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Prediction of strain of the proximal femur by a CT based finite element method

M. Bessho?, 1. Ohnishi®, T. Matsumoto®, S. Ohashi®, J. Matsuyama®, K. Nakamura
* The Department of Orthopaedic Surgery, The University of Tokvo, Tokyo, Japan

Abstract: Hip fractures are the most serious complication of osteoporosis and have been recognized as a major pi
health problem. In elderly persons, hip fractures occur as a result of increased fragility of the proximal femur du
osteoporosis. It is essential to precisely quantify the strength of the proximal femur. in order to estimate the fracture
and plan preventive interventions. CT based finite element analysis could possibly achieve precise assessment o
strength of the proximal femur. The purpose of this study was to create a simulation model that could accurately pr
the surface strains of the proximal femur using a CT based finite element method and to verify the accuracy o
model by load testing using fresh frozen cadaver specimens. Eleven right femora were collected. The axial CT s
the proximal femora were obtained with a calibration phantom, from which the 3D finite element models
constructed. Linear finite element analyses were performed. The distributions of the principal strains were dete
The strain gauges were attached 10 the proximal femoral surfaces. A quasi-static: compression test of each femur:
conducted. Principal strains of the prediction significantly correlated with those measured (r = (.963). '
Key words: Finite-element method, Bone strength, Osteoporosis, Strain gauge, Principal strain
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3D Reconstruction of Femoral Shape Using a Two 2D Radiographs and Statistical
Parametric Model
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Fig. 4 Applying force f to patches on contour line.
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Fig.8 Femoral models for parameter estimation.
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Fig. 14 Estimation errors for numbers of parameters.
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PREDICTION OF STRENGTH AND STRAIN OF THE PROXIMAL FEMUR
BY A CT BASED FINITE ELEMENT METHOD.
+*Bessho, M; *Ohnishi, [; *Matsuyama, J; *Matsumoto, T; *Nakamura, K
+*Department of Orthopaedic Surgery, University of Tokyo, Tokyo, Japan.
email: ohnishii- dis@ b.u-tokyo.acjp '

Introduction:

Hip fractures are the most serious complication of osteoporosis and
have been recognized as a major public health problem. Prevention of
hip fracture is a high-priority issue because of the rapid increase in the
number of elderly people in Japan. In elderly persons, hip fractures
occur as a result of increased fragility of the proximal femur due to
osteoporosis. It is essential to precisely quantify the strength of the
proximal femur in order to estimate the fracture risk and plan preventive
interventions. Clinically available methods of estimating bone strength
include bone densitometry techniques such as DXA or pQCT, and
imaging procedures such as X-ray or CT. These techniques evaluate
regional bone density and morphology, which are partly relatedto
fracture risk, but they are of limited value for quantifying structural
strength. Therefore, it is necessary to develop a noninvasive method for
accurate quantitative structural analysis that incorporates information on
both morphology and bone density in a three-dimensional distribution.
CT based finite element analysis, which incorporates information on
both the three-dimensional architecture and bone density distribution,
could possibly achieve precise assessment of the strength of the
proximal femur. The purpose of this study was to create a simulation
model that could accurately predict the strength of the proximal femur
using a CT based finite element method and to verify the accuracy of our
model by {oad testing using fresh frozen cadaver specimens.

Materials and Method:

Eleven right femora with no skeletal pathology were collected within
24 hours of death from 5 males aged 30 to 90 years (average age: 56.8
years) and 6 females aged 52 to 85 years (average age: 71.5 years). Bone
specimens were stored at -70C® after each step of the protocol. Frozen
specimens were timmed with a handsaw at 14 cm distal to the midpoint
‘of the lesser trochanter and the proximal part of each specimen was used
for the experiments. After thawing, trimmed specimens were cleaned of
all soft tissues (Cody et al., 1999). We attached total of 11circular
fiducials with a radius of 5 mm and a width of 1.5 mm made of epoxy
resin sheet, comprising three for the femoral head, four for the
trochanteric region, and four for the diaphysis. The femora were
immersed in water and axial CT scans were obtained with a slice
thickness of 3 mm and a pixel width of 0.398 mm using Aquilion Super
4 (Toshiba Medical Systems Co., Tokyo, Japan, 120 kVp, 75 mAs,

