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Nonlinear Finite Element Model Predicts Vertebral
Bone Strength and Fracture Site

Kazuhiro Imai, MD, PhD, Isao Ohnishi, MD, PhD, Masahikb Bessho, MD,

and Kozo Nakamura, MD, PhD

Study Des:gn A study on computed tomography (CMN-

based finite élement (FE) method that predicts vertebral
" strength and fractiite site using’ human cadaveric speci-
mens.

Objective. To evaluate the accuracy of the nonllnear
FE method by comparing the predicted data with those of
mechanical testing.

Summary of Background Data. FE methods may pre-
dict vertebral strength and fracture site but the prediction
has been difficult because of a complex geometry, elas-
topiasticity, and thin cortical shiell of the vertebra.

Methods. FE models of the 12 thoracolumbar vertebral
specimens were constructed. Nonlinear FE analyses were
performed, and the yield load ‘the fracture load, the sites
where elements failed, and the-distributioh of minimum
principal _strain. were. evaluated..A. quasi-static uniaxial
compression test for the same specimens was conducted
to verify these analyses.

Results. The yield loads, fracture loads, minimum
principal strains, and fracture sites of the FE prediction
significantly correlated with those measured.

Conclusions. Nonlinear FE model predicted vertebral
strength and fracture site accurately. .

Key words: vertebral fracture, osteoporosis, fracture
strength prediction, nonlinear finite element analysis,
fracture site. Spine 2006;31:1789-1794

Most vertebral fractures among the elderly occur be-
cause of their skeletal fragility due to osteoporosis. To
assess the risk of vertebral fracture and its prevention, it
is essential to predict vertebral bone strength. Clinically,
measurement of bone mineral density by quantitative
computed tomography (QCT) and dual energy radio-
graph absorptiometry (IDXA) have been used to predict
vertebral strength. However, the correlations between
vertebral strength and bone mineral density measured by
QCT are reported to be 0.37 to 0.72'~ and those with
DXA are reported to be 0.51 t0 0.80.*~ Therefore, such
methods only explain 40% to 80% of vertebral strengrth.
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- other hand, the resolution of a

Finite element (FE) models based on data from QCT
may predict vertebral strength more accurately because
they assess geometry, architecture, and heterogeneous
mechanical properties of the bone. CT-based FE models
are known to be able to make accurate predictions on
fracture loads for femur.*~!* For vertebra, there have
been several atrempts to predict fracture strength, and
the correlations between compressive verrebral strength
and predicted strength were reported to be high (r =
0.89-0.95).13-¢ However, the slopes of the regression
line between the measured fracture loads and the pre-
dicted were much less than 1.0 (0.569-0.86), and no
quantitative prediction could have been made with de-
pendable accuracy. Furthermore, previous models did
not compare the fracture sites within a whole vertebra.
For clinical application, it is essential for a simulation
merhod to be able to predict both vertebral strength and
fracture sites because these are the requisite predictors of
a vertebral fracture.

Prediction of vertebral fracture has been difficult be-
cause of complex geometry, elastoplasticity, and thin
cortical shell of the vertebra. The vertebra has elaborate
architecture and geometry with curved surfaces, which
cannot be realistically modeled with eight-noded hexa-
hedron elements. Previous mechanical tests showed that
there was a difference between tensile and compressive
behavior of the bone.'”"'* The compressive behavior
showed nonlinear behavior. Therefore, a nonlinear FE
model should be used to predict the clinical fracture load.

The cortical shell of the vertebra is estimared to be
thin with a thickness of less than 0.5 .27 On the
clinically available CT
scanner is very low with a pixel spacing larger than 0.25
mm. With the currently available CT resolution, a thin
corrical shell cannot be precisely modeled. The thickness
tends ro be overestimated and its density to be underes-
timated.>*** Therefore, it would be necessary to con-
struct a thinner part of the corrical shell from dara tharis
independent of QCT data.

The purpose of this study was to establish a nonlinear
FE model that predicted the vertebral strength and the
fracture sites, and then to evaluate the accuracy of our FE
model by performing mechanical testing with human ca-
daveric specimens.

