-view image registration, particularly in depth
translation. :

Index Terms—Fluoroscopic bone fragment tracking, fracture reduction,
- kinematic knowledge of the hip joint, motion constraint.

[. INTRODUCTION

Computer guidance for femur fracture reduction has been studied as
a means of improving repositioning accuracy and reducing radiation
exposure to medical staff by shortening procedures and introducing
robotic surgery. Where previous studies have focused on femoral shaft
fractures, proximal femur fractures such as femoral intertrochanteric
fractures are also common, particularly in osteoporotic elder females.
In previously proposed systems. reference markers for the positional
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sensor are attached to both proximal and distal bone fragments to mea-
sure the spatial relationship between the fractured bone fragments. Ina
proximal femur fracture, however, it is difficult to attach the reference

“marker to the proximal fragment, as the fragment is located deep in the

body and the implantation required for attachment may have an.unde-
sirable effect on the hip joint in leg position changes during surgery.

Some researchers have investigated a fluoroscopic tracking method
for bones [11, [2]. The methods involve the use of 2-D/3-D registration.
which in conventional single-view procedures does not provide suffi-
cient accuracy in depth translation for clinical use of the fracture frag-
ment tracking. Although stereo-view 2-D/3-D registration overcomes
some of the shortcomings of single-view registration, interactive C-arm
positioning is required in each registration step. The method proposed
by the present authors effectively combines 2-D/3-D registration from
a single-view fluoroscopic image with the proximal femoral fragment
position obtained by pelvis tracking. The use of such a 2-D/3-D regis-
tration technique by incorporating positional information at a number
of points was originally proposed by Russakoff [3] as a means (o im-
prove the accuracy of stereo-view registration. However, in that pio-
neering study, fiducial markers were embedded directly in the bone to
acquire the positional information. In contrast, our method employs
pelvis position tracking as a less-invasive approach, and knowledge of
the kinematics of the hip joint is applied to acquire the position of the
femoral head center. The proposed method therefore does not require
the implantation of a fiducial marker in bones such as the proximal
femur fragment. :

II. METHOD

A. Process Overview

The segmentation of the pelvis and fragments of the fractured femur
are processed preoperatively using a computed toinography (CT)
volume and in-house segmentation software. The femoral head center,
employed as the hip joint rotation center, is localized by sphere-fitting
image processing in the CT volume coordinate system. Bone tracking
during surgery is performed in two registration steps. In the first
registration step. two imaging operations and a position measurement
procedure are performed once for conventional stereo-view 2-D/3-D
registration to determine the initial pose of the segmented bone volume
and the geometric relationship between the pelvis reference marker
and the hip rotation center poinl. Single-view fluoroscopy imaging
and a single position-tracking procedure are then performed for each
iteration of the hybrid bone tracking described below. This procedure
is performed iteratively for bone tracking during surgery.

B. Hybrid Bone Tracking Method

The method employs two constraints: an image similarity measure,
and a positional constraint for the hip joint rotation center based on op-
tical tracking. Gradient correlation is employed as an image similarity
measure, and is sensitive to thin-line intensity differences such as bone
edges. although it is potentially insensitive to the overlap of soft tissue.

Let Ej,,aq. represent the evaluation value for image similarity mea-
sure. The positional constraint of the hip joint rotation center can then
be expressed as "

Epivien = dist(p; .. pi.). (1
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(b

Fig. 1. Reference markers on the (a) fluoroscope and (b) pelvis.

where dist(-) is the Euclidean distance between two points. and P
- and p,. are the hip rotation center assumed in computation and the po-
sition tracked by the optical localizer. Let Tp,etvis_ieacker be the latest
transformation matrix of the pelvis reference marker. The tracked po-
sition can then be obtained by : ‘ :

elvisaracke
Pre = P racke rp ) 2)

pelvis_tracker e
where Pe!Vitracker), i detenmined by the femoral head center local-
ization in the CT volume and the first registration step. ‘

A hybrid similarity measure that combines the constraints given by
the hip joint rotation center tracking and the 2-D/3-D registration can
then be defined as

Eh_\'l)ri(l = "Einm,.-.u + 5 Epn.-iii-m (3)

where + is a weighting coefficient.

