

Fig. 5. Detection of H_2O_2 production. A: left circumflex artery (LCX; baseline without ACh). B: LCX (control). C: left anterior descending coronary artery (LAD; control). D: LAD (L-NMMA). E: LAD (catalase). F: fluorescent intensity (B, baseline without ACh; C, control, L, L-NMMA; Cat, catalase). No. of arterioles per animals used was 5/5 for each group. Dashed line, outline of vessels. Bar, 100 μ m.

pletely abolish the ACh-induced vasodilatation in both sized arteries, whereas L-NMMA plus catalase markedly attenuated the residual vasodilatation in vivo as did TEA, indicating that H_2O_2 exerts important vasodilator effects during I/R injury in canine coronary microcirculation in vivo (Figs. 3 and 4). Furthermore, in the present study, endogenous H_2O_2 -mediated coronary vasodilatation was noted to a greater extent in arterioles than in small arteries (Figs. 3 and 4), confirming the predominant role of H_2O_2 in microvessels and that of NO in relatively large arteries in vivo (25).

Compensatory vasodilator mechanism among H_2O_2 , NO, and adenosine. It is well known that coronary vascular tone is regulated by the interactions among several endogenous vasodilators, including NO, H_2O_2 , and adenosine (33). These vasodilators play an important role in compensatory vasodilatation of coronary microvessels during myocardial ischemia (35). In the present study (Figs. 3 and 4), endothelium-dependent arteriolar vasodilatation to ACh during coronary I/R was significantly increased by L-NMMA while small arterial vasodilatation to ACh was increased by catalase and 8-SPT, and the residual arteriolar dilation was further inhibited by both of them (L-NMMA plus catalase or TEA). Furthermore, fluorescent microscopy with DCF and DAR, respectively, showed that H_2O_2 and NO production after I/R were enhanced in small coronary arteries and arterioles by L-NMMA [fluorescent intensity (FI) 1.8] and catalase (FI 1.9) compared with those in the LAD of control group (Figs. 5 and 6, FI: DAR 1.2 and DCF 1.1). The

residual small arteriolar dilatation after combined administration of L-NMMA + catalase was completely blocked by 8-SPT, an adenosine receptor blocker, indicating that adenosine also compensated for the loss of action of NO and H_2O_2 . Taken together, these results indicate the compensatory vasodilator effects among NO, H_2O_2 , and adenosine to maintain coronary blood flow during coronary I/R injury in vivo. H_2O_2 and NO were mutually compensatory in both small arteries and arterioles, and in the presence of their inhibitors (catalase and L-NMMA), adenosine also caused arteriolar vasodilatation, as we reported previously (35). This finding is consistent with our finding that NO, H_2O_2 , and adenosine play an important compensatory role in coronary autoregulation in canine coronary microcirculation in vivo (35). It was reported that TEA inhibited adenosine-induced vasodilatation of canine subepicardial coronary arteries in vitro (3). Furthermore, H_2O_2 stimulates protein kinase C, phospholipase A₂, and arachidonic acid release and increases intracellular cAMP levels (10). These findings suggest that cAMP-mediated pathway is involved, at least in part, during coronary vasodilatation through K_{Ca} channels after I/R injury.

Role of H_2O_2 during coronary I/R. It is known that K_{Ca} channels substantially contribute to coronary vasodilatation in myocardial ischemia (22) and that H_2O_2 also activates K_{Ca} channels (11). However, it remains to be examined whether H_2O_2 contributes to coronary vasodilatation during I/R in vivo. The present results demonstrate that H_2O_2

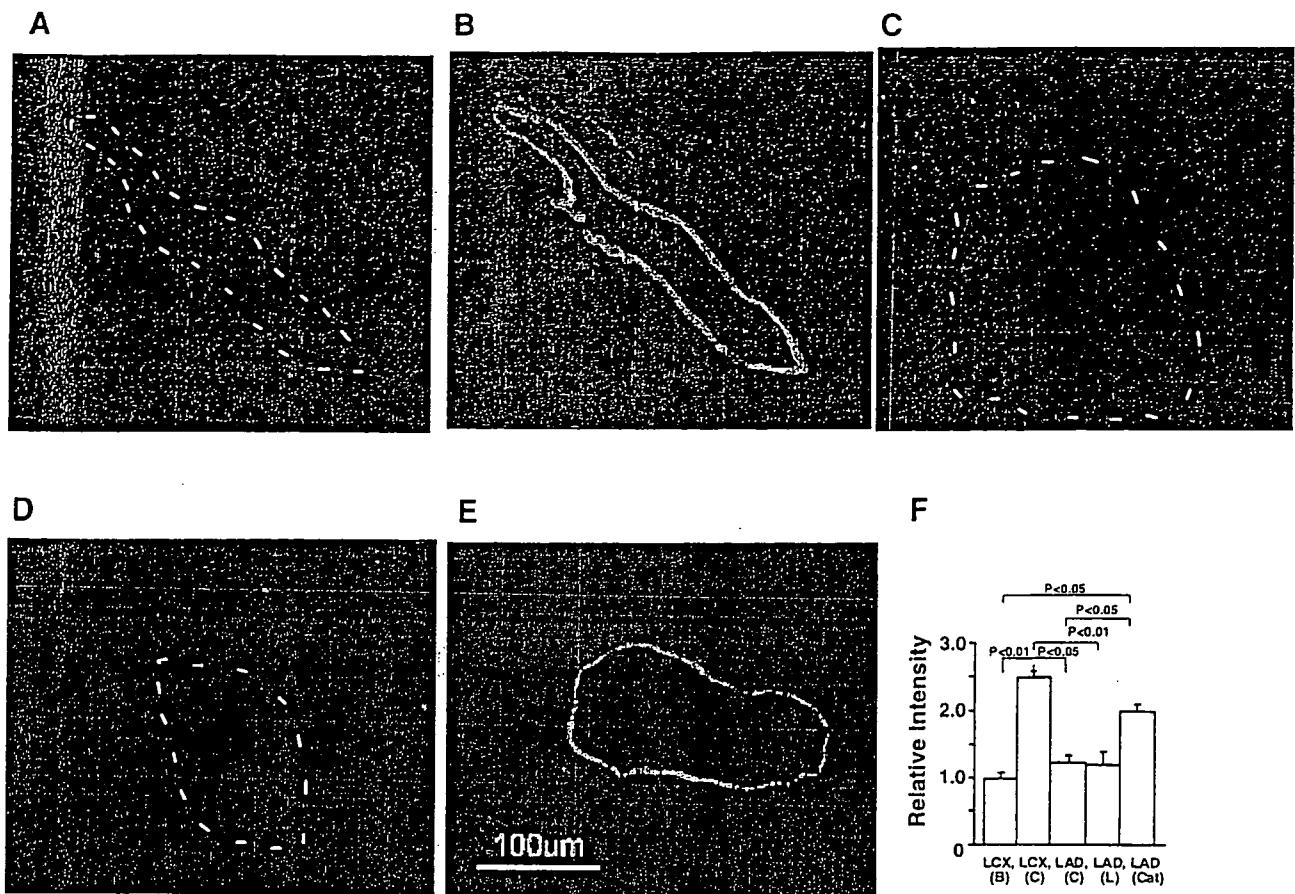


Fig. 6. Detection of nitric oxide (NO) production. A: LCX (baseline without ACh). B: LCX (control). C: LAD (control). D: LAD (L-NMMA). E: LAD (catalase). F: fluorescent intensity (B, baseline without ACh; C, control, L, L-NMMA; Cat, catalase). No. of small arteries per animals used was 5/5 for each group. Dashed line, outline of vessels.

substantially contributes to coronary vasodilatation during I/R *in vivo* as a compensatory mechanism for the loss of NO. Several mechanisms have been proposed for K_{Ca} channel opening during coronary I/R, including cellular acidosis

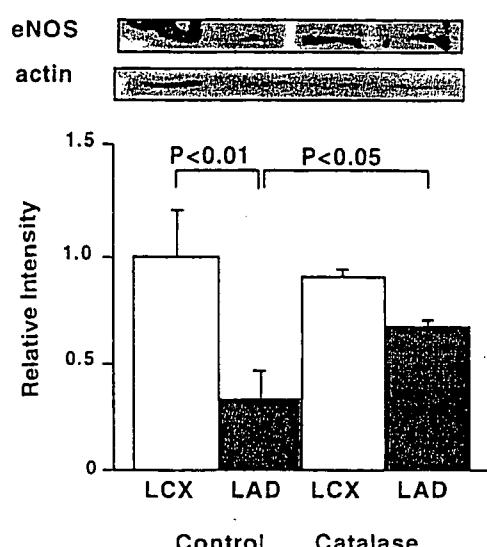


Fig. 7. Western blotting showing the effects of catalase on endothelial nitric oxide synthase (eNOS) protein expression in the myocardium of LAD and LCX. No. of animals used was 3 for each group.

