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Abstract—An exoskeleton robot can replace the wearer’s motion function by operating the human’s
body. The purpose of this study is to propose a power assist method of walking, standing up and
going up stairs based on autonomous motion of the exoskeleton robot suit, HAL (Hybrid assistive
Limb), and verify the effectiveness of this method by experiment. In order to realize power assist of
tasks (walking, standing up and going up stairs) autonomically, we used the Phase Sequence control
which generates a task by transiting some simple basic motions called Phases. A task was divided
into some Phases on the basis of the task performed by a normal person. The joint moving modes
were categorized into active, passive and free modes according to the characteristic of the muscle
force conditions. The autonomous motions which HAL generates in each Phase were designed
corresponding to one of the categorized modes. The power assist experiments were performed by
using the autonomous motion with a focus on the active mode. The experimental results showed
that the wearer’s muscle activation levels in each Phase were significantly reduced. With this, we
confirmed the effectiveness of the proposed assist method.

Keywords: HAL; exoskeleton; power assist; phase sequence; myoelectricity signal.

1. INTRODUCTION

Exoskeleton robots have been studied in order to amplify human muscle strength.
An exoskeleton consists of an external structure which covers the human body parts
and has joint parts corresponding to those of the human body. Physical contact
between the operator and the exoskeleton causes the integration of the operator
and the exoskeleton. The exoskeleton directly provides mechanical power for the
operator. Recently, exoskeletons for the human arms and their control methods have

*To whom correspondence should be addressed. E-mail: kawamoto@ golem.kz.tsukuba.ac.jp
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Figure 1. Images of power assist in daily movements.

been studied in order to extend human arm strength in order to reduce the burden
imposed on the operator by an external load [1-4]. For example, if an operator
wearing the exoskeleton manipulates an external load, the operator may feel 10%
of the load while the exoskeleton carries 90% of the load. We have developed the
exoskeleton robot suit HAL (Hybrid Assistive Limb) for the lower limb to provide
power necessary to perform tasks such as walking, standing up, etc., as shown in
Fig. 1. For example, if an operator cannot stand up because he generates only 70%
of the muscle strength necessary for standing up by himself, he can stand up while
the exoskeleton carries 30% of the muscle strength. We have proposed a power
assist method using the joint torque, estimated based on the myoelectric signals
that reflect the operator’s intention [5—8]. Therefore, a common feature is that the
operator manipulates the exoskeleton robot.

An autonomous motion generated by an exoskeleton robot moves the human’s
body directly. The human becomes a part of the exoskeleton system and the exo-
skeleton robot operates the human’s body. The exoskeleton robot can take the place
of the wearer’s body function by performing human-like motion autonomically.
If the exoskeleton robot has realized tasks such as walking, standing up, etc., the
exoskeleton could be used as a functional aid apparatus for gait disorders in persons
with spinal cord injury. Our research goal is to develop an autonomous method of
motion of the exoskeleton robot in order to aid human leg motion.

When utilizing the exoskéleton robot as a human motion assist apparatus, the
exoskeleton should provide motions like those of a human. We have developed
the Phase Sequence method, using human motion characteristics, that enable
humanoid robots to generate human-like motions [9, 10]. Phase Sequence is a
method to generate tasks such as walking, standing up, etc., by transferring some
prepared motion elements called Phases. A task is analyzed based on kinematic and
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biological information, and divided into a number of Phases according to specific
motion intentions like ‘swing the leg’ or ‘lift the body’. For each task, a sequence
of Phases is transformed into the motion for the humanoid robot. As a result, the
humanoid robot performs the task motions like a human. We attempted to adopt
the Phase Sequence method to control the autonomous motions of the exoskeleton
robot.