The optimizing computation is based on the Powell method [4]. A
weighted search method (2] is employed for coarse optimization. and a
polynomial function fitting method [5] is then adopted for improvement
of depth accuracy.

III. EXPERIMENTS

A. Image and Position Data Acquisition

CT volumes were acquired using a HiSpeed Plus scanner (General
Electric Co.. USA) with a voxel size of 0.68 x 0.68 x | mm? for the
fractured part and the femoral head, and 0.68 x 0.68 x 3 mm® forother
parts. Fluoroscopic images were taken intraoperatively using a Sire-
mobil Iso-C instrument (Siemens AG. Germany). The image size was
640 x 512 pixels. The positions of the fluoroscope and the pelvis were
obtained for each registration step using an optical localizer (Optotrak,
Northern Digital Inc.. Waterloo. ON. Canada). The reference markers
(Fig. 1) were attached to the image intensifier cylinder of the fluoro-
scope and the pelvis (C-arm Tracker and VersaTrax Tracker. Traxtal
Technologies Inc.. Toronto, ON, Canada). The pelvis tracker shown in
Fig. l(b) can be fixed to the patient’s lumbcus using a silicone belt with
Velcro tape for hipline length adjustment. The silicone belt has two
fixation holes that fit to the anterior-superior-iliac spine around the left
and right sides of the pelvis to ensure that the tracker is immobilized
against the patient’s body.

B. Sinmuldations

CT images of five patients and two phantoms were used in simu-
lations of the proposed tracking method. For use as fluoroscopic im-
ages to be inputinto the simulation. digitally reconstructed radiographs
(DRRs) of each original CT volume were generated from arbitrary
viewpoints determined so as to emulate the real dimensions of fluo-
roscopy during surgery. The initial positions of the fragment registra-
tion were determined by random perturbation from the original position
in the CT volume. The standard deviation of the perturbation was 3 mm
for translation and 3° for rotation. The overlap of bone or soft tissue in

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 54, NO. 9, SEPTEMBER 2007

(a) (b

Fig. 2. DRRs for simulation. (a) Original volume. (b) Segmented volume
(proximal fragment only).

fluoroscopy hampers 2-D/3-D registration. For estimating such influ-
ences, segmented CT volumes of the fragments of the fractured femur.
pelvis. and soft tissue were used in simulated fluoroscopy. The DRRs
were then generated from the CT volumes of the proximal fragment
and the entire abdominal structure. In DRR generation, the CT volumes
of the proximal fragment were used to estimate the accuracy of prin- -
cipal registration, and the original CT volumes were used to estimate
the overall accuracy and the influence of soft tissue overlap. Examples
of DRRs are shown in Fig. 2. The error at the femoral head center was

. computed statistically by comparing estimated positions with the orig- -

inal position. For accuracy validation. 100 trials of registration were
performed for each parameter set.

The results are summarized in Tables I and II. Averages, standard
deviations and, worst error are shown. The estimation accuracy was af-
fected by the overlap of soft tissue and bone. Nevertheless. the proposed
method was more robust than the single-view method, and provided
results closer to the real position. The component error of depth trans-
lation in the fluoroscopy coordinate system in particular was substan-
tially improved, for example, from 1.49 mm to 0.007 mm in the case of
the full abdominal patient CT. The accuracy was also found to depend
on the spatial distribution of X-ray absorption in the target object. In
the case of the proximal fragment boxie. the distribution may have rota-
tional symmetry around the femoral r;éck axis, and the maximum prin-
cipal component of error variance was oriented paralle] with this axis.
In the phantom CT experiment, the maximuin principal components
of the error distribution were 2.73° and 0.80° in the single-view and
proposed methods, respectively, representing contributions of 82.02%
and 79.03%. After removing the maximum principal component. the
residual errors were 1.28° and 0.41°, respectively. In the patient CT
experiment. the maximum principal components of the error distribu-
tion were 1.06° and 0.71°, corresponding to contributions of 44.68%
and 40.22%. and the residual errors were 1.18° and 0.86°, respectively.