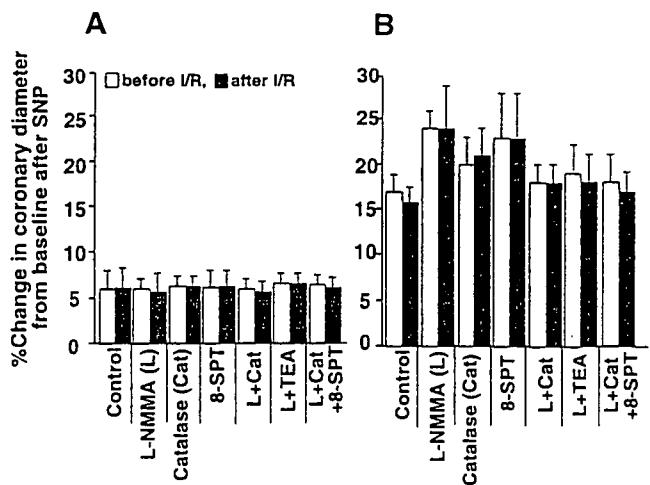


Fig. 8. Endothelium-independent coronary vasodilatation before and after coronary I/R injury in dogs *in vivo*. A: small artery ($\geq 100 \mu m$). B: arteriole ($< 100 \mu m$). No. of small arteries and arterioles per animals used (n/n) was 7/5 for control, 8/5 for L-NMMA, 10/5 for catalase, 6/5 for 8-SPT, 8/5 for L-NMMA plus catalase, 5/5 for L-NMMA plus TEA, and 5/5 for L-NMMA plus catalase plus 8-SPT in small arteries; and 12/5 for control, 16/5 for L-NMMA, 12/5 for catalase, 5/5 for 8-SPT, 10/5 for L-NMMA plus catalase, 8/5 for L-NMMA plus TEA, and 7/5 for L-NMMA plus catalase plus 8-SPT in arterioles.

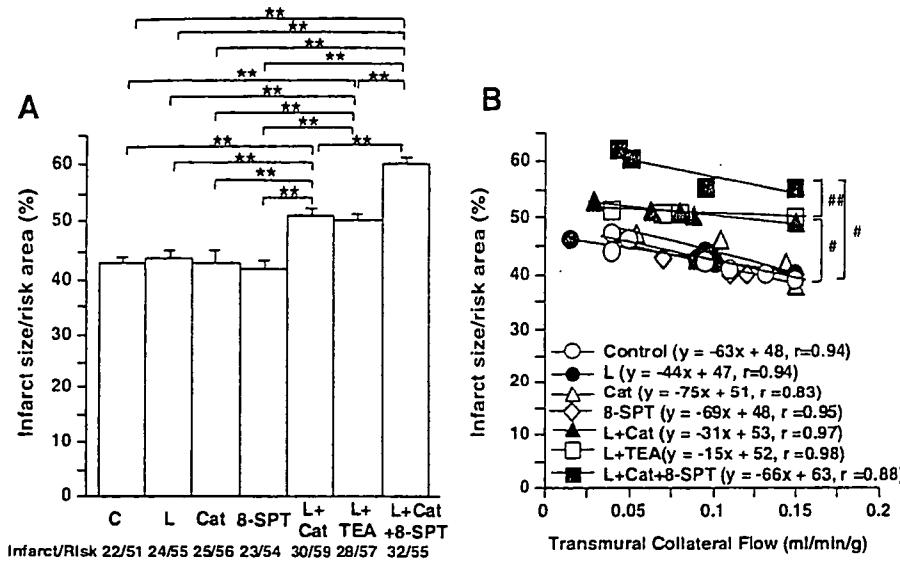


Fig. 9. Effects of H_2O_2 , NO, and adenosine on I/R-induced MI in dogs in vivo. A: I/R-induced left ventricular infarct size in dogs in vivo. C, control. B: plot of infarct size expressed as a percentage of the risk area and regional collateral flow during I/R. ** $P < 0.01$, # $P < 0.05$ vs. L-NMMA (L) or Cat or 8-SPT; ## $P < 0.01$ vs. L + TEA or L + Cat.

(27), increase in intracellular Ca^{2+} concentration after ischemia (28), and H_2O_2 production by inflammatory cells (5). Furthermore, an inhibitor of NO synthesis [N^{G} -nitro-L-arginine methyl ester (L-NAME)] or that of K_{Ca} channels (charybdotoxin) partly inhibits the protective effect on myocardial infarct size (22). Liu et al. (14) demonstrated that peroxynitrite inhibits K_{Ca} channel activity in human coronary arterioles during I/R. This mechanism might contribute to impaired H_2O_2 -mediated dilation in I/R where NO synthase activity is increased in the presence of excess of O_2^- . In the present study, inhibition of H_2O_2 or NO alone did not significantly increase myocardial infarct size compared with control conditions (Fig. 9). These results suggest that H_2O_2 and NO exert cardioprotective effects against the development of myocardial infarction in a compensatory manner.

Recently, we have demonstrated that the expression of eNOS protein is decreased in the ischemic myocardium, which is improved by a selective Rho-kinase inhibitor, hydroxyfasudil, during coronary I/R injury in dogs in vivo (36). Furthermore, a physiological concentration (2 $\mu\text{mol/l}$) of H_2O_2 improved the recovery of both cardiac contractile function and energy metabolism after I/R in perfused rat heart (37). In the present study, the expression of eNOS protein was decreased in the ischemic myocardium, which was increased by catalase during I/R injury (Fig. 7). All these mechanisms may be involved in the beneficial effects of H_2O_2 on the I/R-induced myocardial injury. It also is conceivable that I/R reduces endothelial tetrahydrobiopterin levels in coronary vessels and impairs eNOS function (30).

Limitations of the study. Several limitations should be mentioned for the present study. First, we did not examine coronary vasodilatation in response to SOD/SOD mimetic (e.g., Tempol) or peroxynitrite inhibitor (e.g., ebselen) after I/R. However, because of the complex interactions among the oxygen species, we consider that both Tempol and ebselen also affect H_2O_2 metabolism by scavenging superoxide anions and peroxynitrite, respectively. Second, in addition to catalase, endogenous glutathione peroxidase (GSH) also plays an important role in removing H_2O_2 , and NO also could be a substrate for endogenous catalase (1). However, in the present study, we used exogenous catalase

to remove H_2O_2 to examine the role of the reactive oxygen species. Third, the exact source of vascular H_2O_2 production remains to be elucidated (e.g., the endothelium, smooth muscle, or cardiomyocytes). Fourth, while we were able to demonstrate the production of H_2O_2 using fluorescent microscopy with DCF, we were unable to quantitatively measure the H_2O_2 production because DCF detects H_2O_2 , ONOO^- , and HOCl as well. Fifth, we were unable to find smaller arterioles because of the limited spatial resolution of our CCD intravital microscope. If we had an intravital camera with higher resolution, we would be able to observe coronary vasodilator responses of smaller arterioles.

Clinical implications and conclusions. During coronary I/R, microemboli of atherosclerosis debris and platelet plugs are released into the coronary microcirculation, particularly at revascularization with thrombolysis and/or percutaneous coronary intervention. Thus preexisting coronary endothelial dysfunction with various risk factors may be an important determinant for I/R injury in acute myocardial infarction. The synthesis and/or action of endothelium-derived NO are impaired under various pathological conditions, such as hypertension, hyperlipidemia, and diabetes mellitus (26, 34). In hypertension, K_{channel} activities are increased in a compensatory manner with reduced NO activity (13). The present results suggest that NO and H_2O_2 compensate each other to cause coronary vasodilatation during I/R injury in vivo.

In conclusion, we were able to demonstrate that endogenous H_2O_2 , in cooperation with NO, plays an important cardioprotective role in coronary I/R injury in vivo. The present findings may have important clinical implications because H_2O_2 -mediated mechanisms substantially contribute to endothelium-dependent vasodilatation in coronary I/R in vivo.

GRANTS

This work was supported in part by grants from the Japanese Ministry of Education, Science, Sports, Culture, and Technology, Tokyo, Japan (Nos. 13307024, 13557068, 14657178, 15256003, 16209027, 16300164), and the Program for Promotion of Fundamental Studies in Health Sciences of the Organization for Pharmaceutical Safety and Research of Japan.