B Materials and Methods

Twelve thoracolumbar (T11, T12, and L.1) vertebrae yvirh no
skeletal pathologies were collected within 24 hours of death
from 4 males (31, 53, 67, and 83 years old). Causes of death for
the four donors were mvelodysplastic syndrome, pneumonia,
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adult T-cell leukemia, and bladder cancer, respectively. All of
the specimens were obtained at University of Tokyo Hospital
with the approval of our ethics committee and with informed
consent. They were stored at —70 C after each step in our
protocol. The vertebrae were disarticulated, and the discs were
excised. Then the posterior elements of each vertebra were
removed by cutting through the pedicles.

The vertebrae were immersed in water and axial CT images
with a slice thickness of 1 mm and pixel width of 0.351 mm
were obtained using Lemage SX/E (GE Yokokawa Medical
System, Tokyo, Japan) with a calibration phantom containing
hydroxyapatite rods.

Nonlinear FE Analysis. The CT data were transferred to a
workstation (Endeavor Pro-1000, Epson Direct Co., Nagano,
Japan). The three-dimensional FE models were constructed
from the CT data using MECHANICAL FINDER software
{Mitsubishi Space Software Co., Tokyo, Japan). Trabecular
bone was simulated using 2-mm linear tetrahedral elements,
and the outer surface of the cortical shell was modeled using
2-mm triangular-plates (Figure 1). The thickness of the cortical
shell was set as 0.4 mm based on the previous papers.>"~>* On
average, there were 41,133 and 3,191 tetrahedron elements
and triangular-plates, respectively.

To allow for bone heterogeneity, the mechanical properties
of cach element were computed from the Hounsfield unit vatue.

Ash density of each voxel was determined from the linear re-

gression equation created by these values of the calibration
phantom. Ash density of each element was set as the average
ash density of the voxels contained in one element. Young’s
modulus and vield stress of each tetrahedron element were
calculated from the equations proposed by Kevak et al'?
Young's modulus of human vertebra cancellous tissue was re-
porred as 3.8 to 13.4 GPa>*~*%; Young’s modulus of each tri-
angular-plate was set as 10 GPa. Poisson’s ratio of each element
was set as 0.4, which was used in the previous papers.'™**

A uniaxial compressive load with uniform distribution was
applied on the upper surface of the vertebra and all the ele-
ments and all the nodes of the lower surface were completely
restrained. The models were analyzed using MECHANICAL
FINDER. A nonlinear FE analysis by the Newton-Raphson
method was used. To allow for the nonlinear phase, mechani-
cal properties of the elements were assumed to be bilinear elas-
toplastic, and the isotropic hardening modulus was set as 0.05,
which is generally used in the analvsis of concrete materials.

Trabecular Bone

Cortical Shell NG
L

an

o
0.4mm 2mm :
Figure 1. A finite element model of a whole vertebral body. Tra-
becular bone was simulated using 2-mm tetrahedron elements,
~and cortical shell was modeled by 2-mm triangular-plates with a
thickness of 0.4 mm. This model consisted of 12,938 nodes with
70,022 tetrahedron elements and 3,586 triangular-plates.

Copyright © Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.

121

Each element was assumed to yvield when its Drucker-Prager
equivalent stress reached the element yield stress. Failure was
defined as occurring when the minimum principal strain of an
element was less than —10,000 microstrain. Vertebral yield
was defined as being when at least one element yielded, and
vertebral fracture was defined as being when at least one ele-

-ment failed. The yield load, the fracture load, the sites where

elements failed, and the distribution of minimum principal
strain were analyzed.