- §12x512 matrix), as well as a calibration phantom containing hydroxy-
apatite rods. :

A quasi-static compression test of each femur was conducted. The
proximal femur was slanted at 20 degrees in the coronal plane to
simulate adduction and a quasi-static load was applied at a rate of 0.5
mm/min after all fiducials were removed (Keyak et al., 1998). A dental
resin cap was molded and placed on the femoral head to apply a uniform
compressive load. The distal diaphysis (with a length of S cm) was .
embedded in a wood metal. Eight strain gauges (KFG-1-120-D17-
11L2M3S, Kyowa Electronic, Tokyo, Japan) were attached to the
surface of the diaphysis and the trochanteric region of each specimen
with adhesive cyano-acrylate, and four strain gauges (SKF-22358;
Kyowa Electronic, Tokyo, Japan) were attached to the cortical surface of
the femoral neck. The magnitude of the load and the cross-head
displacement were recorded. Strain at the gauge attachment sites was
measured. Then the maximum and minimum principal strains were
calculated at each of the gauge sites. The measured yield load was
defined as the load at the end of the plateau of the constant load rate on a
load rate increment versus time curve, which corresponded with the end
of the linear increase of the load on a load displacement curve. The
measured fracture load was defined as the value where the load
increment rate per time reached zero. To identify the site of attachment
for each strain gauge and the cap, image of the specimens were taken
with a digital camera. The CT data were transferred to a workstation and
3D finite element models were constructed from the CT data using
Mechanical Finder software (Mitsubishi Space Software Co. Ltd.,
Tokyo). Trabecular bone and the inner-portion of cortical bone were
modeled using 3 mm linear tetrahedral elements, while the outer cortex

was modeled using 3 mm triangular plates (0.4 mm thick). On average,
there were 92,541 tetrahedral elements and 5,194 triangular plates. To
allow for bone heterogeneity, the mechanical properties of each element
were computed from the Hounsfield unit value. The ash density of each
voxel was determined from the linear regression equation derived by
relating the Hounsfield unit of a calibration phantom to its equivalent
ash density. The ash density of each element was set as the average ash
density of the voxels contained in that element. Young’s modulus and
the yield stress of each tetrahedral element were calculated using the
equations proposed by Keyak et al. (1998) and Keller (1994). Poisson's

. ratio of each element was set as 0.4. Boundary conditions were applied

to the finite element model to represent the mechanical testing. To
identify the loading sites and constrained sites, as well as the strain
gauge sites, in a finite element mesh model, we matched a 2D image of
each specimen with the corresponding 3D finite element model. To
perform this registration process, we utilized a fiducial-based system
(Russakoff et al., 2003). Nonlinear finite element analysis was
performed by the Newton-Raphson method. Each element under
compression was assumed to yield when their Drucker-Prager equivalent
stress reached the element yield stress. Failure was defined as occurring
when the minimum principal strain of an element was less than -10,000
microstrain. Each element under tension was assumed to fail when the
maximum principal stress exceeded the ultimate tensile stress. To allow
for the nonlinear phase, the mechanical properties of the elements were
assumed to be bi-linear elastoplastic, and the post yield modulus was set
as 0.05. Yield was defined as the point where at least one solid element
yielded, and fracture was defined as occurring when at least one shell
element failed. The maximurn and minimum principal strains at 50% of
the experimental yield load were calculated. To assess the accuracy of
the analysis, Pearson's comelation analysis was used to-evaluate
correlations between the predicted and measured values of the yield and
fracture loads, and the maximum and minimum principal strains.

