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Fig.8 Positioning test for 1 D.O.F bending motion

D. Invitro/in vivo test

In vitro and in vivo tests were performed as shown in Fig.9.
In the in vitro test, red colored guide laser was irradiated on
the surface of a Macaca fascicularis’s placenta underwater
and the bending angle was changed with the 4-directional
switch. The result showed that the laser target point was able
to cover the large area of the surface while the manipulator
itself is fixed.

For the in vivo test, Nd-YAG laser photocoagulation was
performed for the mesenteric vessels of a rat. The interrupted
blood flow of the photocoagulated vessels was confirmed,
which showed that this bending mechanism can deflect the
thin fiber of 0.7 mm without damaging it.

Fig.9. Invitro and In vivo tests (Left: guide laser positioning test for Macaca
fascicularis’s placenta underwater (in vitro), Right: laser photocoagulation
test for the mesenteric vessels of a rat (in vivo))

E. Discussion

Good performance of the developed manipulator was
confirmed in the in vivo test. When the manipulator was
controlled with the switch under the direct vision of the target,

WeB8.3

the operator easily controlled the tip of the manipulator to
his/her target point. Improvement of the positioning accuracy
will enable the combination of the manipulator and
navigation systems using endoscopic image, ultrasound or
MRI data.

On the other hand, problems with the handheld manipulator
interface were observed. When operators were allowed to
move the manipulator around a trocar while controlling
bending motion, they found it difficult to combine all
movements to position the manipulator’s tip as they want,
This problem was remarkable when the target area was placed
upper side. Another problem is the stagger caused by the
pushing the switch when the switch is attached to the
manipulator. Handheld manipulators such as [12] are studied
since the interface is expected to reduce the cost and be
familiar for surgeons, but its usability needs further study.

IV. VISCOELASTIC MODEL OF FETAL RAT TISSUE

A. Goals

Fetal tissue is described by surgeons as soft, fragile,
gelatinous, and difficult to handle. The fragility is one of the
technical difficulties of fetal surgery. However, the overall
mechanical properties of fetal tissue have rarely studied. To
establish fetal model based on its properties is important for
developing surgical robots such as a robotic patch stabilizer
in Fig.2 because the precise and delicate force control will be
necessary. Some studies insist that robotic force control using
organ model is important for handling soft organs [24,25].

In the following, the shear creep tests for fetal rat tissue are
reported and a viscoelastic model is proposed. Brain, lung
and liver tissues of an adult rat are also tested under the same
test conditions to illustrate the unique features of fetal rat
tissue.

B. Methods

Shear creep tests were conducted for the fetal rat tissue of 16
to 20 days gestation (Wistar rat: usually born at 21 to 22 days
gestation). A circular test piece of 8 mm in diameter was cut
out from the abdominal wall of each fetal rat. The abdominal
wall was chosen as a test piece to avoid the influence by
growing (hardening) bones. The back skin of the fetal rat
would be better as a test piece, but the skin was too thin to
perform the creep tests.

A rheometer (AR550, TA-Instrument, New Castle, DE,
USA) was used to perform creep tests at 0.1, 0.2, 0.3, 0.4, 0.5
kPa and 5 minutes for loading and 5 minutes for relaxing.
0.05, 0.075, 0.1kPa were loaded to the fetal tissue of 16 days
gestation since it fractured around 0.2 to 0.4 kPa. The test
piece was placed on a piece of sandpaper attached to the
specimen tray to fix the test piece in position. The test piece
was then pressed by a geometry plunger (8 mm in diameter)
to 0.1 N then shear stress was loaded. A piece of sandpaper is
also attached to the tip of the plunger for avoiding slip. Saline
water at 36 °C was filled in the specimen tray to simulate
intrauterine environment. These tests were performed within
12 hours after the sample resection.
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All experimental procedures were performed according to
our institutional animal ethics guidelines, which are based on
those of the National Institutes of Health of USA.

C. Results

The creep compliance of fetal rats (16 days at 0.1 kPa, 17-20
days at 0.5 kPa), adult rat brain(0.3 kPa), adult rat lung(0.5
kPa), and adult rat liver(0.5 kPa) was shown in Fig. 10.
Although the stress dependence was observed, all test results
showed viscoelastic properties with the features of
instantaneous deformation, retardation and residual strain,

The initial creep compliance represents the instantaneous
deformation due to the elasticity of the tissue. The gradual
increase represents the time-dependent deformation change
due to the viscosity of the tissue.