Quasi-Static Uniaxial Compressive Load Testing. To ver-
ity the simulations, a quasi-static uniaxial compression test of
each vertebra was conducted. Load, cross-head displacement,
and principal strain at the vertebral surface were measured. To
restrain the specimens for load testing, both upper and lower
surfaces of the vertebrae were embedded in dental resin (Os-
tron; GC Dental Products Co., Aichi, Japan) so that the two
surfaces were exactly parallel. Then the embedded specimens
were placed on a mechanical testing machine (TENSILON
UTM-2.5T; Orientec, Tokyo, Japan)and were compressed at a
cross-head displacement rate of 0.5 mm per minute. A com-
pression plate with a ball joint was used to apply a uniform
load onto the upper surface of the specimen. The applied load
was measured by a load celt (T-CLB-5-F-SR; T. 8. Engineering,
Kanagawa, Japan). The load and the cross-head displacement
were recorded using MacLab/4 (AD Instruments, Castle Hill,
NSW, Australia) at a sampling rate of 2 Hz. For 9 of the 12
vertebrae, one of the four rosette strain gauges (SKF-22358;
Kyowa Llectronic, Tokyo, Japan) was attached to each of an-
terior, left, right, and posterior surfaces of the vertebra. The
strain readings were recorded at a sampling rate of 0.5 Hz and
stored by a data logger (U-CAM-20PC-[; Kyowa Electronic);
then principal strain was calculated at each of the attachment
sites. The measured yield load was defined as the load that
reached the end of the plateau of the constant load increment
rate, which corresponded with the end of the linear phase on
the load displacement curve. The measured fracture load was
defined as the ultimate load achieved (Figure 2). To determine
the actual fracture sites, anteroposterior and lateral soft radio-
graph pictures (Softex, Kanagawa, Japan) and micro-CT
(MCT-CBIOOMEF: Hitachi Medico Technology Corp., Tokyo,
Japan) images scanned with 70 kV, 100 pA, and a voxel size of
107 um were obtained after the mechanical resting. The mi-
cro-CT images were processed and reconstructed to obtain the
images at the midsagittal cross section and at the midfrontal
cross section. The sites and the types of experimental fractures
were judged from the soft radiograph pictures and the recon-
structed micro-C1 images.

A three-dimensional surface acquisition system using an im-
age encoder (VOXELAN; Hamano Engineering, Kanagawa,
Japan) was used to identify the gauge attachment sites on the
shell elements by matching the three-dimensional surface image
with the FE model. All three images, i.¢., the three-dimensional
mesh model, the two-dimensional digitized image, and the
three-dimensional surface image, were matched and the strain
gauge attachment sites were then identified (Figure 3). The
minimum principal strain was caleulated with an applied load
of 1,000 N, under which all specimens were in the elastic phase.

Pearson’s correlation analvsis was used to evaluate correla-
tions between the predicted and the measured fracture loads, as
well as between the predicted and the measured minimum prin-
cipal strains. :
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Figure 2. The definition of the ex-
perimental yield ioad and the
fracture load. The experimentally
measured yield load was defined
as the load that reached the end
of the constant load increment
rate. The measured fracture load
was defined as the ultimate load
achieved.

m Results _ _

There was a significant linear correlation between the
yield loads predicted by the FE analysis and those of the
measured (r = 0.949, P < 0.0001) (Figure 4). The cor-
relation between the FE predicted fracture loads and the
measured was even stronger (r = (0.978, P < 0.0001),
-and the slope of the regression line was 0.8807 (Figure
5). There was also a significant linear correlation be-
tween the FE predicted minimum principal strain and the
measured (r = 0.838, P < 0.0001) (Figure 6).

There were two types of experimental fractures. Ob-
vious fracrure lines were recognized in six vertebrae.
There were no obvious fracture lines in the other six, bur
they had apparent residual deforinities after the mechan-

3D mesh model
Mesh size: 2.0 mm

2D digitized image
2048x1536 pixels

T ¢ e_'?“iféﬁfﬁl

Fratturel’

B raccncane
£

€ross -head displac emerd Gam)

ical testing. The anterior part of the vertebra was com-
pressed in three of the six. The other two sustained mid-
dle part compression and in one there was compression
of the entire vertebra. ,

The experimental fracture line in the specimen was
found ro pass through a region of the failed elements on
the simulationmodel (Figure 7). In addition, the FE anal-
ysis of the minimum principal strain at the midsagireal
section disclosed that the area with a large absolute value
of this predicted minimum principal strain agreed well
with the experimental fracture site and chat it visualized
the fractured area.