Results: The results were illustrated in Fig. 1-4
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Discussion:

Excellent accuracy was obtained in predicting the yield and fracture
loads, and the maximum and minimum principal strains of the proximal
femur. The CT based finite element method we adopted in this study
could be applicable for clinical use.
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EVALUATION OF THE EFFICACY OF AN OSTEODYNAMIC AGENT BY PREDICTING THE STRENGTH OF THE

PROXIMAL FEMUR USING A CT-BASED FINITE ELEMENT METHOD

- APRELIMINARY STUDY-

+*Bessho, M *Ohnishi, [; *Ohashi, S; *Matsuyama, J; *Matsumoto, T; *Nakamura, K
- +*Department of Orthopaedic Surgery, University of Tokyo, Tokyo, Japan.
email: ohnishii-dis@ h.u-tokyo.acjp

Introduction: Hip fractures are the most serious complication of
osteoporosis and have been recognized as a major public health problem.
Clinically available methods for estimating the effect of osteodynamic
agents include bone metabolic markers, bone densitometry, and

evaluation of the fracture rate. Delmas et al. reported that the increase of -

bone density measured by DXA was not necessarily correlated with the
reduction of the fracture rate [1]. CT based finite element method
(CT/FEM), which incorporates information on both the three-
dimensional architecture and bone density distribution, could possibly
achieve precise assessment of the strength of the proximal femur [2]. We
created a simulation model that could accurately predict the strength of
the proximal femur using a CT/FEM [3].The purpose of this study was
to determine whether prediction of the strength of the proximal femur by
CT/ FEM could be a useful indicator of the efficacy of an annresorpuve
agent in osteoporosis patients.

Materials and Method: The study protocol was approved by our ethics
committee and the patients were enrolled after giving informed consent.
Axial CT scans of the proximal right femur were obtained in 10 female
patients with primary osteoporosis (slice thickness: 3 mm, Aquilion
Super 4, Toshiba Medical Systems Co., Tokyo, Japan) as well as scans
of a calibration phantom. The mean age of the patients was 62 years
(range: 49-73). They were treated with oral risedronate 2.5mg per day.
In each patient, the bone mineral density of the neck of the right femur
was also measured by DXA (Lunar DPX-MD+, GE medical systems,
USA). Axial CT and DXA were performed three times, i.e., before
administration and after 6 months and one year of treatment. The urinary
deoxypyridinoline (urine DPD) level was measured by enzyme
immunoassay (Quidel co., San Diego, CA, USA) before administration
and after one year of treatment. The CT data were transferred to a
workstation and 3D finite element models were constructed from the CT
data using Mechanical Finder (Research Center of Computational
Mechanics Inc., Tokyo, Japan). Trabecular bone and the inner portion of
cortical bone were modeled using 3 mm linear tetrahedral efements,
while the outer cortex was modeled using 3 mm triangular plates (0.4
mm thick). On average, there were 80,133 tetrahedral elements and
4,730 triangular plates. To allow for bone heterogeneity, the mechanical
properties of each element were computed from the Hounsfield unit
value. The ash density of each voxel was determined from the linear
regression equation derived by relating the Hounsfield unit of a
calibration phantom to its equivalent ash density. The ash density of
each element was set as the average ash density of the voxels contained
in that element. Young's modulus and the yield stress of each tetrahedral
element were calculated using the equations proposed by Keyak et al.
[4] and Keller [5). Poisson's ratio of each element was set as 0.4.
Boundary conditions were applied to this model to represent the stance
configuration [3, 4]. Matenial nonlinear finite element analysis was
performed by the Newton-Raphson method. The post-yield Young's
modulus was set as 5 % of the pre-yield Young's modulus. Fracture was
defined as occurring when at least one shell element failed and the load
at this ime was defined as the predicted fracture load. Our preliminary
investigation showed that the coefficient of variation was 1.1 % for
predicting the fracture load by CT/FEM. The increase of the predicted
fracture load, bone mineral density, and urine DPD level was calculated
as a percentage of the baseline value before administration. Correlations
among the predicted fracture load, the bone mineral density, and the
urine DPD level were investigated. The bone mineral density
distribution derived from QCT was reconstructed as a mid-coronal
section. Distributions of the bone density and minimum principal stress
at a load of 500 N in a mid-coronal section of the proximal femur were
created from each of the 3D CT/FEM models and the results obtained
after one year of treatment were compared with those from before
administration. Pearson's correlation analysis, Wilcoxon signed-rank test
and Friedman test were used for statistical analyses and the results were
considered significant when p values were less than 0.05.