This result showed the big change of fetal tissue property
from 18 days to 19 days in gestations. In visual observation,
the fetal tissue is gelatinous before 19 days. It is known that
human fetal tissue property is also dramatically changed
around 19 weeks in gestation. The equivalent age of human
fetus is unknown, it is supposed that so-called gelatinous
human fetal tissue is similar the fetal rat tissue before 19 days
in gestation.
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Fig. 10. Creep compliance of fetal rats (16 days at 0.1kPa, 17-20 days at
0.5kPa), adult rat brain(0.3kPa), adult rat lung(0.5 kPa), and adult rat
liver(0.5 kPa).

D. TViscoelastic Model

As the first step toward establishing a fetal rat model, the
four element model (Burger’s model) was used to compare
the fetal rat tissue with other soft organs. The four element
model is often used for modeling biomaterials and it is
expressed with the combination of the Maxwell model and
Voigt model as shown in Fig. 11. The creep compliance
behavior of the model is expressed in (3) and (4), where J is
creep compliance, G, is elastic coefficient of Maxwell
element, 7,,is viscous coefficient of Maxwell element, G, is
elastic coefficient of Voigt element, 7,is viscous coefficient
of Voigt element, 1 is shear stress and U is step input.
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The results of the experiments showed in Fig. 10 were fitted
to the four element model to figure out the parameter values.
The identified coefficient values of each material are shown
in Table I.

TableI. Identified coefficient values of the four element model

Gm hm Gv hv  SSE

16 days 03 0.7 17.1E-05 0.7 13.1
17 days 03 48 -7.1E-05 54 1.5
18 days 02 110 1.6E-02 159 2.8
19 days 05 235 54E-03 250 0.1
20 days 05 246 72E-03 263 0.1
brain 03 118 22E-03 13.0 0.9
lung 02 131 4.2E-03 14.1 0.7
liver 1.0 9.5 4.8E-04 9.6 0.1

E. Discussion and Future works

The identified coefficient value demonstrates the
differences between materials. Low elasticity and low
viscosity are unique features of fetal tissue and its behavior is
totally different from other soft tissues.

Low elasticity and low viscosity means that the tissue is easy
deformable and its difficult to keep a constant stress on it. The
robotic patch stabilizer in Fig.2 needs to touch a fetus during
surgery while keeping adequate force on it because the patch
and the fetus must be in contact. The unique features of fetal
tissue require precise force control of the robotic patch
stabilizer to keep the close contact on it. Since it is supposed
to be very difficult for surgeons to control the force while
controlling the bending laser manipulator in the procedure in
Fig.2, semi-automatic or automatic force control will be
useful.

For the future works, the fabrication of fetal phantoms
having the similar mechanical properties of fetal rat is in
process. A prototype of the robotic patch stabilizer (2.4mm in
diameter, 2 D.O.F) has been developed using the same
bending mechanism as shown in Fig.12. We have confirmed
that the force on the tip of the stabilizer is estimated by
measuring wire tension, the next step is to develop a force
control method using the fetal phantom.
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Fig. 12. A prototype of the robotic patch stabilizer

V. CONCLUSION

The feasibility of the developed bending laser manipulator
was confirmed in vivo. Further improvement of the
positioning accuracy using wire tension sensors is future
work to achieve the combination of the manipulator and
navigation systems. The evaluated features of fetal rat tissue
and the proposed viscoelastic model will lead to the
development of a fetal phantom and a force control method of
the robotic patch stabilizer or other robotic applications.
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is an efficient diagnostic tool in the evaluation of abdominal
aneurysms and dissections and can be considered the
modality of choice in case of aortic branches involvement.
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Thoracoscopic thymectomy using high vision
flexible thoraco-videoscope

Hisashi Iwata, Koyo Shirahashi, Shinsuke Matsumoto,
Hirofumi Takemura

General and Cardiothoracic Surgery, Graduate School of
Medicine, Gifu University, Japan