In the specimens with anterior compression, marked
radiolucency was recognized at the anterior parr of the

3D surface image
Pixel size: 0.256 mm

»Irgage matching

&
P

Registration 2
: ,

Figure 3. A three-dimensional
surface acquisition system was
employed to identify the gauge at-
tachment sites by matching the,
three-dimensional surface image
with the FE model. The three-
dimensional mesh model, the two-
dimensional digitized image, and

~ the three-dimensional surface im-
age, were matched and the strain
gauge attachment sites were then
identified.
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Figure 4. The experimentally measured yield loads versus the
yield loads predicted by the finite element (FE) analySIS They were
significantly correlated.

vertebra, where the trabecular pattern was observed to
be very coarse (Figure 8). The FE analysis showed rthat
the failed elements appeared at the same anterior part as
the area with coarse trabeculae. Likewise, the area with
large absolute value of the minimum principal strain lo-
calized at the anterior part, which agreed with the area of
the experimental compression fracture.

m Discussion

The correlations between the imeasured values of fracture
strength and the predicred values with the FE model were
very good (r = 0.978) and better than the previous FE
studies (r = 0.89-0.95). The characteristics of the FE
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Figure 5. The measured fracture loads versus the fracture loads
predicted by the FE model. The correlation was much better with
" a slope of 0.8807.
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Figure 6. The values of measured minimum principal strain versus
those of minimum principal strain predicted by the FE model.
Significant correlation was also obtained.

model in this study were as follows: adoption of tetrahe-
dron elements to precisely model surface curvatures of
the entire verrebra, utilization of nonlinear analysis to
match the elastoplasticity of the vertebra in compression,
construction of cortical shells on the surface of the
model, and adoption of Drucker-Prager equivalent stress
instead of von Mises stress as a criterion of an element
yield. Which of these factors contributed mnost to the
results was not determined in this study because we did
not separate these characteristics to analyze each factor’s
contribution. Clarification of this feature will be one of
our targets for the next study.

With tetrahedron elements, it was possible to create a
more proximate, realistic and smooth surface contour
than with hexahedral elements, which could possibly
avoid any artificial stress raisers.

With the currently available CT resolution, strength
of the cortical shell tended to be underestimared. In CT-
based FE models, density of this shell has been underes-
rimated because it is dependent on its Flounsfield unit
value. It has been reported that in previous experiments
thin cortical shell of the vertebrae contributed approxi-
mately 10% to the overall vertebral strength in healthy
individuals and the contribution of the cortical shell was
estimared to be significantly larger in osteoporotic indi-
viduals.>*? Thus, the imporrance of the strength of the
corrical shell should be taken into consideration in pre-
dicting the fracrure load of osteoporotic individuals.

Overaker et al set the thickness of the anterior cortex as
0.6 mm and thar of the posterior as 0.4 m; they set the
cortical Young’s modulus as §, 6, 7 GPa. They concluded
that Young's modulus nf 7 (Pa precisely correlated with
the experimental result.?” Liebschner et al ser the thickness

- as 0.35 mm and Young's modulus as 0.475 GPa."” We
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Figure 7. The reconstructed micro-CT images (A, anterior; P, posterior), the failed elements, and the minimum principal strain distribution
at the mid-section analyzed by the FE model. The failed elements appeared right on the actual fracture line. The minimum principal strain

distribution agreed well with the experimental fracture line.

constructed a cortical shell with a thickness of 0.4 mumn and
Young's modulus of 10 GPa. The cortical area with a thick-
ness of more than 0.4 mm was modeled with both the shell
and the tetrahedron element adjacent to the shell.

Young's modulus of human cortical bone has been re-
ported to be 15 GPa,*! 19.9 GPa (dynamic), and 16.2 GPa
(static).>* Young’s modulus of human vertebra cancellous
tissue was reported as 3.8 10 13.4 GPa,>>=*% bur few data of
cortical shell have been available. Thus, it was necessary to
set our own value. Young’s modulus of the cortical shell
obtained from the QCT data were 7 GPa. QCT underesti-
mated the cortical shell density, so the actual density was

“estimated to be higher than that derived from QCT. There-
fore, we set Young’s modulus as 10 GPa, and then the
values of the minimum principal strain were accurately pre-
dicted with a correlation coefhcient of 0.838 and a slope of
the regression line of 0.9288.