REFERENCES

1. Antunes F, Han D, and Cadenas E. Relative contributions of heart mitochondria glutathione peroxidase and catalase to H_2O_2 detoxification in vivo conditions. *Free Radic Biol Med* 33: 1260–1267, 2002.
2. Bauersachs J, Hecker M, and Busse R. Display of the characteristics of endothelium-derived hyperpolarizing factor by a cytochrome P450-derived arachidonic acid metabolite in the coronary microcirculation. *Br J Pharmacol* 113: 1548–1553, 1994.
3. Cabell F, Weiss DS, and Price JM. Inhibition of adenosine-induced coronary vasodilation by block of large-conductance Ca^{2+} activated K^+ channels. *Am J Physiol Heart Circ Physiol* 267: H1455–H1460, 1994.
4. Campbell WB, Gebremedhin D, Pratt PF, and Harder DR. Identification of epoxyeicosatrienoic acids as an endothelium-derived hyperpolarizing factor. *Circ Res* 78: 415–423, 1996.
5. Chandrasekar B, Colston JT, de la Rosa SD, Rao PP, and Freeman GL. $TNF-\alpha$ and H_2O_2 induce IL-18 and IL-18R β expression in cardiomyocytes via NF- κ B activation. *Biochem Biophys Res Commun* 303: 1152–1158, 2003.
6. Chen G, Suzuki H, and Weston AH. Acetylcholine releases endothelium-derived hyperpolarizing factor and EDRF from blood vessels. *Br J Pharmacol* 95: 1165–1174, 1988.
7. Edwards G, Dora KA, Gardener MJ, Garland CJ, and Weston AH. K^+ is an endothelium-derived hyperpolarizing factor in rat arteries. *Nature* 396: 269–272, 1998.
8. Ehring T, Krajcar M, Baumgart D, Kompa S, Hummelgen M, and Heusch G. Cholinergic and α -adrenergic coronary constriction with increasing ischemia-reperfusion injury. *Am J Physiol Heart Circ Physiol* 268: H886–H894, 1995.
9. Feletou M and Vanhoutte PM. Endothelium-dependent hyperpolarization of canine smooth muscle. *Br J Pharmacol* 93: 515–524, 1988.
10. Gao Y and Vanhoutte PM. Effects of hydrogen peroxide on the responsiveness of isolated canine bronchi: role of prostaglandin E_2 and I_2 . *Am J Physiol Lung Cell Mol Physiol* 263: L402–L408, 1992.
11. Hayabuchi Y, Nakaya Y, Matsuoka S, and Kuroda Y. Hydrogen peroxide-induced vascular relaxation in porcine coronary arteries is mediated by Ca^{2+} -activated K^+ channels. *Heart Vessels* 13: 9–17, 1998.
12. Huang A, Sun D, Carroll MA, Jiang H, Smith CJ, Connett JA, Falck JR, Shesely EG, Koller A, and Kaley G. EDHF mediates flow-induced dilation in skeletal muscle arterioles of female eNOS-KO mice. *Am J Physiol Heart Circ Physiol* 280: H2462–H2469, 2001.
13. Liu Y, Hudetz AG, Knaus HG, and Rusch NJ. Increased expression of Ca^{2+} -sensitive K^+ channels in the cerebral microcirculation of genetically hypertensive rats: evidence for their protection against cerebral vaso-spasm. *Circ Res* 82: 729–737, 1998.
14. Liu Y, Terata K, Chai Q, Li H, Kleinman LH, and Guterman DD. Peroxynitrite inhibits Ca^{2+} -activated K^+ channel activity in smooth muscle of human coronary arterioles. *Circ Res* 91: 1070–1076, 2002.
15. Masumoto A, Hirooka Y, Shimokawa H, Hironaga K, Setoguchi S, and Takeshita A. Possible involvement of Rho-kinase in the pathogenesis of hypertension in humans. *Hypertension* 38: 1307–1310, 2001.
16. Matoba T, Shimokawa H, Nakashima M, Hirakawa Y, Mukai Y, Hirano K, Kanaide H, and Takeshita A. Hydrogen peroxide is an endothelium-derived hyperpolarizing factor in mice. *J Clin Invest* 106: 1521–1530, 2000.
17. Matoba T, Shimokawa H, Kubota H, Morikawa K, Fujiki T, Kunihiro I, Mukai Y, Hirakawa Y, and Takeshita A. Hydrogen peroxide is an endothelium-derived hyperpolarizing factor in human mesenteric arteries. *Biochem Biophys Res Commun* 290: 909–913, 2002.
18. Mehta JL, Nichols WW, Donnelly WH, Lawson DL, and Saldeen TG. Impaired canine coronary vasodilator response to acetylcholine and bradykinin after occlusion-reperfusion. *Circ Res* 64: 43–54, 1989.
19. Miura H, Bosnjak JJ, Ning G, Saito T, Miura M, and Guterman DD. Role for hydrogen peroxide in flow-induced dilation of human coronary arterioles. *Circ Res* 92: e31–e40, 2003.
20. Mori H, Haruyama Y, Shinozaki H, Okino H, Iida A, Takanashi R, Sakuma I, Husseini WK, Payne BD, and Hoffman JL. New nonradioactive microspheres and more sensitive X-ray fluorescence to measure regional blood flow. *Am J Physiol Heart Circ Physiol* 263: H1946–H1957, 1992.
21. Morikawa K, Shimokawa H, Matoba T, Kubota H, Akaike T, Talukder MA, Hatanaka M, Fujiki T, Maeda H, Takahashi S, and Takeshita A. Pivotal role of Cu,Zn-superoxide dismutase in endothelium-dependent hyperpolarization. *J Clin Invest* 112: 1871–1879, 2003.
22. Ogita H, Node K, Asanuma H, Sanada S, Liao Y, Takashima S, Asakura M, Mori H, Shinozaki Y, Hori M, and Kitakaze M. Amelioration of ischemia- and reperfusion-induced myocardial injury by the selective estrogen receptor modulator, raloxifene, in the canine heart. *J Am Coll Cardiol* 40: 998–1005, 2002.
23. Rubanyi GM and Vanhoutte PM. Oxygen-derived radicals, endothelium, and responsiveness of vascular smooth muscle. *Am J Physiol Heart Circ Physiol* 250: H815–H821, 1986.
24. Satoh M, Fujimoto S, Haruna Y, Arakawa S, Horike H, Komai N, Sasaki T, Tsujioka K, Makino H, and Kashiwara N. NAD(P)H oxidase and uncoupled nitric oxide synthase are major sources of glomerular superoxide in rats with experimental diabetic nephropathy. *Am J Physiol Renal Physiol* 288: F1144–F1152, 2005.
25. Shimokawa H, Yasutake H, Fujii K, Owada MK, Nakaike R, Fukumoto Y, Takayanagi T, Nagao T, Egashira K, Fujishima M, and Takeshita A. The importance of the hyperpolarizing mechanism increases as the vessel size decreases in endothelium-dependent relaxations in rat mesenteric circulations. *J Cardiovasc Pharmacol* 28: 703–711, 1996.
26. Shimokawa H. Primary endothelial dysfunction: atherosclerosis. *J Mol Cell Cardiol* 31: 23–37, 1999.
27. Siegel G, Emden J, Wenzel K, Mironneau J, and Stock G. Potassium channel activation in vascular smooth muscle. *Adv Exp Med Biol* 311: 53–72, 1992.
28. Steenbergen C, Murphy E, Levy L, and London RE. Elevation in cytosolic free calcium concentration early in myocardial ischemia in perfused rat heart. *Circ Res* 60: 700–707, 1987.
29. Taylor HJ, Chaytor AT, Evance WH, and Griffith TM. Inhibition of the gap junctional component of endothelium-dependent relaxations in rabbit iliac artery by 18-alpha glycyrrhetic acid. *Br J Pharmacol* 125: 1–3, 1998.
30. Tiefenbacher CP, Chilian WM, Mitchell M, and Defly DV. Restoration of endothelium-dependent vasodilation after reperfusion injury by tetrahydrobiopterin. *Circulation* 94: 1423–1429, 1996.
31. Traverso JH, Chen Y, Crampton M, Voss S, and Bache RJ. Increased extravascular forces limit endothelium-dependent and -independent coronary vasodilation in congestive heart failure. *Cardiovasc Res* 52: 454–461, 2001.
32. Yada T, Hiramatsu O, Kimura A, Goto M, Ogasawara Y, Tsujioka K, Yamamori S, Ohno K, Hosaka H, and Kajiya F. In vivo observation of subendocardial microvessels of the beating porcine heart using a needle-probe videomicroscope with a CCD camera. *Circ Res* 72: 939–946, 1993.
33. Yada T, Hiramatsu O, Kimura A, Tachibana H, Chiba Y, Lu S, Goto M, Ogasawara Y, Tsujioka K, and Kajiya F. Direct in vivo observation of subendocardial arteriolar responses during reactive hyperemia. *Circ Res* 77: 622–631, 1995.
34. Yada T, Goto M, Hiramatsu O, Tachibana H, Toyota E, Nakamoto H, Ogasawara Y, Matsuda H, Arakawa K, Hayashi K, Suzuki H, and Kajiya F. In vivo visualization of subendocardial arteriolar response in renovascular hypertensive hearts. *Am J Physiol Heart Circ Physiol* 284: H1785–H1792, 2003.
35. Yada T, Shimokawa H, Hiramatsu O, Kajita T, Shigeto F, Goto M, Ogasawara Y, and Kajiya F. Hydrogen peroxide, an endogenous endothelium-derived hyperpolarizing factor, plays an important role in coronary autoregulation in vivo. *Circulation* 107: 1040–1045, 2003.
36. Yada T, Shimokawa H, Hiramatsu O, Kajita T, Shigeto F, Tanaka E, Shinozaki Y, Mori H, Kiyooka T, Katsura M, Ohkuma S, Goto M, Ogasawara Y, and Kajiya F. Beneficial effect of hydroxyfasudil, a specific Rho-kinase inhibitor, on ischemia-reperfusion injury in canine coronary microcirculation in vivo. *J Am Coll Cardiol* 45: 599–607, 2005.
37. Yaguchi Y, Satoh H, Wakahara N, Katoh H, Uehara A, Terada H, Fujise Y, and Hayashi H. Protective effects of hydrogen peroxide against ischemia/reperfusion injury in perfused rat hearts. *Circ J* 67: 253–258, 2003.

