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Fig. 1. Reference markers on the (a) flucroscope and ( b) pelvis.

where dist(-) is the Euclidean distance between two points, and p’.,
. and p,. are the hip rotation center assumed in computation and the po-
sition tracked by the optical localizer. Let T civisaracker be the latest
transformation matrix of the pelvis reference marker. The tracked po-
sition can then be obtained by : :

pelvisaracker

DPre = dpelvistreacker Pie (2)

where Pivis-tracker), s determined by the femoral head center local-
ization in the CT volume and the first registration step. '

A hybrid similarity measure that combines the constraints given by
the hip joint rotation center tracking and the 2-D/3-D registration can
then be defined as

Ell}")l‘i(! = _Einm;.\v + % E]n»ili-)|| (3)

where 5 is a weighting coefficient.

The optimizing computation is based on the Powell method [4]. A
weighted search method [2] is employed for coarse optimization. and a
polynomial function fitting method [5] is then adopted for improvement
of depth accuracy.

III. EXPERIMENTS

A. Image and Position Data Acquisition

CT volumes were acquired using a HiSpeed Plus scanner (General
Electric Co.. USA) with a voxel size of 0.68 x 0.68 x 1| mm® for the
fractured part and the femoral head. and 0.68 x 0.68 x 3 mm” for other
parts. Fluoroscopic images were taken intraoperatively using a Sire-
mobil Iso-C instrument (Siemens AG. Germany). The image size was
640 x 512 pixels. The positions of the fluoroscope and the pelvis were
obtained for each registration step using an optical localizer (Optotrak,
Northern Digital Inc.. Waterloo. ON, Canada). The reference markers
(Fig. 1) were attached to the image intensifier cylinder of the fluoro-
scope and the pelvis (C-arm Tracker and VersaTrax Tracker. Traxtal
Technologies Inc.. Toronto. ON. Canada). The pelvis tracker shown in
Fig. 1(b) can be fixed to the patient’s lumbcus using a silicone belt with
Velcro tape for hipline length adjustment. The silicone belt has two
fixation holes that fit to the anterior-superior-iliac spine around the left
and right sides of the pelvis to ensure that the tracker is immobilized
against the patient’s body.

B. Simulations

CT images of five patients and two phantoms were used in simu-
lations of the proposed tracking method. For use as fluoroscopic im-
ages to be input into the simulation. digitally reconstructed radiographs
{DRRs) of each original CT volume were generated from arbitrary
viewpoints determined so as to emulate the real dimensions of fluo-
roscopy during surgery. The initial positions of the fragment registra-
tion were determined by random perturbation from the original position
in the CT volume. The standard deviation of the perturbation was 3 mtn
for translation and 3° for rotation. The overlap of bone or soft tissue in
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Fig. 2. DRRs for simulation. (a) Original volume. (b) Segmented volume
(proximal fragment only).

s

fluoroscopy hampers 2-D/3-D registration. For estimating such influ-
ences, segmented CT volumes of the fragments of the fractured femur.
pelvis. and soft tissue were used in simulated fluoroscopy. The DRRs
were then generated from the CT volumes of the proximal fragment
and the entire abdominal structure. In DRR generation, the CT volumes
of the proximal fragment were used to estimate the accuracy of prin-
cipal registration, and the original CT volumes were used to estimate
the overall accuracy and the influence of soft tissue overlap. Examples
of DRRs are shown in Fig. 2. The error at the femoral head center was

. computed statistically by comparing estimated positions with the orig- -

inal position. For accuracy validation, 100 trials of registration were
performed for each parameter set.