In previous studies, von Mises equivalent stress has
been used as the criterion of yield.*!%!* For ductile ma-
terials such as metals, von Mises criterion would be ef-
fective, but for bones it seems more appropriate to use
Drucker-Prager equivalent stress. The yield strain of hu-
man vertebral trabecular bone was reported —7,000 to
—10,000 microstrain:'”!* Therefore, we adopted mini-
mum strain of —10,000 microstrain as a criterion for
element collapse. '

Some previous reports described the inechanical prop-
erties of human bone. We tested three theories: Carter
and Hayes™ property,”>3* Keller’s,>® and Keyak’s.'’
With Carter and Hayes® property, the predicred fracrure
loads were aboutr 60% and using Keller's, the predicted
fracture loads were about 120% of those of the experi-
ment. Accurate prediction could be made with Keyak’s,
although further investigations will be necessary to ob-
rain the actual mechanical propertics of human vertebra:

In this investigation, prediction of the ultimate Joad
was more accurate than that of the yield load. One pos-

Figure 8. Radiogram after the me-
chanical testing, showing sparse
trabecula in the anterior part of the
vertebral body. The failed ele-
ments agreed well with the site of
the experimental fracture. The
minimum principal strain distribu-
tion also agreed well with the area
of the experimental fracture.
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sibility was that determination of the experimental yield
load was not appropriate. The ultimate load was clearly
determined, but the yield load was objectively deter-
mined from load versus displacement curves by calculat-
ing the Joad increment rare (Figure 2).

There were two types of vertebral fracture: one
showed fracture line and the other showed no fracture
lines but had apparent residual deformities. Both frac-
ture types could be predicred. Fracture location was most
accurately predicted by the distribution of very low levels
of the minimum principal strain. Therefore, we specu-
lated that fracture was initiated at the sites of failed ele-
ments and propagated along with the area with very low
minimuin principal strain.

The prediction was made under a very simple loading
condition with quasi-static uniaxial vertical loading. The
condition was the simplest, but it minimized experimental
error, which might have occurred to some degree with com-
plicated loading conditions. Arbitrary toad magunitude or
direction can be set for the same simulation model. So it is
possible to analyze strength or fracrure site of vertebrae for
loading conditions that actually cause fractures, althoughit
would be very hard to create these fractures under an ex-
perimental condition. 'T'o predict in vivo behavior of spinal
bones is another target for our nexr study.

To verify our model, we evaluated three factors: fracture
strength, fracture site, and strain on the surface of the ver-
tebrae. Predicrion of only fracture strength would not be
adequate to evaluate the accuracy of FE analysis. Predicted
fracture sites should also be matched with those of the ex-
periment, and the process by which deformation of the
vertebrae proceeds should be simulated. To attain this, we
used strain gauges to measure surface strain throughout the
loading process. This has not been done in previous studies
investigating the accuracy of a simulation model.

The limitation is the cortical shell was treared as a
homogeneous material because the pixel spacing with

. Unauthorized reproduction of this article is prohibited.
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CT is too large to model the thin cortical shell. If a CT
with improved resolution becomes available, it would
make it possible to model the cortical shell with hetero-
geneous properties, thus enabling creation of a more re-
alistic model.

There is another limitation. The posterior portion of the
vertebra was excised in this study. A three-dimensional sur-
face acquisition system using an image encoder was used to
identify the gauge attachment sites on the shell elements.
With the posterior portion of the vertebra such as lamina or
spinous process, obtaining three-dimensional surface im-
age of the posterior part of the vertebral body should be

_interfered. Tt was one of the reasons why the posterior
portion of the vertebra was excised. Clinically, most of
the vertebral fractures occur at the vertebral body. How-
ever, the posterior portion of the vertebra might share
some ratio of axial loading. Therefore, loading environ-
ment in the in vivo situation may be different from thatin
this study. To predict in vivo behavior of spinal bones,
the posterior portion of the vertebra must be included.

The cadaveric specimens were all extracted from
males, whose bone quality might be somewhat different

* from thar of females. To use this model as a diagnostic
tool for osteoporosis, it would have been better to use
specimens fromn both males and females. Validarion of
accurate prediction by the FE model in an experiment
using female cadaveric specimens will be another target
of our future study. Furthermore, true efficacy of this

method will be validated after a large-scale cohort study |

investigating the association between the predicted frac-
ture loads in the study groups and the occurrence rates of
acrual fracture in the same groups. It is expected that this
method will bé valuable in estimating fracture risk of
vertebrae in osteoporotic individuals.