Purpose: Recently, thoraco-videoscopic surgery for anterior
mediastinal diseases is generally performed. We performed
assisted thoracoscopic surgery (both direct vision and thoraco-
videoscopic vision) for mediastinal solid tumors such as
thymoma. We also performed complete thoracoscopic surgery
(only thoraco videoscopic vision) such as extended thymect-
omy for myasthenia gravis using high vision flexible thoraco-
scopy. High vision flexible thoraco-videoscope (CAT No.
R1443UB, Olympus, Japan) provides a phenomenal 1080
effective scanning lines of picture formation, and delivers
picture quality that is more than twice as good as conventional
videoscope. Methods: Our indication for complete thoraco-
scopic extended thymectomy is case without thymoma, with
appropriate thoracic cavity for working space and fat tissue,
under the informed consent of patients. Briefly, we used two
2cm ports at fourth and fifth intercostal space of anterior and
middle axillar line with Osaka university stermum elevation
method. Cervical incision and another port at fifth intercostal
space of middie clavicular line are used in some case. Result:
We performed thymectomyin 11 cases during 2 years. Six cases
were thymoma including 2 cases of myasthenia gravis. We
performed assisted thoracocopic thymo-thymectomy in all
cases. Thoraco- videoscopic vision was useful to understand
the phrenic nerve to preserve. We planed complete thoraco-
scopic extended thymectomy in 5 cases. One case was contra-
indication of ours due to high volume of fat tissue. One
converted to conventional procedure by median sternotomy
due to intra-thoracic adhesion. In one case, we used the high
vision flexible thoraco-videoscope. High vision field made
tissue detail clear and safe to perform operation in the thoracic
cavity. There were no serious complications. Conclusion: Our
surgical procedure using both assisted and complete thoraco-
videoscope was useful, in particular with the high vision flexible
thoraco-videoscope to make tissue detail clear.

JS1-7

Composite-type optical fiberscope for laser
surgery for Twin-to-twin Transfusion Syndrome
(TTTS)

Tetsuya Nakamura!, Kiyoshi Okaz, Hiromasa Yamashita®,
Hirohisa Ueda', Toshio Chiba®

IInc_uban:ion Center, Research & Development Headquarters,
PENTAX Corporation, Japan,

*Quantum Beam Science Directorate, Japan Atomic Energy
Agency, Japan,

*Department of Strategic Medicine, National Center for
Child Health and Development, Japan

Introduction: In fetoscopic laser photocoagulation of placen-
tal communicating vessels for twin-to-twin transfusion syn-
drome (TTTS), there are several technical issues. These
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include; 1) laser light diffusion that reduces the energy
density, 2) unknown distances between the placental surface
and laser fiber tip and 3) difficulties in assessing actual flow of
the targeted blood vessels. To sertle these problems, we
successfully developed a new small composite-type optical
fiberscope. Device specifications: Our optical fiberscope
(diameter: 2.2 mm) consists of a couple of collecting lenses
(focal length: 10 mm) and coaxially arranged two types of
optical fibers, one is a centrally located single fiber for laser
ablation and the other is surrounding bundle of fibers for
fetoscopic image. Furthermore, the fiberscope has two vital
functions, one is a distance measurement based on a reflective
light intensity and the other is a blood flow measurement
using the laser Doppler method. Experimental results: We
irradiated underwater porcine liver using our system and the
current devices and compared the ablation spots (gross
appearance, diameter and depth) with various conditions
(irradiation energy: 10~40 W, distance between the fiber tip
and the tissue: 5~20 mm). Changes in laser energy didn’t
affect the size of ablation parts if the fiber tip was set 10-mm
apart from the tissue. Next using anesthesized pigs, we tested
the accuracy of the distance measurement and blood flow
assessment before/after underwater mesenteric vessel irradia-
tions. We could measure both the distance to the target and
the blood flow in real-time with minimal errors. Conclusion:
Based on minimally-required laser energy presented intrao-
peratively by our new system, we may be able to achieve much
less invasive but adequate ablation of the vessels responsible
for TTTS. Additionally, this system is expected to serve as a
useful hemodynamic monitoring device for the target vessels.

J82-1 (Keynote Lecture)
Options and solutions for endoluminal and
transluminal surgery

Gerhard Buess
Division of Minimally Invasive Surgery, Department of
general surgery, Titbingen University, Germany

No Abstract
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Endoluminal fundoplication using the EsophyX
Marco Maria Liricil, Odertte Hasajz, Flora Salerno!, Andrea
Califano’