C. In-Vitro Experiment

Two phantoms were used to simulate scenes of proximal femur
fracture in an in vitro experiment. Plastic pelvis and femur models
{Sawbones Pacific Research Laboratories. Vashon, WA) were fractured
and aligned using Styrofoam plates. The alignment of the fractured
fragments was determined based on a typical intertrochanteric fracture.
To find the “gold standard” registration. four fiducial markers (30-mm
glass balls) were embedded in the Styrofoam cover of the phantom.
ensuring that the markers did not overlap in the pelvis and femur
silhouettes in fluoroscopy. Four light-emitting diode markers were
also attached to the front of the phantom Styrofoam cover as reference
markers for optical tracking.

Fig. 3 shows the experiment setup. where arrows indicate the posi-
tions of reference markers. The phantomn was placed on a carbon bed
{Mizuho, Japan). and the positions of the fluoroscope and phantom
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Redefining Performance Evaluation Tools for Real-Time
QRS Complex Classification Systems

Philippe Ravier*, Frédéric Leclerc, Cedric Dumez-Viou, and

" Guy Lamarque

Abstraci—In a heartbeat classification procedure, the detection of QRS
complex waveforms is necessary. In many studies, this heartbeat extrae-
tion function is not considered: the inputs of the classifier are assumed to
be correctly identified. This communication aims to redefine classical per-
formance evaluation tools in entire QRS complex classification systems and

to evaluate the effects induced by QRS detection errors on the performance .

of heartbeat classification processing (normal versus abnormal). Perfor-
mance statistics are given and discussed considering the MIT/BIH database
records that are replayed on a real-time classification system composed of
the classical detector proposed by Hamilton and Tompkins, followed by a
neural-network classifier. This study shows that a classification accuracy
of 96.72% falls to 94.90% when a drop of 1.78% error rate is introduced
in the detector quality. This corresponds to an increase of about 50% bad
classifications.

Index Terms—Classification, hardware implementation, heartbeat
recognition, neural network, QRS complex detection.

I. INTRODUCTION

The problem of heartbeat classification has been widely explored in
the literature [1]-[8]. However. real-time classification systems often
necessitate the detection of the cardiac beats before any classification
procedure. The cardiac beats are also refered to QRS complex shapes
where the letters stand for the three successive main phases of a car-
diac cycle. In such classification systems, classical performance eval-
uation tools become irrelevant since the detection errors are not taken
into account in the classification statistics. In this communication, we
therefore propose to:

+ redefine the classical performance evaluation tools taking the en-

tire classification system into consideration:

« experimentally discuss the influence of the detection stage on clas-

sification results;

Manuscript received May 12, 2006: revised December 18, 2006. Asterisk in-
dicutes conespondmg author.

-P. Ravier is. with the Laboratory of Electronics, Signals and Images.
University of Orleans. Orléans Cedex 45067. ance (e-mail: philippe.ravi ier@
univ-orleans.fr).

C. Dumez-Viou and G. Lamarque are with the Laboratory of Electronics, Sig-
nals and Images, University of Orleans, Orléans Cedex 45067, France (e-muail:
cedric.dumez-viou @obs-nancay.fr; guy.Jamarque @univ-orleans.fr).

F. Leclerc is with the Laboratory of Electronics, Signals and Images, Uni- |

versity of Orleans, Orléans Cedex 45067, France and also with the Depart-
ment of Aerospace Physiology. Institute of Aerospace Medicine of the Army
Health Department, Brétigny-Sur-Orge Cedex 91223, France (e-mail: frederic.
leclerc @univ-orleans.fr).