‘W Key Points

o Vertebral strength and fracture site were accurately
predicted using nonliriear finite element model.

¢ The minimum principal strain at the vertebral
surface was also predicted. ,
o The experimental fracture sites corresponded with
the sites where the elements were predicted to fail.
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Prediction of Strength and Strain of the Prox-
Method

Masahiko Bessho  ‘Isao Ohnishi
Jmtaro Matsuyama Takuya Matsumoto
Kazuhiro Imai Kozo Nakamura

(T based finite element analysis could possibiy achieve
mecise assessment of the strength of the proximal
femur. The purpose of this study was to create a simula-
tion model that could accurately predict the strength of
the proximal femur using a CT based finite element
method and to verify the accuracy of our model by load
tsting using fresh frozen cadaver specimens. Eleven
right femora were collected. The axial CT scans of the
moximal femora were obtained with a calibration
pantomn, from which the 3D finite element models were
onstructed. Nonlinear finite element analyses were
prformed and the yield load, the fracture load, the
mincipal strains were calculated and the sites where
dements failed were determined. The strain gauges
wre attached to the proximal femoral surfaces. A
quasi-static compression test of each femur was con-
dcted. The yield loads, the fracture loads and the
ginimum and maximum principal strains of the predic-
tion significantly correlated with those measured(r=
19419, 0.9794, 0.82919, 0.92891). Finite element analysis
siowed that the solid elements and shell elements in
wdergoing compressive failure were right at the experi-
mental fracture site. The CT based finite element
method we adopted in this study could be applicable for
dinical use.

Dept. of Orthop., The Univ. of Tokyo

mal Femur by a CT Based Finite Element

Subchondral Fatigue Fracture of the Femoral

Head in Healthy Ordinary People

Jong-Won Kim!
Yoo-Jeong Joon!
Kim-Hee Joong'

Nam-Kwang Woo!
Min-Byung Woo?

Subchondral fatigue fracture of the femoral head
(SFFFH)is a rare condition and has been reported to
occur in young military recruits. We found that SFFFH
occurs in healthy ordinary adults and evaluated the
clinical characteristics. Between June 2002 and
August 2004, five SFFFHs in four ordinary adults(3
men and 1 woman in 30's or 40 s)treated. In two cases,
hip pain developed after increased activity but no
patient had a history of trauma. On the initial radio-
graphs, definite abnormal findings, fracture line and
collapse of the femoral head, were observed in one case.
Bone scintigram showed increased radionuclide uptake
in the femoral head. In all cases, magnetic resonance
images demonstrated a localized or diffuse bone-
marrow-edema pattern and a subchondral fracture line
(MR crescent sign). The pain decreased gradually and
disappeared within six months, with correspondingly
improved MR findings. In one male patient, contralater-
al hip pain developed 2 years later and it was diagnosed
as transient osteoporosis of the hip(TOH) because frac-
ture line was not detected on MR imagé&lt is found that
SFFFH occurs in healthy ordinary adults. This fracture
can lead to collapse of the femoral head. The fracture
should be differentiated from osteonecrosis and TOH.

! Dept. of Orthop., Kwangju Army Hosp.,, Kwangju,
Korea  ?Dept. of Orpthop., Keimyung Univ. Dongsan
Medical Center, Daegu, Korea
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A new method for evaluation of fracture healing by echo tracking
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Prediction of the strength of the proximal femur by the
QCT and the CT/Finite element method

HRKZFERZHBHIR

OflFf HiZ, XBE=SH, ik Ak,

BUMEAREE, K8 Bt i #=

(B8] EROIEHENFEITELCT/ERESR
BickBNT, EFRTALL LI KHEBEMSO RS
ERMAHETCE I L TRNLRN 2T - 22,
[FE] HRi2, SHEBEOLEREILT, 65
(FEH959:8) BV Fodx— (25mg/day) IR
B, 38 (FEH66E) &, Ve Foi—+}
(25mg/day) & ¥# I VK2 (45mg/day) DEFREE
Thot. GEBASOEKADL LBEORES
8T, WARBEMAEE L NIRI2 » AR KBBR8
DEENCTIRE L, DEXART % T-%. £82H
CTE{E (QCT) 76 . HMRBI3mmD4ELY Y
v FREE, BERIC0.4mmD3ig s < VEX
EEAL, SRLBARENEFVEERL /.
BERIEERIIHLTERY 7 v P 2DCTHH
CLRBRICEDEHE LA MEBRERISERON
BIiHET3BEE,» B4 I2EAL, Zhizy
BT2EROMBEHIHONTE, Yy rEL
LU RIG 7113 Keyak (1998) 5, Kellar(1994) 59
FEICEDREL A, WEAKEMAR, EHLE
BMLERGFE LA ERRSBOATHALD,
9 2D REIMGEF & 1% DT 17 35 5 R
&, DEXAZ L3 HBDBEEOBEE LI K-
fz. QCTIZ & 3 ARERLMBOTRIFOBER S
HORILDRET £ 1T 5 7. )