'Depatment of General and Thoracic Surgery, BMM
Hospital Reggio Calabria, Italy,

®S. Anna Hospital - Catanzaro

Gastroesopageal reflux is 2 common digestive tract disease.
GERD can lead to a variety of complications. Due to the high
prevalence of the disease and in order to prevent its
complications, a proper treatment is mandatory: proton pump
inhibitors being the most common therapy. Unfortunately
medications do not prevent reflux. In serious cases and in non
responding patients laparoscopic fundoplications may be
indicated. Unfortunately, laparoscopic fundoplication stili
presents significant risks. A new endoluminal option is now
available to trear GERD: Endoluminal Fundoplication using
the Esophyx (Endogastric Solution) device. The procedure is
still under evaluation. The first case of ELF by Esophyx
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performed at the Department of General Surgery of the BMM
Hospital is here reported. The patient signed an informed
consent form. Feasibility of the procedure is confirmed by
preoperative endoscopy. The procedure is carried on under
general anaesthesia with naso-tracheal intubation, Patient is
positioned on the left side. The EsophyX device is placed over
2 10 mm gastroscope, inserted transorally and advanced into
the stomach. The z-line is visualized through the window in
the EsophyX shaft. Vaccuum suction is created to hold the
esophagus while advancing the device till the z-line is at the
level of diaphragm, thus reducing the hiatal hernia. Once
the stomach and the esophagus are in the correct position, an
elycal retractor is deployed to engage stomach tissue and
pulled. A serosa-to-serosa flap tissue is created and drawn into
the tissue mold and locked in place. Polypropylene fasteners
are delivered across this flap (the future wrap to be created
around the cardias) using a stylet to penetrate the tissue and
a pusher to advance them. The serosa-to-serosa plication
(240 degree) is created by fyring around 12 to 14 fasteners.
Postoperative course was uneventfull, the patient disharged on
postop day 2. Early follow-up showed symptoms reduction.

JS2-3

Percutaneous endoscopic intragastric surgery
(PEIGS) in the treatment of gastric SMT located
close to the esophago-gastric junction

Takahiro Kinoshita', Eiji Kanehira?, Ryoji Kato'
"Department of Endoscopic Surgery, Toho University Sakura
Medical Center, Japan,

2Mim’mally Invasive Surgery Center, Yotsuya Medical Cube,
Tokyo, Japan

With better technical advances, an increasing number of
gastric SMT including gastrointestinal stromal tumors
(GISTs) are being resected laparoscopically using stapling
devices. However, for SMTs of intraluminal growing type
near the esophago-gastric junction (EG]) laparoscopic wedge
resection is impossible because of the fear of postoperative
stenosis. For these cases, endoluminal surgical approach
appears to be most suitable. Percutaneous endoscopic
intragastric surgery (PBIGS) is categorized within endolum-
inal surgery. In PEIGS three cannulae are inserted percuta-
neously into the gastric cavity, using a gastropexy device. The
gastric cavity is dilated by CO2 insufflation and full-thickness
resection including the tumor is carried out using a grasper
and a high-frequency hook under percutaneous endoscopic
view. With endoluminal view, we can clearly recognize the
tumor capsule to perform more accurate resection. After the
irrigation with saline ‘solutions, the full-thickness defect is
closed by endoscopic suturing. For the patients with
intraluminal growing SMTs located close to EG]J, PEIGS
can be the most beneficial therapy, though those candidates
are very limited. In this paper, we will present its rechnique.

JS2-4

Achievement to advanced intrauterine fetal
surgery with endoscopic miniature bending
manipulator

Hiromasa Yamashita?, Kiyoshi Matsumiya®, Ken
Masamune?, Hongen Liac®, Toshio Chiba!, Takeyoshi Dohi®
"Department of Strategic Medicine, National Center for
Child Health and Development, Japan,

*Graduate School of Information Science and Technology,
The University of Tokyo, Japan,

3Graduate School of Engineering, The University of Tokyo,
Japan

Purpose: We present the endoscopic miniature manipulator

(3.5-mm in diameter) with two degrees of freedom (DOFs)

bending mechanism for less invasive intrauterine fetal surgery.

This manipulator is useful especially for intrauterine myelo-

meningocele repair (IUMR), twin-to-twin transfusion syn-

drome (TTTS) and so on. Methods: OQur miniature

manipulator has bending mechanism controlled by the

original wire-guided linkage driving method to realize its

miniaturization with a central channel. Our 2-DOFs (hor-

izontal/vertical) bending mechanism performs an accurate
manipulation and a large bending angle between +90

degrees. And to mount a couple of different functions

(grasping, shearing, laser irradiation) for diverse surgical
procedures, the end-effector modules are easily replaceable.

In addition, the manipulator has, like other surgical tools, a
grip-type interface for single-hand control. The tip side of the
manipulator is detachable freely from the actuators and
interface side for easy cleaning and autoclave. Worthy of
note, the manipulator does not weigh much, approximately
500 grams. Results: The manipulator revealed high bending
accuracy in positioning with a minimal error of 0.1 mm, large
bending force of maximum 2.57 N (262 gf) and gasping force
of maximum 3.48 N, (355 gf). In phantom experiment with
intrauterine fetus model using two manipulators, we were able
to hand over the suture needle from one hand to another hand
underwater condition with only endoscopic view. And in laser
photocoagulation test with laser fiber, the manipulator
performed less irradiation energy loss with large bending
angle up to 80 degrees. Furthermore we ablated surface of
underwater chicken liver successfully. Conclusion: Our new
manipulator has high mechanical performance irrespective of
bending dimensions and/or orientations. This robotized
manipulator is sure to serve as a “new hand” for future
advanced fetal surgery with an introduction of “new eyes”’,
that are navigation system and small 3D scope.