The results are summarized in Tables I and II. Averages, standard
deviations and, worst error are shown. The estimation accuracy was af-
fected by the overlap of soft tissue and bone. Nevertheless. the proposed
method was more robust than the single-view method, and provided
resuls closer to the real position. The component error of depth trans-
lation in the fluoroscopy coordinate system in particular was substan-
tially improved, for example. from 1.49 mm to 0.007 min in the case of
the full abdominal patient CT. The accuracy was also found to depend
on the spatial distribution of X-ray absorption in the target object. In
the case of the proximal fragment bor{e. the distribution may have rota-
tional symmetry around the femoral qéck axis, and the maximum prin-
cipal component of error variance was oriented parallel with this axis.
In the phantom CT experiment, the maximuin principal components
of the error distribution were 2.73° and 0.80° in the single-view and
proposed methods, respectively, representing contributions of 82.02%
and 79.03%. After removing the maximum principal component. the
residual errors were 1.28° and 0.41°, respectively. In the patient CT
experiment. the maximum principal components of the error distribu-
tion were 1.06° and 0.71°. corresponding to contributions of 44.68%
and 40.22%. and the residual errors were 1.18° and 0.86°, respectively.

C. In-Vitro Experiment

Two phantoms were used to simulate scenes of proximal femur
fracture in an in vitro experiment. Plastic pelvis and femur models
(Sawbones Pacific Research Laboratories, Vashon, WA) were fractured
and aligned using Styrofoam plates. The alignment of the fractured
fragments was determined based on a typical intertrochanteric fracture.
To find the “gold standard” registration. four fiducial markers (30-mn
glass balls) were embedded in the Styrofoam cover of the phantom.
ensuring that the markers did not overlap in the pelvis and femur
silhouettes in Auoroscopy. Four light-emitting diode markers were
also attached to the front of the phantom Styrofoam cover as reference
markers for optical tracking.

Fig. 3 shows the experiment setup. where arrows indicate the posi-
tions of reference markers. The phantom was placed on a carbon bed
{Mizuho. Japan). and the positions of the fluoroscope and phantom
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Redefining Performance Evaluation Tools for Real-Time
‘QRS Complex Classification Systems

Frédéric Leclerc, Cedric Dumez-Viou, and
Guy Lamarque

Philippe Ravier”,

Abstract—In a heartbeat classification procedure, the detection of QRS
complex waveforms is necessary. In many studies, this heartbeat extrac-
tion function is not considered: the inputs of the classifier are assumed to
be correctly identified. This communication aims to redefine classical per-
formance evaluation tools in entire QRS complex classification systems and

to evaluate the effectsinduced by QRS detection errors on the performance .

of heartbeat classification processing (normal versus abnormal). Perfor-
mance statistics are given and discussed considering the MIT/BIH database
records that are replayed on a real-time classification system composed of
the classical detector proposed by Hamilton and Tompkins, followed by a
neural-network classifier. This study shows that a classification accuracy
of 96.72% falls to 94.90% when a drop of 1.78% error rate is introduced
" in the detector quality. This corresponds to an increase of about 50% bad
classifications.

Index Terms—Classification, hardware implementation, heartbeat
recognition, neural network, QRS complex detection.

1. INTRODUCTION

The problem of heartbeat classification has been widely explored in
the literature [1]-[8]. However. real-time classification systems often
necessitate the detection of the cardiac beats before any classification
procedure. The cardiac beats are also refered to QRS complex shapes
where the letters stand for the three successive main phases of a car-
diac cycle. In such classification systems, classical performance eval-
uation tools becomne irrelevant since the detection errors are not taken
into account in the classification statistics. In this communication. we
therefore propose to:

+ redefine the classical performance evaluation tools taking the en-

tire classification system into consideration:

+ experimentally discuss the influence of the detection stage on clas-

sification results;
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« give material for finding the best compromise between the quality
of the detector, the quality of the classifier, and the computational
time in real-time classification systems.

In order to achieve these goals, we implemented a simple real time
classification system on an electronic board. The proposed system is
composed of a QRS complex extractor (detection part) followed by
a normal or abnormal peak recognition step (classification part). Ab-
normal beats are opposed to normal beats according to their QRS wave-
form shapes.