(&R] MiESE®RI2y B CPRIFGREOEILIE,
VBT, 4.8%ML 7. £7-, DEXA®IZ K
SBEBOENIE, 1.9%08MMH -7~ TR
WRUT, T RCDEMCEFSBFCH -7, B
 EEATEADEL, BEEOMMZ, TEHER
PHBRBAAIZHMT 3EENZS > 71,

[Z5, &%) DEXABE H&T 5 L, #mEHk
<, BREDAEILADEXAE L D LRSS E
{RUBTEATMEESEANS S, /2, KHRL, B
BEDRATICEHTESARNELSD . SHBE
FlEBP LENYRYESEIT>THELY,

1-D-26 '
AREABREEFBTIREHERCHT
% GAMMAS D BERGRIS 1 D XARETAH

Xray findings of femoral head maintenance force of
GAMMARS in older unstable trochanteric fractures’
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Stress analysis of the external fixator pin cluster using
a patient specific CT/FEM
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‘Analysis of the Stress Distribution at the Pin-bone lnterface of the External ;
Fixation Using a Patient Specific CT - CAD-based Finite-Element Method

S. Ohashi’, 1. Ohnishi’, T. Matéumotou, M. Bessho', J. Matsuyama, K. Nakamura

“Department of Orthopaedic Surgery, University of Tokvo. Tokyo,

Abstract: Pin loosening is one of the major complications of external fixation and assumed 1o occur at the i
site of stress concentration. The purpose of this study was to evaluate stress distribution on pins and the surrounding bone by V
means of an originally developed CT « CAD-based finite-element method (FEM). With the CT images of the 32-year-old male
patient and the CAD data of an external fixator. the FEM model of a femoral mid-shaft fracture stabilized by the external fixator
was created. A physiological load of 500 N was applied on the femoral head to investigate the stress distribution of both the bone
and the pins. The FEM analysis showed the high stress concentration at the pin insertion site of the cortical bone away from the 3
fracture. The stress dircction of the pin surface at the insertion sites was tensile in the pins away from the fracture and ;
compressive in the pins close to the fracture. These results were compatible with those of the previous studies that conducted o
mechanical testing. We believe this patient specitic CT « CAD-based FEM is useful to preoperatively plan the placement of the
screws and the fixator as well as to optimize the design of the external fixation devices to minimize stress concentration at the pin-
bone interface. Key words: Finite element analysis, External fixation, Pin, Stress distribution. Fracture
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Fig. § Tensor Stress Distribution of the Pin Surface
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A Preliminary Study on Assessment of the Lag Screw Bone Interface
. Using a CT Based Linear Finite Element Analysis

T. Matsumoto®, 1. Ohnishi *, M. Bessho®, S. Ohashi*, K. Nakamura®

* University of Tokvo, Tokyo. Japan ~

ABSTRACT: The purpose of this study was to establish a FI: model which was able to simulate a
postoperative condition of tﬁe trochanteric fracture and then to evaluate stress and strain distribution
at the bone iﬁplant interface. Dicom data of axial CT 'sc-ans of the proximal femur were obtained
with a calibration phantom, from which a 3D finite element model was constructed. A 3D CAD
model of a compression hip lag screw was also created and inserted into the bone model. Linear FE
analyses were pérf"bfmed for each FE models with the screw. As a result, the more proximal the
screw was inserted, the higher were the‘equivalenl stress and the minimum principal strain at the
screw bone interface. | 4

Key ward: hip fracture, osteoporosis, finite element analysis
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