Beraprost sodium enhances neovascularization in ischemic myocardium by mobilizing bone marrow cells in rats

Yoshinori Miyahara ^a, Shunsuke Ohnishi ^a, Hiroaki Obata ^a, Kozo Ishino ^b, Shunji Sano ^b, Hidezo Mori ^c, Kenji Kangawa ^d, Soichiro Kitamura ^e, Noritoshi Nagaya ^{a,*}

^a Department of Regenerative Medicine and Tissue Engineering, National Cardiovascular Center Research Institute, Osaka, Japan

^b Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan

^c Department of Cardiac Physiology, National Cardiovascular Center Research Institute, Osaka, Japan

^d Department of Biochemistry, National Cardiovascular Center Research Institute, Osaka, Japan

^e Department of Cardiovascular Surgery, National Cardiovascular Center, Osaka, Japan

Received 13 August 2006

Available online 7 September 2006

Abstract

Beraprost sodium, an orally active prostacyclin analogue, has vasoprotective effects such as vasodilation and antiplatelet activities. We investigated the therapeutic potential of beraprost for myocardial ischemia. Immediately after coronary ligation of Sprague–Dawley rats, beraprost (200 µg/kg/day) or saline was subcutaneously administered for 28 days. Four weeks after coronary ligation, administration of beraprost increased capillary density in ischemic myocardium, decreased infarct size, and improved cardiac function in rats with myocardial infarction. Beraprost markedly increased the number of CD34-positive cells and c-kit-positive cells in plasma. Also, four weeks after coronary ligation of chimeric rats with GFP-expressing bone marrow, bone marrow-derived cells were incorporated into the infarcted region and its border zone. Treatment with beraprost increased the number of GFP/von Willebrand factor-double-positive cells in the ischemic myocardium. These results suggest that beraprost has beneficial effects on ischemic myocardium partly by its ability to enhance neovascularization in ischemic myocardium by mobilizing bone marrow cells.

© 2006 Elsevier Inc. All rights reserved.

Keywords: Prostacyclin analogue; Myocardial infarction; Neovascularization; Bone marrow mobilization

Interruption of myocardial blood flow leads to rapid death of cardiomyocytes and vascular structures, resulting in the development of heart failure [1]. Stem or progenitor cells are mobilized from bone marrow into the peripheral blood in response to tissue ischemia, migrate to sites of injured tissues, and differentiate into endothelial cells and cardiomyocytes [2–4]. However, the compensatory mechanisms are insufficient to heal infarcted myocardium. Earlier studies have shown that bone marrow cells artificially mobilized by cytokines repair the infarcted heart and improve cardiac function after acute myocardial infarction [5,6]. Therefore, enhancement of bone marrow cell mobili-

zation leading to neovascularization following revascularization would be beneficial for the treatment of acute myocardial infarction.

Beraprost sodium (BPS) is a chemically stable prostacyclin analogue owing to its cyclo-pentabenzo furanyl structure [7]. It has been well established that BPS has vasoprotective effects such as vasodilation and antiplatelet activities [8–11]. Thus, BPS has been used in the treatment of peripheral arterial disease [12,13] and pulmonary arterial hypertension [14,15]. Although a limited number of studies suggest therapeutic potential of prostacyclin for the treatment of myocardial ischemia [16–18], the underlying mechanisms still remain unclear. In addition, little information is available regarding the therapeutic potential of prostacyclin analogues such as BPS for myocardial ischemia. A recent study has shown that BPS activates endothelial

* Corresponding author. Fax: +81 6 6833 9865.

E-mail address: nnagaya@ri.ncvc.go.jp (N. Nagaya).

nitric oxide synthase (eNOS) through the c-AMP/protein kinase A pathway [19]. Activation of eNOS is known to contribute to bone marrow cell mobilization, leading to neovascularization [20]. These results raise the possibility that BPS may have beneficial effects on the ischemic myocardium through enhancement of bone marrow cell mobilization.

Thus, the purposes of this study were: (1) to examine the effect of BPS on mobilization and recruitment of bone marrow cells after acute myocardial infarction, (2) to investigate whether BPS induces neovascularization in the ischemic myocardium, and (3) to investigate whether treatment with BPS improves cardiac function in rats with myocardial infarction.

Methods

Model of myocardial infarction. We used male Sprague–Dawley rats (Japan SLC Inc., Hamamatsu, Japan) weighing 185–215 g. Myocardial infarction was produced by left coronary ligation, as described previously [21]. Briefly, after rats were anesthetized with sodium pentobarbital (30 mg/kg), they were artificially ventilated with a volume-regulated respirator. The heart was exposed via a left thoracotomy incision. Then, the left coronary artery was ligated 2–3 mm from its origin between the pulmonary artery conus and the left atrium with a 6-0 Prolene suture. Finally, the heart was restored to its normal position, and the chest was closed. Experimental protocols were performed in accordance with the “Guidelines of the Animal Care Ethics Committee of the National Cardiovascular Center Research Institute”, which complies NIH Guidelines.

Administration of BPS. Immediately after coronary ligation, BPS (200 µg/kg/day, Astellas Pharma Inc., Tokyo, Japan) was subcutaneously administered to surviving rats using an osmotic mini-pump for 4 weeks (BPS group, $n = 12$). As a control, saline was similarly administered to rats receiving coronary ligation (Control group, $n = 12$).

Echocardiographic studies. Echocardiographic studies were performed 4 weeks after coronary ligation. M-mode tracings were obtained at the level of the papillary muscles using an echocardiographic system equipped with a 7.5-MHz phased-array transducer (HP SONOS 5500; Hewlett Packard Co., Andover, MA). Anterior and posterior end-diastolic and end-systolic wall thickness, LV end-diastolic and end-systolic dimensions, and LV fractional shortening were measured by the American Society for Echocardiography leading-edge method in three consecutive cardiac cycles. LV meridional wall stress was estimated as $0.344 \times LV \text{ pressure} \times \{LV \text{ dimension}/(1 + PWT/LV \text{ dimension})\}$, where PWT is posterior wall thickness [22].

Hemodynamic studies. Hemodynamic studies were performed 4 weeks after coronary ligation, following echocardiography. After anesthesia with pentobarbital sodium, a 1.5F micromanometer-tipped catheter (Millar Instruments Inc., Houston, TX) was advanced into the LV through the right common carotid artery. Hemodynamic variables were measured with a pressure transducer connected to a polygraph. After completion of these measurements, the left and right ventricles and the lungs were excised and weighed. Infarct size was determined as a percentage of the entire LV area ($n = 5$ in each group), as reported previously [23]. Briefly, incisions were made in the posterior LV so that the tissue could be pressed flat. The circumference of the entire flat LV and of the visualized infarcted area, as judged from both the epicardial and endocardial sides, was outlined on a clear plastic sheet. The difference in weight between the two marked areas on the sheet was used to determine infarct size and was expressed as a percentage of LV surface area.