For instance, a normal/abnormal classification system may be useful
for Holter monitoring where only the critical parts as well as the car-
diac history (i.e., peak-to-peak intervals) are of medical interest. It is
not worth recording the healthy electrocardiographic (ECG) samples.
The amount of data can therefore be drastically reduced and the entire
breakdown will be shorter since the physician will devote his or her
expertise to the critical parts of the ECG signal, while also taking into
account the peak-to-peak intervals of the entire monitoring.

Several algorithms have been proposed in the literature for the de-
tection and classification of ECG beats. Since our system has to be
embedded with real-time processing constraints, the computation cost
must be low. Various approaches (wavelets [9], [10]; filter banks [11];
and neural networks [12]) have been investigated to improve the quality
of the detectors. However. the gain obtained is generally offset by the
greater complexity of the algorithms. involving higher computational
costs. Itis the reason why the well-known Hamilton and Tompkins [ 13],
[14] detector has been chosen here. Similarly, many methods have been
investigated for the classification part (neural networks [1]-[3], fuzzy
theory [3]. [S]. support vector machine [4]. higher order spectral tech-
niques [6], and hidden Markov models [7]....). A neural-network ap-
proach has been adopted in this study because its parallel processing
implementation is well adapted to real-time constraints.’ Finally, we
tested the system on the Massachusetts Institute of Technology-Beth
Israel Hospital Arrythmia Database (MIT-BIH) [15] since this data-
base is commonly used for performance evaluations of detection or
classification algorithms. ‘

This communication is organized as follows. The classification
system is introduced in the second part. Such a system leads to the
redefinition of the performance evaluation tools in the third part.
These new tools are tested on real data in the fourth part, considering
real-time classification of the MIT/BIH recordings. The communica-
tion ends with discussions and conclusions.

II. NORMAL/ABNORMAL. REAL-TIME BEAT CLASSIFICATION SYSTEM

After digitizing the analog ECG signal through a 16-b analog-to-
digital converter (ADC) using a 360-Hz sampling rate. the aleonthmu.
part is divided into two main functions (Fig. 1).

1) The ECG beat extractor detects QRS complex waveforms and
extracts ECG waveform patterns after they have been normal-
ized and centered about the fiducial point. Two versions of the
Hamnilton and Tompkins detector have been real time implemented
[13]. [14]: the first one includes the search back procedure (SB+)
and the second one does not (SB—).
the neural-network classifier that is fed by Fourier coefficients
of the ECG waveform patterns provided by the previous stage.
The classifieris a multilayer perceptron (MLP) [16] with 16 input
nodes (16 first absolute values of the 128 Fourier samples ex-
cluding the dc component). four neurons in the hidden layer. and
one output neuron. Each neuron labeled 1 to 5 has four inputs
and one output with the classical associated sigmoidal activation
function y,(n) = {1)/(1 4 ¢~%""’*+"1)_ where n is the number
of QRS pattern to be classified and j is the neuron number. The
value ©,(») is the net internal activity level of neuron j and is
equal to ,(n) = S°1_ wiri(n).for j = 1to4and r5(n) =

9
~
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TABLE 1
ESTIMATION ERROR FOR TRANSLATION IN SIMULATION

Phantom [mm]
{proximal fragment only)

Phantom [mm]

Patient [mm)

(proximal fragment only) Patient [mm)

S-ingleoview method 0.124+0.32 (1.03)

1.07+£2.76 (11.314)

0.00611+0.27 (0.74) 1.914+2.43 (8.29)

Proposed method 0.00047+0.013 (0.11)

0.04440.058 (0.21)

0.51£0.30 (0.86)

0.00046+0.0061 (0.029)

TABLEI
ESTIMATION ERROR FOR ORIENTATION IN SIMULATION

Phantom {degrees]
(proximal fragment only)

Phantom Idegi'ees]

Patient {degrees]

(proximal fragment only) Patient [degrees]

Single-view method 0.18+1.11 (3.243)

1.40£3.02 (10.2)

0.0068+0.15 (0.41) 1.80£1.39 (5.37)

Propesed method 0.10+0.96 (2.92)

2.55£0.90 (5.06)

0.075£0.98 (1.90) 1.47£1.11 (3.45)

3

Fig. 3. In vitro experiment setup.