Digital Object Identifier 10.1109/TBME.2007.902594

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 54, NO. 9, SEPTEMBER 2007

« give material for finding the best compromise between the quality
of the detector, the quality of the classifier, and the computational
time in real-time classification systems.

In order to achieve these goals, we implemented a simple real-tlme
classification system on an electronic board. The proposed system is
composed of a QRS complex extractor (detection part) followed by
a normal or abnormal peak recognition step (classification part). Ab-
normal beats are opposed to normal beats according to their QRS wave-
form shapes.

For instance, a normal/abnormal classification system may be useful
for Holter monitoring where only the critical parts as well as the car-
diac history (i.e., peak-to-peak intervals) are of medical interest. It is
not worth recording the healthy electrocardiographic (ECG) samples.
The amount of data can therefore be drastically reduced and the entire
breakdown will be shorter since the physician will devote his or her
expertise to the critical parts of the ECG signal, while also taking into
account the peak-to-peak intervals of the entire monitoring.

Several algorithms have been proposed in the literature for the de-
tection and classification of ECG beats. Since our system has to be
embedded with real-time processing constraints, the computation cost
must be low. Various approaches (wavelets [9], [10]; filter banks [11):
and neural networks [12]) have been investigated to improve the quality
of the detectors. However. the gain obtained is generally offset by the
greater complexity of the algorithms, involving higher computational
costs. Itis the reason why the well-known Hamilton and Tompkins [13],
[14] detector has been chosen here. Similarly, many methods have been
investigated for the classification part (neural networks [1]-[3], fuzzy
theory [3]. [S). support vector machine [4]. higher order spectral tech-
niques [6], and hidden Markov models [7]. .. .). A neural-network ap-
proach has been adopted in this study because its parallel processing
implementation is well adapted to real-time constraints.” Finally, we

" tested the system on the Massachusetts Institute of Technology-Beth

Israel Hospital Arrythmia Database (MIT-BIH) [15] since this data-
base is commonly used for performance evaluations of detection or
classification algorithms. '

This communication is organized as follows. The classification
system is introduced in the second part. Such a system leads to the
redefinition of the performance evaluation tools in the third part.
These new tools are tested on real data in the fourth part. considering
real-time classification of the MIT/BIH recordings. The communica-
tion ends with discussions and conclusions.

1I. NORMAL/ABNORMAL REAL-TIME BEAT CLASSIFICATION SYSTEM

After digitizing the analog ECG signal through a 16-b analog-to-
digital converter (ADC) using a 360-Hz sampling rate, the algorithmic
part is divided into two main functions (Fig. 1).

1) The ECG beat extractor detects QRS complex waveforms and
extracts ECG waveform patterns after they have been normal-
ized and centered about the fiducial point. Two versions of the
Hamilton and Tompkins detector have been real time implemented
[13], [14]: the first one includes the search back procedure (SB+)
and the second one does not (SB—).
the neural-network classifier that is fed by Fourier coefficients
of the ECG waveform patterns provided by the previous stage.
The classifieris a multilayer perceptron (MLP) [16] with 16 input
nodes (16 first absolute values of the 128 Fourier samples ex-
cluding the dc component), four peurons in the hidden layer. and
one output neuron. Each neuron labeled 1 to 5 has four inputs
and one output with the classical associated sigmoidal activation
function g, (n) = (1)/{1 4+ ¢~%""1*") where » is the number
of QRS pattern to be classified and j is the neuron number. The
value r,(n) is the net internal activity level of neuron j and is
equal to v,(n) = Z* wirin) for j = 1ltodand vs{n) =

=1

to
~—
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TABLE I
ESTIMATION ERROR FOR TRANSLATION IN SIMULATION

Phantom [mm]
(proximal fragment only)

Phantom [mm]

Patient [mm)

(proximal fragment only) Patient [mm]

Singie-view method 0.12£0.32 (1.03)