Measurement of plasma ANP level. Blood samples were obtained 4 weeks after coronary ligation. Plasma atrial natriuretic peptide (ANP), a marker for heart failure, was measured by enzyme immunoassay (Peninsula Laboratories Inc., San Carlos, CA).

Mononuclear cell mobilization and FACS analysis. To investigate whether administration of BPS mobilizes bone marrow cells, an additional 12 rats were randomized to receive BPS (200 µg/kg/day, BPS group, $n = 6$) or saline (Control group, $n = 6$). On the third day of BPS or saline treatment, 4 ml of blood was drawn from the inferior vena cava of each rat. Peripheral blood was obtained at the end of infusion. After mononuclear cells were counted, they were incubated for 30 min at 4 °C with fluorescein isothiocyanate (FITC)-conjugated mouse monoclonal antibodies against rat CD34 (clone ICO-115, Santa Cruz) and CD45 (clone OX-1), and FITC-conjugated rabbit anti-rat c-Kit polyclonal antibody (clone C-19, Santa Cruz). Immunofluorescence-labeled cells were analyzed by quantitative flow cytometry with a FACSCalibur flow cytometer (BD Biosciences, Mountain View, CA). Isotype-identical antibodies served as controls.

RT-PCR assay. To investigate whether bone marrow cells express the prostacyclin receptor (IP receptor), we analyzed expression of its mRNA by reverse transcription–polymerase chain reaction (RT-PCR). In brief, total RNA of bone marrow cells was extracted with guanidine isothiocyanate (RNeasy Mini Kit, Qiagen). Then, reverse-transcribed single-stranded cDNA was subjected to PCR (PCR Amplification Kit, Takara) using primer sets for the IP receptor (Hokkaido System Science Co., Ltd., Sapporo, Japan, forward, 5'-GGCACGAGAGGATGAAGTTTAC-3'; reverse, 5'-GTCAGAGGCACAGCAGTCAATGG-3') and G3PDH (Clonetech Laboratories Inc., Mountain View, CA, forward, 5'-TG AAGGTCGGTGTCAACGGATTGGC-3'; reverse, 5'-CATGTAGG CCATGAGGTCCACAC-3').

Creation of bone marrow-chimeric rats. To assess recruitment of bone marrow cells after BPS administration, bone marrow transplantation was performed by using male normal Sprague–Dawley rats as recipients and male Green fluorescent protein (GFP)-transgenic rats (SD-Tg [Act-EGFP] CZ-004Osb, Japan SLC Inc.) as donors, using a previously described method [24]. Briefly, bone marrow was harvested by flushing the cavity of femurs and tibias from GFP-transgenic rats with phosphate-buffered saline. Then, 3×10^7 GFP-positive bone marrow cells were individually administered to 12 lethally irradiated (900c Gray) rats via the tail vein. Four weeks after transplantation, flowcytometric analysis determined that 90% of peripheral blood mononuclear cells from both donors and 8 of 12 chimeric rats were GFP-positive, suggesting the establishment of stable chimerism. These chimeric rats were subjected to left coronary ligation, followed by administration of BPS (200 µg/kg/day, BPS group, $n = 4$) or saline (Control group, $n = 4$) using an osmotic mini-pump for 4 weeks.

Histological examination. To detect fibrosis in the cardiac muscle, the LV myocardium ($n = 5$, each group) was fixed in 10% formalin, cut transversely in three sections, embedded in paraffin, and stained with Masson's trichrome. To detect capillary endothelial cells in the peri-infarct area, we performed DAB staining (LSAB2 System HRP, Dako Cytomation Co., Denmark) using rabbit polyclonal anti-von Willebrand factor (vWF) antibody (Dako). A total of 10 different fields from three different sections were randomly selected, and the number of capillaries was counted in the peri-infarct area using a light microscope at 200 \times magnification. Capillary density was expressed as the mean number of capillaries per square millimeter. Also, 4 weeks after coronary ligation in bone marrow-chimeric rats ($n = 4$ in each group), the LV myocardium was excised, embedded in OCT compound, snap-frozen in liquid nitrogen, and cut transversely into 6-µm-thick sections from base to apex. Immunofluorescent staining was performed using rabbit polyclonal anti-vWF antibody (Dako), mouse monoclonal anti-cardiac troponin T antibody (Neomarkers, Fremont, CA), and rabbit polyclonal Alexa 488-conjugated anti-GFP antibody (Molecular Probes Inc., Eugene, OR). The nuclei were counterstained with 4',6-diamidino-2-phenylindole (DAPI). We measured the number of GFP/vWF-double-positive cells incorporated into vascular structures in 10 randomly selected fields in the peri-infarct area per section in a blinded fashion using a fluorescence microscope.

Statistical analysis. Numerical values are expressed as means \pm SEM. Comparisons of parameters between two groups were made by unpaired Student's *t* test. A value of $p < 0.05$ was considered significant.

Results

Cardiac structure

Body weight at 4 weeks after coronary ligation was significantly greater in the BPS group than in the Control group (Table 1). Right ventricular weight and lung weight in the BPS group were significantly smaller than those in the Control group, although LV weight did not differ between the two groups. Moderate to large infarcts were

Table 1
Physiological profiles of experimental groups

	Control	BPS
Number	12	12
Body weight (g)		
Baseline	198 ± 3	204 ± 3
After treatment	319 ± 6	352 ± 9*
LV wt/body wt (g/kg)	2.28 ± 0.04	2.27 ± 0.04
RV wt/body wt (g/kg)	0.99 ± 0.05	0.61 ± 0.02**
Lung wt/body wt (g/kg)	6.55 ± 0.62	3.88 ± 0.1**
Plasma AND level (pg/ml)	798 ± 99	498 ± 57*

Control, infarct rats without treatment; BPS, infarct rats treated with BPS administration; AND, atrial natriuretic protein. Data are expressed as means ± SEM. * $p < 0.05$, ** $p < 0.01$ vs. Control group.

observed in the Control group (Fig. 1A). However, administration of BPS significantly decreased infarct size in rats with myocardial infarction (Fig. 1A and B). BPS significantly decreased LV end-diastolic dimension (LVDD) (Fig. 1C).

Cardiac function

Neither heart rate nor mean arterial pressure differed between the BPS and Control groups (Table 2). LV fractional shortening and LV maximum dP/dt in the BPS group were significantly greater than those in the Control group (Fig. 2A and B). LV end-diastolic pressure (LVEDP) in the BPS group was significantly lower than that in the Control group (Fig. 2C). LV minimum dP/dt was also improved by BPS (Fig. 2D). Treatment with BPS attenuated the increase in plasma ANP level after myocardial infarction (Table 1). BPS significantly increased anterior wall thickening, although it did not significantly alter posterior wall thickening (Table 2). Thickness of the anterior and posterior walls tended to be greater in the BPS group, but these changes did not reach statistical significance. LV diastolic wall stress in the BPS group was significantly lower than that in the Control group.