As the wearer and exoskeleton robot are combined into one integrated system,
we consider that the motion properties generated by the exoskeleton robot accord
to those performed by the wearer. The human realizes tasks using a variety of
joint motions based on some modes of muscle activity. Thus, we consider that
the exoskeleton robot should be used to generate motions corresponding to joint
motions based on modes of muscle activity which a normal person performs. In
this study, we propose the Phase Sequence method based on the modes of muscle
activity for autonomous motion of the exoskeleton robot HAL. We divide the tasks
of walking, standing up and going up stairs into Phases according to joint motion
characteristics based on muscle activity. We realize the power assist for these tasks
by performing and transforming Phases using HAL.

In Section 2, the details of the exoskeleton robot HAL-3 are described. In
Section 3, the tasks of walking, standing up and going up stairs are divided into
Phases, and Phase-shift timing for each task is determined. We construct the Phase
Sequence control algorithm to generate assist motions. In Section 4, we describe
the experiments on motion assists with Phase Sequence control and verify the
effectiveness of this method. We give a brief conclusion in Section 5.

2. THE HAL SYSTEM

The HAL-3 system is composed of three main parts: a skeleton with an actuator,
a controller and a sensor (Fig. 2).

The exoskeletal frame consists of a three-link, two-joint mechanism with the links
corresponding to the hip, the thigh and the lower thigh, and the joints corresponding
to the hip and the knee joints of the human body. Aluminum alloy and steel are
used for the exoskeletal frame in consideration of lightness. The knee joint of the
exoskeleton has 1 d.o.f. The human hip joint complex can be considered as a 3-d.o.f.
joint. The exoskeleton, in its current mode, supports only the flexion—extension
movement of the hip joint. The ankle joint has also 1 d.of, i.e. dorsiflexion—-
planterflexion. As shown in Fig. 3, the rigid sole is fitted with a fastener that
is connected to the end of the lower thigh exoskeletal frame, which is provided
with a swivel attachment. This swivel attachment corresponds to the ankle joint
with 1 d.o.f. The joint limiters are equipped at the respective joints to prevent
hyperextension of the hip and the knee joints. This exoskeleton system attaches to
the hip, thigh, lower thigh and foot area of the body. At these areas (except the foot
area), belts which are designed as shell garments of these areas worn by the wearer,
are located at each link. At the foot area, the soles of the exoskeleton in which
the wearer rides are provided. Since the human lower limb and the exoskeleton
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Controller
- PC(Linux)
- Motor Driver
- Measuring Unit -
- Power Supply Circuit d

Actuator
- DC Servo Motor
- Gear

Force Sensor

(b)

Figure 2. The HAL-3 system. (a) Schematic overview. (b) System overview.

are mechanically linked, the movements of both legs of both the human and the
exoskeleton are identical. The actuators of HAL-3 provide assist torque for the knee
and hip joints. Each actuator has a DC motor with a harmonic drive to generate
the assist torques at each joint. The ankle joints are not powered by a motor. If
human walks quickly, the kick produced by the toe is used. We do not assume the
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Circuit boxfor
converting
foree to voltage

Figure 3. FRF sensor system.

assist for walking speed using the kick. We consider that the ankle joints play a
important role in maintaining stability in the support phase. The spring mechanism
is incorporated in the ankle joint of HAL-3. The total weight of the skeleton system
with the actuators is about 15 kg. The wearer does not have to bear the weight load
of the exoskeleton by riding on the soles of the exoskeleton, because the weight of
the exoskeleton is transmitted to the floor, bypassing the soles.

Sensor systems are equipped on HAL-3 to detect the conditions of HAL and the
wearer. Rotary encoders are used to measure the hip and knee joint angles. A floor
reaction force (FRF) sensor is developed to measure the FRFs which are generated
in the front and rear parts of the foot (ball and heel of foot). This sensor structure
is shown in Fig. 3. It consists of a sole and electronic circuits parts. In the sole of
the shoe, two coiled polyvinyl chloride tubes (inner diameter 3 mm) sandwiched by
circular aluminum boards are installed. One end of the tube is connected to a solid-
state pressure sensor attached on the electronic circuit. When the foot presses the
tube, the air pressure in the tube changes. The change of air pressure is measured
by the pressure sensor. With this, we can detect the FRF from the change of the air
pressure. Myoelectric sensors are attached on the surface of the extensor and the
flexor of the knee and the hip to detect muscle activity. Each myoelectric sensor
consists of a bipolar electrode and a pre-amp, which reduce noise substantially. The
myoelectric signals are first measured through the bipolar skin surface electrodes
attached to the skin on top of the muscle and amplified by 106 times, and then
filtered using a low-pass filter (with a cut-off frequency at 500 Hz) and a high-pass
filter (with a cut-off frequency at 33 Hz) in the back pack to remove noise caused
by motion artifacts.