1.07£2.76 (11.314)

0.0061+0.27 (0.74) 1.91+£2.43 (8.29)

Proposed method 0.000474+0.013 (0.11)

0.04410.058 (0.21)

0.000463-0.0061 (0.029) 0.51£0.30 (0.86)

TABLED
ESTIMATION ERROR FOR ORIENTATION IN SIMULATION

Phantom [degrees]
(proximal fragment only)

Phantom [deg}ees]

Patient [degrees]

(proximal fragment only) Patient [degrees]

Single-view method 0.1841.11 (3.243)

1.401£3.02 (10.2)

0.0068£0.15 (0.41) 1.80£1.39 (5.37)

Propesed method 0.10+£0.96 (2.92)

2.55£0.90 (5.06)

0.075£0.98 (1.90) 1.47X£1.11 (3.45)

Fig. 3. Invitro experiment setup.

TABLE Il
ESTIMATION ERROR IN IN VITRO PHANTOM | EST

Translation error fmm]
2.5242.02 (10.41)
1.83+0.51 (3.37)

Orientation crror [degrecs]
2544192 (6.32)
1.2941.70 (4.23)

Single-view method
Proposed method

were localized using an optical sensor. The phantom reference marker
was used as the reference marker for the pelvis. and also to track
the rotation center of the hip joint. Fluoroscopy was performed
simultaneously.

The errors are summarized in Table 1II. The translation error was
successfully improved by applying the proposed method. The max-
imum principal components of error variance for rotation were 1.58°
and 1.45° for the single-view and proposed methods, representing con-
tributions of 50.97% and 72.35%. respemvely The remaining error
was 1.55° and 0.89°, respectively.

IV. Discussion

Although some of the worst case results appear to have converged
at Jocal minima and are not clinically acceptable, most of the results
converged to acceptable values. In our experiments. the convergence
behavior from initial bone positions was predictable in most cases. and
manual adjustment of the initial position corrected the result,

The bias error in the in vitro phantom test was greater than that indi-
cated by the simulations. This can be primarily attributed to positional
error in optical tracking, and is also a result of the use of DRRs as input
images in the simulation. whereas real fluoroscopic images were used
in the in vitro test.

The overlap of soft tissue and other bones resulted in the appearance
of untrue edges in the CT volumes. In the single-view method, conver-
gence to local minima is caused in part by the overlap of other anatom-
ical structures, particularly the edge of the pelvis acetabular. The pro-
posed method avoids this effect and achieves successful registration in
such situations, primarily as a result of the positional constraint im-
parted by hip rotational center tracking.

Asthe constraint E;..iii, effectively compensates for the positional
inaccuracy in Einage. 2-D/3-D registration accuracy is improved by
the proposed method, particularly with respect to depth. This approach
does not require interactive C-arm re-positioning. and therefore will be
advantageous for reducing the time required for fracture reduction by
robotic surgery [7].

For real-time bone tracking, registration should be perfonned at
least 30 times/second. The computation time for the proposed method
at present is 300 s/registration by a PC (Xeon 3.2 MHz CPU. 2 GB
memory). and less than 10 s when computed on a parallel platform
consisting of 128 CPUs [8]. Therefore, somé supplemental technolo-
gies are required in order to introduce robotic surgery into practical
clinical settings. The robotic manipulators should move slowly for
safety. and some form of prediction (or extrapolation) techniques
should be introduced for bone motion to reduce imaging frequency.
As the method requires frequent imaging, the X-ray exposure dose to
both the patient and surgeons must also be considered. The Siremobil
Iso-C instrument employed for pulse-mode fluoroscopy emits a strong
but instantaneous X-ray pulse that affords good-quality images at a
reduced total X-ray dose compared to continuous fluoroscopy. The.
X-ray dose for the present procedure is 0.92 mGy/min with imaging at
1 Hz, less than a half that of regular fluoroscopy (2.38 mGy/min).
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