JS2-5

A creation of gastric orifice using double-straight
needle device for the pre-stage of natural orifice
translumenal endoscopic surgery

Nobumi Tagaya, Mitsuru Ishizuka, Keiichi Kubota
Second Department of Surgery, Dokkyo Medical University,

Japan

Natural orifice translumenal endoscopic surgery (NOTES) is
currently studied as a potentially less invasive alternative to
conventional laparoscopic abdominal surgery. However, the
issue associated with the creation of gastric orifice is still
unsolved. Before applying NOTES, we introduce the simple
method for opening and closing the gastric wall using a
double-straight needle device under the assistance of 3-mm
miniaturized instruments. Animal models were anesthetized
and peritoneal access with flexible endoscope was obtained
under the lifting of stomach wall using a double-straight
needle device. Transgastric endoscope easily visualized the
abdominal cavity in all directions. The closure of gastric
orifice was preformed by the hand-sewn technique using the
thread for gastric wall lifting. Although the contamination of
gastric contents might have occurred during transgastric
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Miniature bending manipulator for fetoscopic intrauterine laser
therapy to treat twin-to-twin transfusion syndrome

H. Yamashita - K. Matsumiya + K. Masamune
H. Liao * T. Chiba * T. Dohi

© Springer Science+Business Media, LLC 2007

Abstract

Background Recent typical therapy for twin-to-twin
transfusion syndrome (TTTS) is selective laser photoco-
agulation of anastomotic communicating vessels on the
placenta using the fetoscopic approach. The difficulty of a
conventional laser device approach for this procedure de-
pends significantly on the placental location, so a new
robotized device is required to bend the direction of laser
irradiation flexibly within the narrow uterus.

Methods The authors designed a miniature bending
mechanism impelled by a wire-guided linkage driving
method that provides a stable procedure for bending laser
irradiation from —90° to 90°. Using this bending mecha-
nism, the authors developed a bending manipulator with a
diameter of 3.5 mm and a hollow central channel with a
diameter of 0.8 mm for passing a glass fiber for neodym-
ium:yttrium—aluminum-garnet (Nd:YAG) laser photoco-
agulation. The bending mechanism is motorized by an
electrical actuator and controlled by a grip-type interface
with a small joystick. The robotized tip’s part and the

H. Yamashita (4) - K. Matsumiya - K. Masamune -

T. Dohi

Department of Mechano-Informatics, Graduate School of
Information Science and Technology, The Univercity of Tokyo,
7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
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H. Liao

Department of Precision Engineering, Graduate School of
Engineering, The University of Tokyo, 7-3-1. Hongo.
Bunkyo-ku, Tokyo 113-8656, Japan

T. Chiba

Department of Strategic Medicine, National Center for Child
Health and Development, 2-10-1, Okura, Setagaya-ku,
Tokyo 157-8535, Japan

actuator’s part are easily separable for cleaning and ster-
ilization.

Results In performance evaluations of the manipulator,
the bending characteristics with a glass fiber were exam-
ined. The bending range was -52.6° to 80°, with a very
small hysteresis error, and the bending repeatability error
was 0.5° + 0.2°, which corresponds with the high accuracy
of 0.2 + 0.1-mm positioning error at the glass fiber’s tip. In
the evaluation of Nd:YAG laser photocoagulation, the
study confirmed that the manipulator performed effective
laser photocoagulation of the placental phantom surface
(underwater chicken. liver). The large bending range,
reaching 80°, enabled a flexible approach from various
directions with a high irradiation efficiency of no less than
96.6%. '

Conclusions The authors’ original minjature bending
manipulator can change the laser irradiating direction with
highly repeatable positioning accuracy for speedy, safe,
and effective vessel occlusion in clinical practice.

Keywords Miniature bending manipulator - Selective
laser photocoagulation - Twin-to-twin transfusion
syndrome

Fetal surgery is performed on the fetus after approximately
19 to 25 weeks of pregnancy. The purpose is to treat fetal
and placental morphologic defects, which can be diagnosed
early before birth via relatively simple surgical procedures,
allowing arrest of their progressions to severe states.
Conventionally ex utero intrapartum treatment procedures
(EXIT) are popular. However, possibilities of infection,
complication, premature birth, and membrane rupture are
high, and the outcomes are poor. On the other hand, recent
progress in endoscopic surgery enables minimally invasive
fetoscopic intrauterine surgery [4].