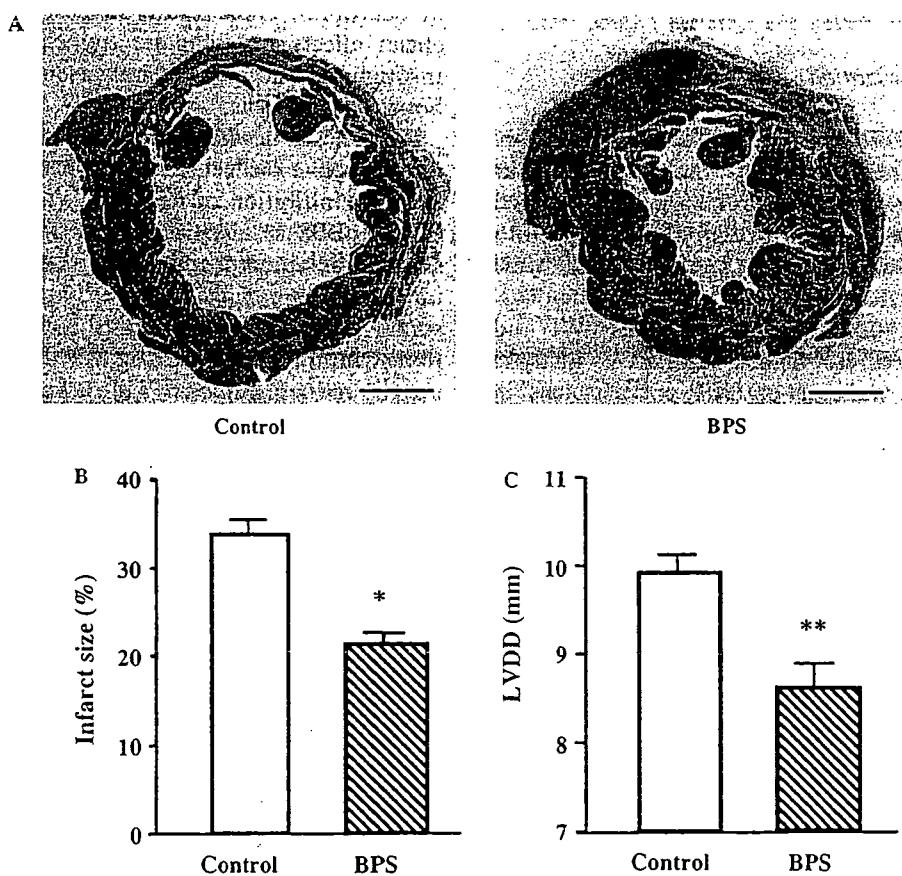


Fig. 1. (A) Representative examples of Masson's trichrome staining of transverse sections of LV myocardium 4 weeks after coronary ligation. Scale bars = 2 mm. (B,C) Quantitative analysis of infarct size and LV end-diastolic dimension (LVDD). Infarcted area and LVDD in the BPS group were significantly smaller than those in the Control group. Data are expressed as means ± SEM. * $p < 0.05$, ** $p < 0.01$ vs. Control group.

Table 2
Echocardiographic and hemodynamic data

	Control	BPS
AWT diastole (mm)	0.62 ± 0.04	0.74 ± 0.05
AW thickening (%)	17 ± 3	34 ± 6*
PWT diastole (mm)	1.55 ± 0.07	1.70 ± 0.04
PW thickening (%)	43 ± 4	49 ± 3
Heart rate (bpm)	458 ± 7	471 ± 10
Mean arterial pressure (mmHg)	103 ± 5	115 ± 4
LV systolic pressure (mmHg)	113 ± 4	127 ± 5*
LV diastolic wall stress (kdyne/cm ²)	24 ± 4	5 ± 1**
LV systolic wall stress (kdyne/cm ²)	267 ± 18	225 ± 14

AWT, anterior wall thickness; AW, anterior wall; PWT, posterior wall thickness; PW, posterior wall. Data are expressed as means ± SEM. *p < 0.05, **p < 0.01 vs. Control group.

Mobilization of bone marrow cells

RT-PCR demonstrated that IP receptor mRNA was expressed in bone marrow cells (Fig. 3A), indicating a direct effect of BPS on these cells. Three-day administration of BPS significantly increased the number of peripheral blood mononuclear cells compared to saline administration (Fig. 3B). Administration of BPS markedly increased the number of circulating progenitor cells such as CD34-positive cells and c-kit-positive cells (Fig. 3C and D). BPS also increased the number of CD45-positive hematopoietic lineage cells (Fig. 3E).

BPS-induced neovascularization

Chimeric rats with GFP-expressing bone marrow were used to assess recruitment of bone marrow cells. Four weeks after coronary ligation, bone marrow-derived GFP-positive cells were incorporated predominantly into the infarcted region and its border zone (Fig. 4A), while these cells were rarely detected in the noninfarcted myocardium. Some of the GFP-positive cells stained for vWF and formed vascular structures. Semi-quantitative analysis demonstrated that the number of GFP-positive cells in the myocardium was significantly greater in the BPS group

than in the Control group (Fig. 4B). The number of GFP-vWF double-positive cells (bone marrow-derived endothelial cells) in the ischemic myocardium was significantly greater in the BPS group than in the Control group (Fig. 4C). In addition, a small number of GFP-troponin T-double-positive cells were observed in the BPS group (Fig. 4D).

Capillary density

In the peri-infarct area, clustering of relatively small vessels was seen in BPS-treated hearts, which is indicative of recent endothelial regeneration (Fig. 5A). Semi-quantitative analysis also demonstrated that administration of BPS significantly increased the capillary density in the peri-infarct area compared to the Control group (Fig. 5B).

Discussion

In the present study, we demonstrated that treatment with BPS (1) decreased infarct size and improved cardiac structure and function in rats with acute myocardial infarction, (2) increased the number of circulating progenitor cells such as CD34-positive cells and c-kit-positive cells in rats, and (3) increased the number of bone marrow-derived endothelial cells and the capillary density in the ischemic myocardium. These results suggest that BPS may have beneficial effects on ischemic myocardium at least in part through enhancement of neovascularization by mobilizing bone marrow cells.

Earlier studies have reported that prostacyclin has cardioprotective effects in ischemia-reperfusion injury through inhibition of neutrophil activation and migration [25,26]. BPS is also reported to inhibit chemotaxis and superoxide anion production of neutrophils which contribute to tissue damage by releasing tissue destructive lysosomal enzymes [27]. Infusion of BPS has been shown to reduce infarct size in the dog heart with left coronary occlusion by reducing myocardial oxygen demand and by inhibition of the migration of neutrophils [28]. However, these

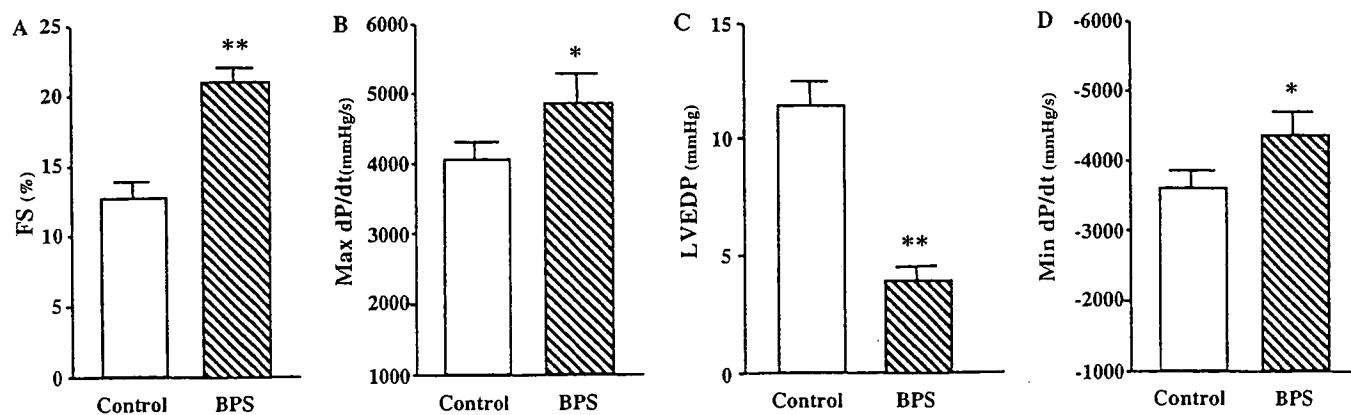


Fig. 2. Cardioprotective effects of BPS on echocardiographic and hemodynamic parameters. FS, fractional shortening; LVEDP, LV end-diastolic pressure; Max and Min dP/dt, maximum and minimum dP/dt. Data are expressed as means ± SEM. *p < 0.05, **p < 0.01 vs. Control group.