The control system of HAL-3 is mainly developed to enhance mobility because
the field of activity for of HAL-3 assistance is expected to be in outdoor activities.
Thus, we designed a compact-type PC which is the controller, the motor drivers,
the power supply for the PC and other circuits, EMG signals processing board and
sensor interface boards to be packed in the back pack. The PC has a Celeron 566 Hz
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CPU, a wireless LAN card (11 Mbps transmission speed), an A/D converter card
which has a 32-channel (12-bit resolution) input and a D/A which has an 8-channel
(12-bit resolution) output. Real-time processing and network communication are
required for the control scheme. To make the development environment convenient,
we adopt different operating systems for the measurement process and control
process. RT-Linux is used for the measurement process. It is able to measure
sensor information in real-time. On the other hand, we use Linux for the control
process. Real-time processing can be achieved in practical use by modifying only
one parameter of the Linux kemel source file. Thus, the control loop is executed
in user mode by using this approach which almost guarantees a fixed control
period [11]. To monitor sensor information with the remote controller in real-time,
radio communication using UDP is utilized between the HAL controller and the
remote controller.

3. POWER ASSIST METHOD -

In this section we describe how to a divide series of motion into Phases and how to
transit each Phase in order to apply the Phase Sequence method to the power assist
system HAL-3.

3.1. Muscle condition

In the various tasks (walking, standing up, etc.), each muscle generates force mainly
based on threes mode of muscle force conditions, i.e. active, passive and free,
depending on the direction of muscle length contraction and external forces as
shown in Fig. 4. In the case of the rectus femoris, the muscle length is shortened as
its contractive force is generated in the active mode (Fig. 4a). This is mainly based

— \
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Figure 4. Muscle force mode depending on the relationship between the direction of muscle force
and the direction of muscle length contraction.
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upon the contractile element. In the passive mode (Fig. 4b), the muscle length is
lengthened as its contractive force is generated. These muscles play the role of an
viscoelastic element. In the free mode (Fig. 4¢), the muscle contractive force is not
generated. The movement of the lower thigh is generated by the force caused by
knee acceleration or gravity. As the result, the knee joint behaves like a free joint.
It should be effective for the power assist to generate assist motions corresponding
to the wearer’s muscle conditions.

3.2. Phase division

We analyzed the motion of a normal person during each task (walking, standing
up and going up stairs) to divide it into some Phases according to the three modes
based on muscle activity and direction of muscle length. The joint angle is assumed
to be proportional to the muscle length. The muscle activities are estimated from
the behavior of myoelectric signals of the flexor and the extensor. The subject was
a normal 28-year-old male.