@ Springer
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In fetoscopic surgery, therapy for twin-to-twin transfu-
sion syndrome (TTTS) is particularly being confirmed in
its effectiveness. This syndrome occurs in 10% to 15% of
monochorionic twin gestations. It is caused by circulatory
anastomoses and results in a higher rate of imbalance in the
blood volume between recipient and donor twins. In se-
verely affected cases, this syndrome is likely to be asso-
ciated with high perinatal mortality or postnatal lifelong
handicap [5].

For the recent therapy, selective endoscopic laser pho-
tocoagulation of anastomotic communicating vessels has
been widely accepted as a more effective procedure [8, 9].
However, the fetoscopic approach must avoid any contact
with the placenta, so the outcome of this procedure is
significantly dependent on the placental location. Any
contacts with the placenta cause heavy bleeding. Therefore,
if the placenta is on the anterior abdomen wall side, the
conventional straight-shape tool is not the approach for
photocoagulation of vessels.

For the solution to this issue, bending instruments robot-
ized to bend their tip’s part are required for a safe and
effective approach to target vessels (Fig. 1). Furthermore, to
make invasion of the delicate uterine wall as minimal as
possible, the diameter of the instruments must be minimized.

This study aimed to develop a miniature bending
manipulator 3.5 mm in diameter with a robotized tip’s part
enabling highly accurate fetoscopic laser photocoagulation
of anastomotic communicating vessels on the placenta, and
to analyze bending characteristics and neodym-
lum:yttrium-aluminum-garnet (Nd:YAG) laser photoco-
agulation using a placental phantom model to confirm safe
and effective TTTS therapy.
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Fig. 1 Selective laser photocoagulation of anastomotic communicat-
ing vessels on the placenta for twin-to-twin transfusion syndrome
(TTTS) therapy. If the placenta is on the anterior abdominal wal] side,
the bending instrument is required to change laser irradiating
direction flexibly making no contacts with the placenta
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Materials and methods
Bending mechanism

We designed a miniature bending mechanism including a
central hollow channel for passage of a laser glass fiber.
This mechanism is a fingerlike multijoint structure con-
sisting of three frames and two joints based on the multi-
slider linkage mechanism for the laparoscopic forceps
manipulator {10, 11]. As shown in Fig. 2, tip-side frame 1
and base-side frame 3 are in contact with each other at both
arc parts and joined by intermediate frame 2, which is
driven by a pushing—pulling linear motion of the linkage.
Moreover, frames 1 and 3 are connected by a pair of wire
ropes (wire ropes A and B) that cross at the contact point to
enable slipless smooth bending motion between the two
frames, from —90° to 90°. Unlike a recently reported wire-
driven manipulator [1, 3, 6], the pair of wire ropes in our
method does not slide against the rotation of the frames and
has a low risk of wear and tear caused by repeated or
powerful manipulations.

Miniature manipulator

We developed a bending manipulator 3.5 mm in diameter
with a robotized tip’s part, including a central hollow
channel 0.8 mm in diameter. The system configuration of
the manipulator is shown in Fig. 3.

‘This system consists of five parts. The first part is the
bending end-effector with a glass fiber (E-4070-B; Dornier
MedTech, Tokyo, Japan) for Nd:YAG laser photocoagu-
lation (Fig. 4). The diameter of the fiber is 0.7 mm,
including the 0.4-mm core part. The constituent materials
of the bending mechanism all are stainless steel (SUS304
and SUS316). The second part is the linear drive unit with
a high-resolution AC-servomotor that enables highly
accurate linkage driving. The third part is the handheld
grip-type interface to be used like a conventional endo-
scopic surgical instrument. In this interface, we equipped a
little joystick for easy bending control. The fourth part is
the computer-based control unit, which calculates dis-
placement of the sliding linkage by control from the joy-
stick. The final part is the Nd:YAG laser photocoagulator
(Dornier Medilas fibertom 5100; Dornier MedTech, Tokyo,
Japan), which can detect candescent light during ablation
of tssue to correct laser output energy against a set value.
The bending end-effector is easily separated from the linear
drive unit for cleaning and sterilization.