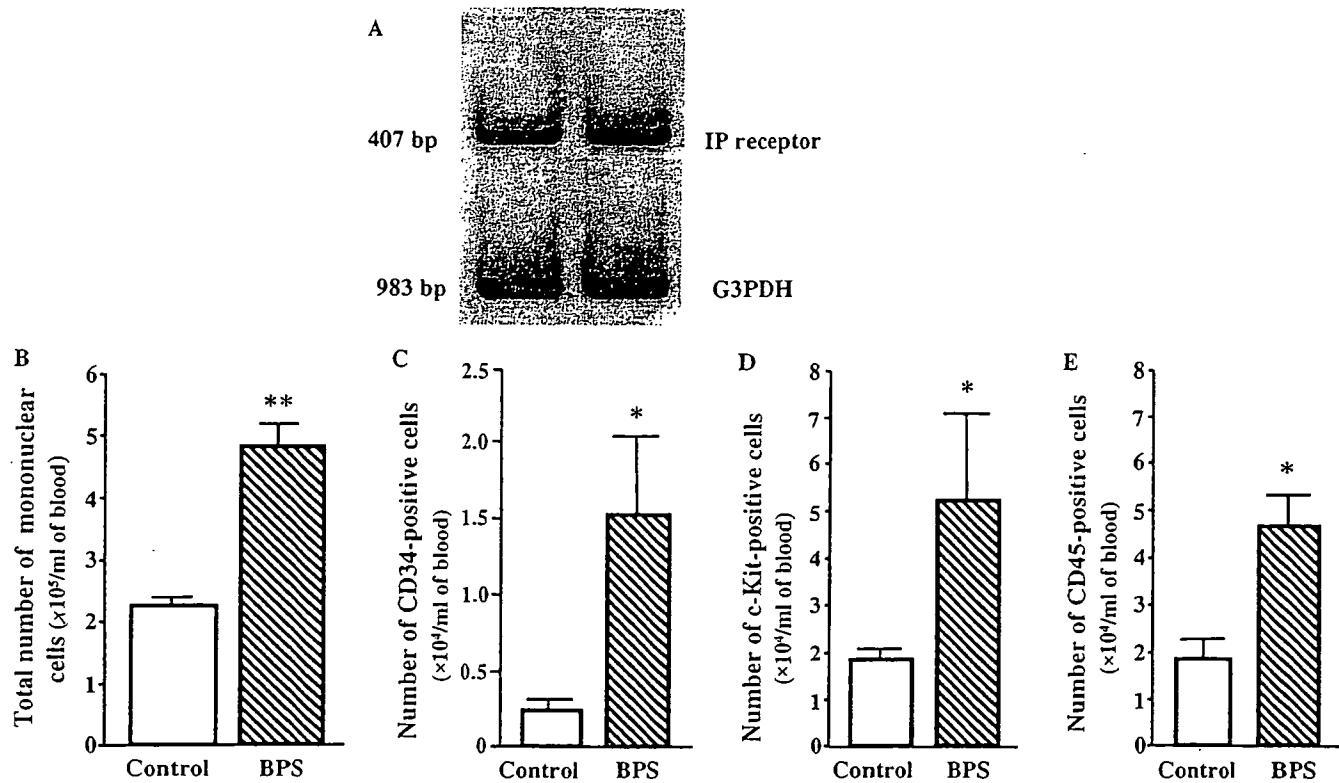


Fig. 3. BPS-induced mobilization of bone marrow cells. (A) Expression of prostacyclin receptor (IP receptor) on bone marrow cells. (B–E) Quantification of BPS-induced MNC mobilization by FACS analysis. Administration of BPS markedly increased the number of circulating progenitor cells such as CD34-positive cells and c-kit-positive cells. BPS also increased the number of CD45-positive hematopoietic lineage cells. Data are expressed as means \pm SEM. * $p < 0.05$, ** $p < 0.01$ vs. Control group.

biological activities of BPS appear to be insufficient to explain the decrease in infarct size as well as suppression of LV remodeling.

Recent studies have shown that mobilization of bone marrow cells by cytokines promotes myocardial repair and regeneration after acute myocardial infarction [5,6]. In the present study, three-day administration of BPS markedly increased the number of circulating progenitor cells such as CD34-positive cells and c-kit-positive cells in rats. In addition, treatment with BPS enhanced recruitment of bone marrow cells to the ischemic myocardium and increased capillary density in the peri-infarct area. Earlier studies have shown that CD34-positive cells have angiogenic potential to treat ischemic heart [29–31]. Also, another stem cell fraction, c-kit-positive cells have ability to repair ischemic myocardium by differentiating into vascular endothelial cells [32,33]. These findings suggest that administered BPS induces neovascularization partly via enhancement of bone marrow cell mobilization. RT-PCR demonstrated that IP receptor mRNA was expressed in bone marrow cells, indicating a direct effect of BPS on these cells. A recent study has shown that BPS increases eNOS expression in cultured endothelial cells through activation of c-AMP/Protein kinase A signal transduction [19]. Also, earlier studies have shown that eNOS plays essential role in the recruitment of EPCs to the ischemic myocardium [20]. Taken together, administered BPS may act as a

potent stimulator of cell mobilization from bone marrow, although further studies are necessary to examine the underlying mechanisms.

In the present study, treatment with BPS significantly attenuated infarct size after myocardial infarction. BPS improved cardiac function and attenuated the development of LV remodeling after acute myocardial infarction, as indicated by increases in LV fractional shortening and maximum dP/dt , and decreases in LVEDP and LVDD. Taken together, BPS may attenuate myocardial infarction through enhancement of neovascularization via modification of bone marrow kinetics. Interestingly, a small fraction of mobilized bone marrow cells expressed cardiac troponin T in the ischemic myocardium in the BPS group, suggesting that BPS may partially contribute to myocardial regeneration after acute myocardial infarction. Earlier studies have demonstrated that BPS has other beneficial effects for ischemic heart disease including anti-thrombotic activity [34], inhibition of reperfusion injury [35], and prevention of coronary spasm [36], and re-stenosis [37]. These findings suggest that administration of BPS may be a promising therapy for acute myocardial infarction.

Granulocyte colony stimulating factor (G-CSF) is currently used agent for mobilization of bone marrow. Infusion of G-CSF after myocardial infarction improves LV function increasing peripheral stem cell fraction [5,38]. A recent clinical trial, however, claimed the G-CSF therapy

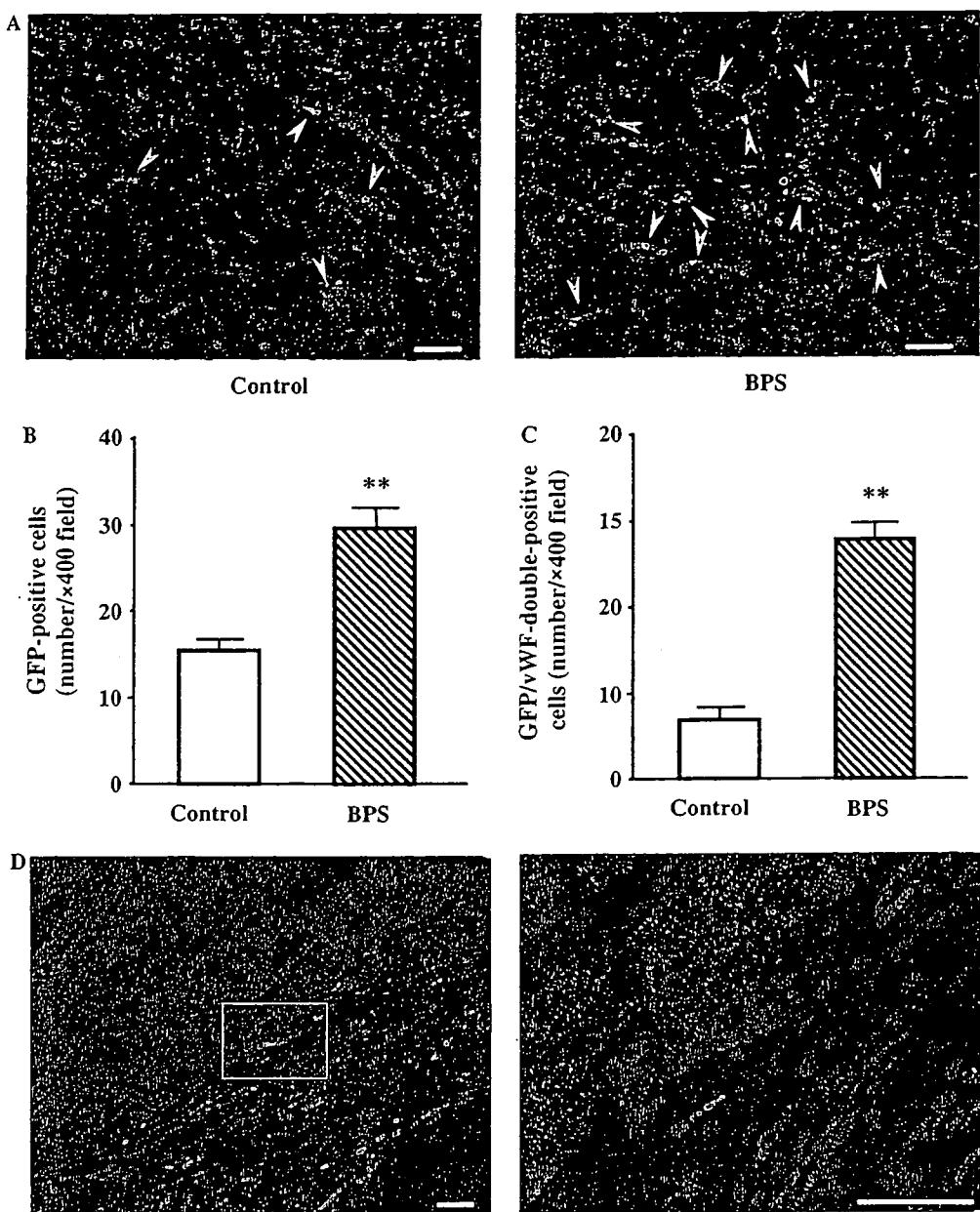


Fig. 4. BPS-induced neovascularization. (A) Representative immunofluorescent images stained with antibodies to von-Willbrand factor (vWF, red) and green fluorescent protein (GFP, green). Nuclei were counterstained with DAPI (blue). (B,C) Semi-quantitative analyses of numbers of GFP-positive cells and GFP-vWF double-positive cells in the peri-infarct area. (D) Representative immunofluorescent image of GFP-positive cells (green) expressing cardiac troponin T (red) observed in the BPS group. Scale bars = 50 μ m. Data are expressed as means \pm SEM. ** p < 0.01 vs. Control group.