TABLE'TII
ESTIMATION ERROR IN IN VITRO PHANTOM I'EST

Orienlalibn crror [degrecs]
2.54£1.92 (6.32)
1.29£1.70 (4.23)

Translation error {mm]
2.52+2.02 (10.41)
1.83+0.51 (3.37)

Single-view method
Proposed method

were localized using an optical sensor. The phantom reference marker
was used as the reference marker for the pelvis. and also to track
the rotation center of the hip joint. Fluoroscopy was performed
simuitaneously. .

The errors are summarized in Table IIl. The translation error was
successfully improved by applying the proposed method. The max-
imum principal components of error variance for rotation were 1.58°
and 1 45° for the single-view and proposed methods, representing con-
tributions of 50.97% and 72.35%. respectively. The remaining error
was 1.55° and 0).89°. respectively.

[V. DiscussioN

Although some of the worst case results appear to have converged
at Jocal minima and are not clinically acceptable. most of the results
converged to acceptable values. In our experimenis. the convergence
behavior from initial bone positions was predictable in most cases. and
manual adjustment of the initial position corrected the result.

The bias error in the in vitro phantom test was greater than that indi-
cated by the simulations. This can be primarily attributed to positional
error in optical tracking, and is also a result of the use of DRRs as input
images in the simulation, whereas real fluoroscopic images were used
in the in virro test.

99

The overlap of soft tissue and other bones resulted in the appearance
of untrue edges in the CT volumes. In the single-view method. conver-
gence to local minima is caused in part by the overlap of other anatom-
ical structures, particularly the edge of the pelvis acetabular. The pro-
posed method avoids this effect and achieves successful registration in
such situations, primarily as a result of the positional constraint im-
parted by hip rotational center tracking.

As the constraint Ejy...iiion effectively compensates for the positional
inaccuracy in Ei,age. 2-D/3-D registration accuracy is improved by
the proposed method. particularly with respect to depth. This approach
does not require interactive C-arm re-positioning. and therefore will be
advantageous for reducing the time required for fracture reduction by
robotic surgery [7]. :

For real-time bone tracking, registration should be perfonned at
least 30 times/second. The computation time for the proposed method
at present is 300 s/registration by a PC (Xeon 3.2 MHz CPU. 2 GB
memory). and less than 10 s when computed on a parallel platform
consisting of 128 CPUs [8]. Therefore, somé supplemental technolo-
gies are required in order to introduce robotic surgery into practical
clinical settings. The robotic manipulators should move slowly for
safety. and some form of prediction (or extrapolation) techniques
should be introduced for bone motion to reduce imaging frequency.
As the method requires frequent imaging, the X-ray exposure dose to
both the patient and surgeons must also be considered. The Siremobi}
Iso-C instrument employed for pulse-mode fluoroscopy emits a strong
but instantaneous X-ray pulse that affords good-quality images at a
reduced total X-ray dose compared to continuous fluoroscopy. The.
X-ray dose for the present procedure is 0.92 mGy/min with imaging at
1 Hz. less than a half that of regular fluoroscopy (2.38 mGy/min).
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Abstract: Clinical data quantification of a fracture reduction has become important as the development of new fracture reduction
technology such as navigation and robot assisted fracture reduction. A reduction force and a reduction path are the key points in .
considering the control and safety of these new reduction methods. We have developed a clinical data logging system(CDLS) of
direct fracture reduction, which reduces using ring-frame connected bone fragment directly. The CDLS synchronously records the
reduction force, the reduction path and two video signals. One records the images from C-arm and the other records whole surgery

process. This paper introduces the structure of CLDS and the resultants of application to fracture model
Key words: Cllmcal data, Fracture reduction, Reduction force, Reduction path.
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