The total weight of the manipulator is 507 g. It has no
cables, allowing easy and flexible maneuverability for fine
intrauterine fetus surgery. Surgeons can operate the
manipulator’s bending angle from a joystick and can rotate
the whole manipulator around the frames’ central axis. The



Surg Endosc

Fig. 2 The concept of the
bending mechanism driven by a
wire-guided linkage driving
method. Frames 1 and 3 are in
contact with each other at both
arc parts and joined by
intermediate frame 2, which is
driven by a simple sliding
motion of the linkage. Frames |
and 3 also are connected by wire
ropes A and B to enable slipless
bending motion between the
two frames, from -90° to 90°

i+ Contact point
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workspace of the manipulator’s laser fiber tip is large and
hemi-ellipsoidal, as shown in Fig. 5.

Results
Performance evaluations

First, we examined the bending characteristics of the
manipulator such as bending range, bending repeatability,
tip’s part positioning accuracy, and hysteresis error of the
manipulator with or without a laser glass fiber. We changed
the bending angle in steps of 10°; from 90° to 0° to -90°, and
finally returning to 90°, repeating the steps five times. The
bending angles were measured by an optical measurement
instrument (FinePix F11; FUIIFILM Corporation, Tokyo,
Japan) that had no distortion and a high resolution of 0.07
mm. The resuits of the hysteresis curve are shown in Fi g 6,
and the measurement values of bending range, bending

Servo Amplifier
Power Supply

repeatability error, tip’s part positioning accuracy, and hys-
teresis error are presented in Table 1.

Fig. 4 The bending manipulator tip with a glass fiber through the
central channel for neodymium:ytirium—~aluminum-gamet (Nd:Y AG)
laser photocoagulation

@ Springer
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Fig. 5 The workspace of the manipulator’s laser fiber tip with
motorized bending motion and manual rotational motion. The
workspace of the tip is large and hemi-ellipsoidal
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Fig. 6 Results of the manipulator’s bending hysteresis curves
measured by an optical instrument with and without a laser fiber,
which is the relationship between the target bending angle and the
measurement bending angle. The target bending angle is changed in
10° steps: from 90° to 0° to ~90°, and then returning to 90°, with the
steps repeated five times

Additionally, we examined the bending forces and tor-
ques with a laser glass fiber using a digital force gauge
(FGP-2; NIDEC-SHIMPO Corporation, Kyoto, Japan), the
resolution of which was 0.01 N. These results are shown in
Table 2.

We measured output energy from the glass fiber tip’s
part with bending motion using a laser power meter

Table 1 Characteristics of the manipulator’s bending motion mea-
sured by an optical instrument (7 = 5)

Measurement item With fiber Without fiber
Bending range (%) ~52.6 0 80 -63 to 88
Bending repeatability error (°) 05=02 03202
Tip’s part positioning accuracy (mm) 0.2 + 0.1 0201
Hysteresis emror (%) <76 <l4.3

@ Springer

Table 2 Bending forces and torques measured by a digital force
gauge at the tip’s part of the manipulator with a laser fiber (n = 10y

Direction (°) Bending force (N) Bending torque (Nmm)

0 to 90 156 20.6
0 to -90 1.03 13.6

3 Neodymium:yttrium-aluminum-gamet (Nd:YAG) laser photoco-
agulation

(Power/Energy Meter Heads 30(150)A-HE; OPHIR Japan
Co., Ltd., Saitama, Japan). The efficiency of Nd:YAG laser
irradiation was no less than 96.6% despite the large
bending angle reaching 80°, as compared with the irradi-
ation with a straight shape (0°).

Next in the phantom experiment, we evaluated the fea-
sibility of Nd:YAG laser photocoagulation of protein using
the manipulator’s various bending motions in a near clin-
ical setting. The irradiation setting was 1 s at 50 W of
power. In practical TTTS laser therapy, the irradiation
condition determines the feasibility of vessel occlusion.
The maximum diameter of the vessels to be ablated gen-
erally is less than 2 mm, and most importantly, the clini-
cian should avoid the rapid heating of vessels using high-
output laser energy. That is quite likely to cause an abrupt
rise in blood temperature and intravascular vapor pressure
with resultant rupture of the targeted vessels.

To arrange an embryonic environment, we set an
underwater chicken liver as a phantom model to resemble
an intrauterine placental surface. We used 1-DOF bending
motion with hand-operated rotation around the central axis
of the frames, assuming photocoagulation of the placental
vessels in the narrow uterine environment. As shown in
Fig. 7, we ablated the phantom surface from various
directions with the manipulator’s tip bent up to 80°.

Discussion

The manipulator with its laser glass fiber achieved high
bending repeatability with less than 0.7° of error and high
accuracy with less than 0.3-mm positioning error at the
fiber tip. These results are sufficient for clinical laser
photocoagulation of placental anastomotic connecting
vessels, the diameters of which are approximately 1 mm.