Results: The average urine DPD level before administration was 6.45
nmol/mmol Cr, while it was 5.13 nmol/mmol Cr after one year of
treatment. There was a significant decrease of the urine DPD level by

22 % (mean) after one year (p=0.028). The predicted fracture load was
significantly increased by 3.8 % (mean) after 6 months and one year by
5.2 % (mean) compared with that before the start of administration
(p=0.02, p<0.01). The load achieved after six months was not
significantly different from that seen after one year (P=0.45). On the
other hand, femoral neck density was not significantly increased after 6
months (p=0.29), but showed a significant increase by 2.0% (mean) after
one year (p<0.01). The density obtained after 6 months was not
significantly different from that at one year (p=0.29). The correlation
between the predicted strength and the bone mineral density was r=0.52
(p=0.013). No significant correlation was noted between the urine DPD
level and the predicted strength or between the DPD level and the bone
mineral density (p=0.06, p=0.26). Assessing the bone density
distribution of the proximal femur, an increase was predominantly
recognized in the principal compressive trabeculé (Fig.1). Regarding the
distribution of the minimum principal stress, the area with a large
negative value was diminished after one year (Fig. 2).

(Fig. 1) Bone density. (Light: before administration Right: one year of
treatment)

(Fig. 2) Distribution of minimum principal stress. (Light: before
administration Right: one year of treatment)

Discussion; We initially made the assumption that the density modulus -
relationship would not be greatly changed by the administration of
risedronate [6]. The normalized increase of the predicted strength of the
proximal femur was significantly larger than that of the femoral neck
bone density at one year (p=0.02). In addition, CT/FEM detected the
effect of treatment six months earlier than DXA. Based on the finding
that density did not increase evenly, but predominantly increased in the:
principal compressive trabecule that are subjected to relatively high
compressive stress, the overall strength was increased efficienty with a
small increment of femoral neck density. Weinans et al. used their
remodeling simulator to demonstrate that trabecular bone could undergo
remodeling to maximize its strength with a minimal increase of bone
volume [7]. In addition, Oden et al. showed by FEM simulation that a
selective increase of bone density at load-bearing sites increased bone
strength by 6.2 to 14.8 %, while the increase of femoral neck bone
density was only 0.4 to 3.2 % [8]. These reports support our results. In
conclusion, CT/FEM has a higher sensitivity than DXA and can detect
the response to osteodynamic agents much earlier.

References: [1] Delmas et al., Bone 34: 599-604, 2004 {2] Cody etal., §
Biomech 32:1013-20, 1999 [3] Bessho et al., Trans Orthop Res Soc 31:
224, 2006 [4] Keyak et al., ) Biomech 31: 125-33, 1998 [5] Keller et al.,
J} Biomech 27: 1159-68, 1994 [6] Eswaran et al., Trans Orthop Res Soc
31: 158, 2006 [7] Weinans et al., ] Biomech 25: 1425-41, 1992 [8] Oden
etal., ) Orthop Res 17: 661-7, 1999
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Introduction : :

Evaluation of bone healing on radiograms depends on the
volume and radiopacity of callus at the healing fracture site. The most
important issue in the assessment of fracture healing is to acquire
information on the restoration of mechanical integrity of the bone.
Previous methods of monitoring mechanical properties of healing site
have necessitated insertion of pins or wires into the bone, and their
application was limited to patients treated with an external fixator. To
develop a non-invasive as well as versatile method, we focused on the
use of echo tracking (ET) that was a technique measuring minute
displacement of a certain point on a tissue by detecting a wave pattern in
a radiofrequency echo signal reflected from the tissue. To apply this
technique to detect bone deformation, we improved it to be able to
measure displacement with an accuracy of 2.6 u V. We also developed a
multi-ET system that was able to simultaneously track dynamic
movement of multiple points on the bone surface, thereby enabling to
measure bending stiffness at the healing fracture site. The purpose of
this study was to assure that the newly developed ET system can
quantitatively assess the progress, retardation or arrest of healing by
détecting bending stiffness at the healing site. Fracture healing in
patients with tibia fracture treated with a cast or osteosynthesis with
internal fixation was evaluated with this method.