3.2.1. Walking. Figure 5a shows the joint angles and myoelectric signals for the
hip and knee joint, and FRFs in the front and rear parts of the sole of the feet while
walking. Each joint angle is set as 0 rad in the standing posture. Its positive and
negative direction indicate flexion and extension, respectively. A positive sign of the
myoelectricity corresponds to the flexor muscles and a negative sign corresponds to
the extensor muscles. The activation level of the myoelectricity is represented in
the range of +5 V. The motion of walking is mainly divided into two phases —
the support phase and the swing phase. The swing phase is the behavior where the
foot leaves the ground surface and the leg swings forward. The support phase is the
behavior where the foot stays in contact with the ground surface and the body is
supported by the leg. In the swing phase (Phase 1), when the hip joint is bent, the
myoelectric signals at the flexor of the hip are generated. The hip flexor works in
active mode. At the same time, the knee joint is bent from the extension position and
is extended after that. During the swing period the myoelectric signals at the flexor
and the extensor of the knee joint are generated slightly. It is considered that the
lower thigh is forced to move by the inertial force generated by the thigh. Therefore,
the knee joint works in the free joint mode. In the support phase (Phase 2), when
the hip joint is extended, the myoelectric signals at the extensor of the hip are barely
generated. The hip extensor works in active mode. The knee joint is slightly bent
from the extension position and is extended after that. The myoelectric signals at
the extensor of the knee joint are largely generated when the knee joint is bent.
The antagonist muscle (the extensor) performs lengthening contraction to absorb
the shock to the knee joint from upper body when the foot makes contact with the
ground surface. Therefore, the knee joint would work in passive mode.

3.2.2. Standing up. Figure 5b shows the joint angles and myoelectric signals
for the right hip and knee joints, and FRFs in the front and rear parts of the right
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foot while standing up. The subject begins to stand up from the initial condition
that the subject sits on a chair which is approximately 40 cm high, and maintains
the knee and hip joints at near 1.5 rad. The motion of standing up from a chair is
‘mainly divided into four phases. Phase 1 is the sitting position. Phase 2 is when
the upper body is bent forward. Phase 3 is when the upper body is lifted as the
angles of the hip joints attained the maximal value. Phase 4 is the standing position.
Phases 2 and 3 are especially important to assist standing up. We analyze the muscle
condition from myoelectric signals on Phases 2 and 3. In Phase 2, myoelectric
signals are generated by the flexor of the hip and the extensor of the knee; when the
hip joint is flexed, the knee joint is slightly extended. In Phase 3, when the hip and
knee joints are extended, myoelectric signals are generated by the extensors of both
joints. Because each muscle performs shortening contraction in Phases 2 and 3,
both joints work in the active mode in each Phase.

3.2.3. Going up stairs. Figure 5c shows the joint angles and myoelectric signals
for the right hip and knee joints, and FRFs in the front part of the both feet while
going up stairs. The subject goes up stairs that are 15 cm high and 30 cm wide.
The motion of going up stairs is mainly divided into three Phases. Phase 1 is the
behavior that the foot lifts from the stair surface and the leg is lifted up. Phase 2 is
the behavior that the leg is slightly lowered in order to establish contact of the foot
with the stair surface, after the foot is lifted up above the stair surface in Phase 1.
Phase 3 is the behavior that the foot contacts with the stair surface and the body
is lifted up. In Phase 1, when the hip joint is bent, the myoelectric signals at the
flexor of the hip are generated. Thus, the hip flexor works in active mode. On the
other hand, when the knee joint is bent, the myoelectric signals at the flexor and the
extensor of the knee joint are generated slightly. The knee joint is bent by lifting
the thigh without moving the lower thigh. The flexor and the extensor of the knee
joint do not act. Therefore, the knee joint works in the free joint mode. In Phase 2,
when the hip and knee joints are extended slightly, the myoelectric signals at the
flexor and the extensor of both joints are generated slightly. Each joint works in
free mode. In Phase 3, when the hip and knee joints are extended, the myoelectric
signals at the extensor of the hip and knee are generated. Each extensor works in
the active mode. As explained above, we divide the tasks (walking, standing up and
going up stairs) into Phases. Figure 6 shows the joint part, direction and dynamic
mode in each Phase for walking, standing up and going up stairs.

3.3. Phase-shift timing

To realize power assist by using Phase Sequence, the prepared Phases have to
smoothly transit. The Phase-shift timing needs to reflect the wearer’s intention.
If the Phase generated by HAL does not accord to the Phase which the wearer
intends, HAL may provide unnecessary load to the wearer and the wearer would
feel uncomfortable. In this section, we determine Phase-shift timing on the basis
of the motion of a normal person. Most motions of the lower limbs of a person