The bending torque was sufficient for a large bending
range reaching 80°, with a minimum bending radius of 4.2
mm. However, performance for bending in a minus
direction was a little lower than that for bending in a plus
direction. The cause of these results was asymmetry of the
linkage’s trajectory between the plus direction (pushing
linkage) and the minus direction (pulling linkage). The
relationship between the bending angle and the linkage
displacement was not completely linear. Therefore, varia-
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Fig. 7 Laser ablation test with underwater placental phantom model.
A Guide light irradiation. B and C Neodymium:yttrium—aluminum-
garnet (Nd:YAG) laser photocoagulations of the placental phantom
model surface with bending motion of the manipulator. D Macro view
of laser-ablated spots

tions in bending characteristics arose. The bending range
with a fiber was a little less than without a glass fiber
because of a fiber’s restoring force. However, this differ-
ence was so small as not to affect bending maneuverability.

In the phantom experiment with a near clinical setting,
we confirmed the high efficiency of laser irradiation in
coagulating underwater protein without any loss of
Nd:YAG laser photocoagulation energy despite a maxi-
mum bending angle of 80°. However, in clinical use, it is
significant to keep a suitable distance between the manip-
ulator’s tip and the targeted vessels because they bleed
easily. Generally, intraoperative hemorrhages from the
placenta or placental vessels are likely to cease within
minutes. Then it is possible to replace the bloody amniotic
fluid partially with clear warm saline to complete the
procedure even with our new system. If the hemorrhage
seems massive and critical, the closed endoscopic proce-
dure can be immediately converted into an open hysterot-
omy procedure.

Compared with conventional endoscopic robotic sys-
tems, as typified by the Endo Wrist of the da Vinci Surgjcal
System (Intuitive Surgical, Inc., Sunnyvale, CA, USA), our
system was superior in miniaturization and bending pre-
cision for minimally invasive intrauterine fetoscopic sur-
gery. The especially suitable combination of wire and
linkage mechanisms realized a more accurate bending
manipulation and a larger bending range for its compact
size than typical linkage-driven manipulators used for

endoscopic surgery {2, 7). With regard to practical appli-
cation of the system, commercial manufacturing is quite
promising and certain considering its mechanically simple
design and the need for universal clinical use.

Conclusion

Our original bending laser manipulator has an small
diameter of 3.5 mm and is applicable for intrauterine fetal
surgery. It avoids excessive damage to the uterine wall and
can change the direction of Nd:YAG laser irradiation
flexibly with highly repeatable positioning accuracy. In
clinical practice, the manipulator enables speedy and effi-
cient vessel occlusion without invasion to the placenta,
fetus, or amniotic membrane within the narrow uterus.
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This paper reports on a micro planar coil as a receiver for a high resolution MRI (Magnetic Re-
sonance Imaging). In this study, a micro planar coil of 10 mm in diameter was fabricated. The
MRI signal receiving device was made by attaching the micro coils to the tip of acrylic pipes.
The signal to noise ratio of MR image taken by the micro planar coil was 8 times as high as MR
image taken by medical MRI coil. MR images of okra (4belmoschus esculentus) were acquired
with 2.0 x 2.0 x 2.0 mm’ and 0.5 x 0.5 x 1.0 mm?® resolutions.

Key Words: MR, micro planar coil, S/N ratio, high sensitivity.
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Fig. 1 Concept of a micro planar coil.  The micro pla-
nar coil is located at the tip of a catheter or an endoscope.
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Fig. 2 Fabrication process of a micro planar coil.
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Fig. 3 Photographs of the fabricated micro planar coil.
The diameter of the coil is 10.0 mm. The resistance and
inductance of the coil are 2.5 2 and 1.8 uH at 8. 5MHz,

respectively.
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Micro planar coil }
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Fig. 4 Schemuatics of MRI signal receiving circuir.
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Fig. 3 photog;aphs of the MRI signal receiver with micro
planar coil.  The planar coil is placed ar the tip of acryl-
ic pipe with the receiving circuit.  The acrylic pipe can
be connected to the base of the endoscope.

Table 1  SNRs of MR images of the phantom..
2.0x2.0x2.0 mm® 0.5%x0.5%x1.0 mm?

resolution resolution
Medical Coil 30 3.7
5 mm Coil 259 28
10-mm Coil 258 19
20 mm Caoil 264 . 13
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Fig. 7 MR images of an okra taken by the micro planar cozls and medlca coil.
(a-d) 2.0x2.0%2.0 mm’ and (e - h)0.5%0.5%1.0 mm’.
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The resolutions of the images were
The internal structure of an okva can be observed.
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