Materials & Methods

With the echo tracking system, we assessed time-sequentially the
mechanical properties of the healing site. The protocot of this
investigation was approved by the ethics committee of the university
hospital and the patients were enrolled after informed consent was given.
Eight tibiae in 7 patients with an average age of 37 years (range: 24-69)
were measured. Two tibiae in 2 patients were treated conservatively with
a cast, and 6 tibiae in 5 patients were treated with intemnal fixation
(intramedullary nailing: 4, plating: 1, screw 1). (Table 1) A measuring
system utilizing a three point bending test of the tibia (Fig. 1a) was
developed. Patients assumed supine position with both knees extended,
and the affected lower leg was held horizontally with the antero-medial
aspect faced upwards. The fibula head and the lateral malleolus were
supported and held tight by a Vacufix ® to avoid rotation of the leg
during loading trials. Prior to the measurement, a B-mode image of the
short axis of the proximal and distal fragments of the tibia was obtained
to identify the center in both of these cross sections. By connecting both
of the centers, the anatomical axis of the tibia was identified. A 7.5 Hz
ultrasound probe was placed on each antero-medial aspect of the
proximal and distal fragments along the long axis. Each probe was
equipped a multi-ET system with 5 tracking points with each span of 10
mm. The probes were set on the skin vertical to the floor, and held tight
by a three articulated arm. A load of 25 N was applied at arate of SN/
second and then unloaded to 0 N with the same rate using a force gauge
parallel to the direction of the probe at the most distal part of the
proximal fragment that was close to the fracture site. In the initial
measurement for each patient, a loading point was set right on the long
axis near the fracture site with a guidance of a B-mode image of the
fracture site. With this set up, the tibia was bent just as a three-point
bending test in the direction of the echo beam.

With multi echo tracking system, these probes detected the bending
angle between the proximal and distal fragments generated by the load.
The minute bending angle induced by the load was calculated by the
displacements of the 5 tracked points on each of the fragments. The ET
angle was defined as the sum of the inclinations of the proximal and
distal fragments (Fig. 1b). When callus property was weak in the initial
stage of healing, the tracked points were aligned linearly and the
inclination of the fragments was calculated directly. However, when
callus was rigid in the late stage, the line connecting the tracked points
was curved, so the inclination was obtained by the slope of the linear
regression equation derived by the displacements of the tracked points.
The measurement was repeated five times, and the average and the
standard deviation of the ET angle were obtained. In the patients treated
with a cast, the contra-lateral side was also measured and served as a
control. Fracture healing was assessed with an interval of 2 or 3 weeks
until radiographic union or arrest of fracture healing.
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Fig.1a (left), 1b (right) The measurement system with the echo tracking.
The bending angle (ET angle) between the proximal and distal
fragments were detected.
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Results
In patients with radiographic normal healing, the bending angle

exponentially decreased as time elapsed (Fig. 2a). However. in patients
with retarded healing, the decrease of the angle was extremely slow. In
patients with non union, the angle stayed at the same level (Fig. 2b).

The average time required for the measurement was 17 minutes
(range: 15-20). At each loading trial, none of the patients complained of
pain, or no other complication related to this measurement occurred.
Precision of the measurement was evaluated by the repeated
measurements of the case 1 treated with a cast including repositioning of
the leg and the echo probes. The percent coefficient of variation was
4.6 %. The linearity of the load and the bending angle was also assessed
by incremental increases of the load from 10 to 30 N. The linearity was
very high with a correlation coefficient of 0.9969.

ET anghe (depr ex)

BT sngteldepreed
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Fig.2a, b Time sequential change of the ET angle. The cases with
radiographic normal healing (2a left). The cases with delayed union and
non-union (2b right).

Discussion

With this method, noninvasive assessment of bending stiffness at
the healing site was achieved. The method could be applicable to
patients treated with conservative means as well as surgical intervention
using plating or intramedullary nailing. According to the results with
previous methods such as stain gauge methods * and the invasive
method by Jemnberger *, strain or deformation by loading at the healing
site has been reported to exponentially diminish over time in patients
with normal healing. Bending angle measured by ET also diminished
over time exponentially in patients with normal healing. On the
contrary, in patients with healing arrest, no significant decrease of the
bending angle was recognized.

It was demonstrated that the echo tracking method could be

applicable clinically to evaluate fracture healing as a versat quantitative
and noninvasive technique.
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