has serious problem with re-stenosis after recanalization [39]. On the other hand, the safety of BPS has been identified in the treatment of peripheral arterial disease [12,13] and pulmonary arterial hypertension [14,15]. A randomized, controlled clinical trial failed to demonstrate therapeutic potential of prostacyclin for the treatment of severe congestive heart failure [40], which has long discouraged the pursuit of prostacyclin as a therapeutic option for the treatment of acute myocardial infarction. Interestingly, however, double-blinded, randomized, placebo-controlled, large-scale studies showed that treatment with BPS decreased vascular events in patients with peripheral

arterial disease [41,42]. Thus, adequate use of BPS for only acute myocardial infarction may have beneficial effects on ischemic myocardium, although further preclinical trials are required to verify the safety and efficacy of BPS.

Conclusion

In summary, administration of BPS improved cardiac structure and function in rats with acute myocardial infarction. This beneficial effect of BPS may be mediated partly by its ability to enhance neovascularization in ischemic myocardium by mobilizing bone marrow cells.

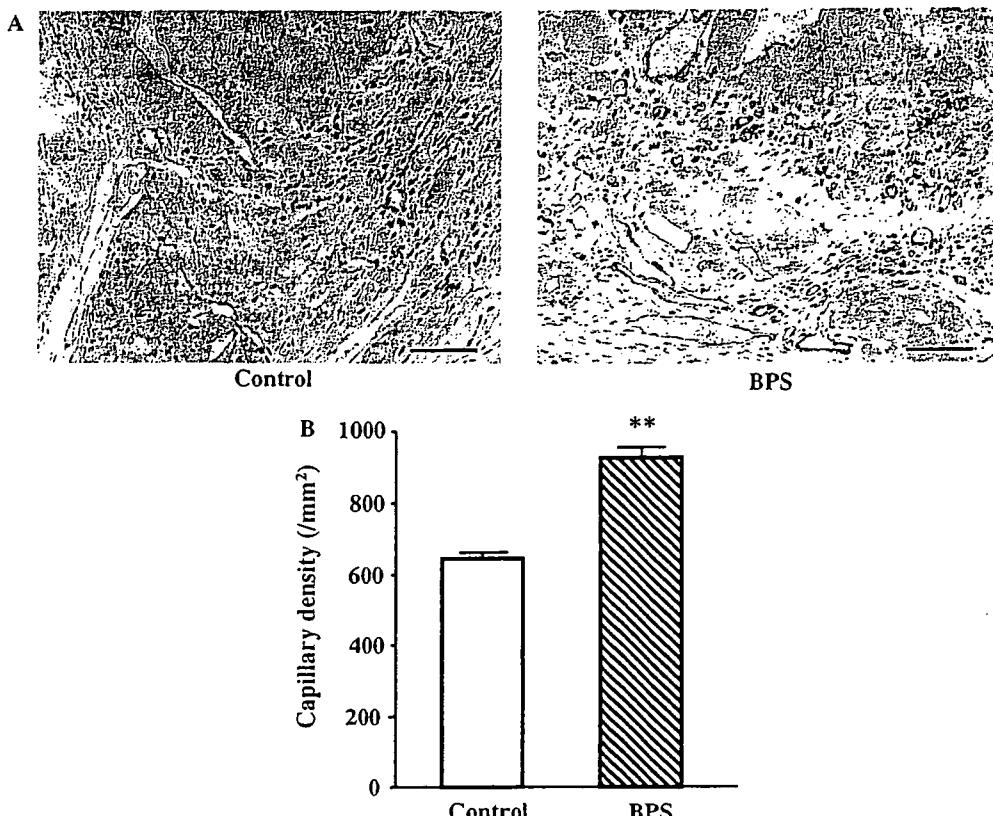


Fig. 5. (A) Representative samples stained with antibody to von Willebrand factor by bright-field DAB. (B) Quantitative analysis of capillary density in peri-infarct area. Administration of BPS increased capillary density by 37%. Scale bars = 50 μ m. Data are expressed as means \pm SEM. ** p < 0.01 vs. Control group.

Acknowledgment

This work was supported by research grants for Cardiovascular Disease (16C-6) from the Ministry of Health, Labor and Welfare, and for Japan Vascular Disease Research Foundation.

References

- [1] A. Saraste, K. Pulkki, M. Kallajoki, K. Henriksen, M. Parvinen, L.M. Voipio-Pulkki, Apoptosis in human acute myocardial infarction, *Circulation* 95 (1997) 320–323.
- [2] S. Shintani, T. Murohara, H. Ikeda, T. Ueno, T. Honma, A. Katoh, K. Sasaki, T. Shimada, Y. Oike, T. Imaizumi, Mobilization of endothelial progenitor cells in patients with acute myocardial infarction, *Circulation* 103 (2001) 2776–2779.
- [3] D. Orlic, J. Kajstura, S. Chimenti, I. Jakoniuk, S.M. Anderson, B. Li, J. Pickel, R. McKay, B. Nadal-Ginard, D.M. Bodine, A. Leri, P. Anversa, Bone marrow cells regenerate infarcted myocardium, *Nature* 410 (2001) 701–705.
- [4] H. Oh, S.B. Bradfute, T.D. Gallardo, T. Nakamura, V. Gaussion, Y. Mishina, J. Pocius, L.H. Michael, R.R. Behringer, D.J. Garry, M.L. Entman, M.D. Schneider, Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction, *Proc. Natl. Acad. Sci. USA* 100 (2003) 12313–12318.
- [5] D. Orlic, J. Kajstura, S. Chimenti, F. Limana, I. Jakoniuk, F. Quaini, B. Nadal-Ginard, D.M. Bodine, A. Leri, P. Anversa, Mobilized bone marrow cells repair the infarcted heart, improving function and survival, *Proc. Natl. Acad. Sci. USA* 98 (2001) 10344–10349.
- [6] T. Asahara, T. Takahashi, H. Masuda, C. Kalka, D. Chen, H. Iwaguro, Y. Inai, M. Silver, J.M. Isner, VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells, *EMBO J.* 18 (1999) 3964–3972.
- [7] T. Murata, T. Murai, T. Kanai, Y. Ogaki, K. Sanai, H. Kanda, S. Sato, N. Kajikawa, T. Umetsu, H. Matsuura, General pharmacology of beraprost sodium, *Arzneimittelforschung* 39 (1989) 867–876.
- [8] T. Akiba, M. Miyazaki, N. Toda, Vasodilator actions of TRK-100, a new prostaglandin I2 analogue, *Br. J. Pharmacol.* 89 (1986) 703–711.
- [9] S. Nishio, H. Matsuura, N. Kanai, Y. Fukatsu, T. Hirano, N. Nishikawa, K. Kameoka, T. Umetsu, The in vitro and ex vivo antiplatelet effect of TRK-100, a stable prostacyclin analog, in several species, *Jpn J. Pharmacol.* 47 (1988) 1–10.
- [10] J.L. Demolis, A. Robert, M. Mouren, C. Funck-Brentano, P. Jaillon, Pharmacokinetics and platelet antiaggregating effects of beraprost, an oral stable prostacyclin analogue, in healthy volunteers, *J. Cardiovasc. Pharmacol.* 22 (1993) 711–716.
- [11] P. Nony, P. Ffrench, P. Girard, S. Delair, S. Azoulay, J.P. Girre, M. Dechavanne, J.P. Boissel, Platelet-aggregation inhibition and hemodynamic effects of beraprost sodium, a new oral prostacyclin derivative: a study in healthy male subjects, *Can. J. Physiol. Pharmacol.* 74 (1996) 887–893.
- [12] M. Murakami, M. Watanabe, H. Furukawa, H. Nakahara, The prostacyclin analogue beraprost sodium prevents occlusion of bypass grafts in patients with lower extremity arterial occlusive disease: a 20-year retrospective study, *Ann. Vasc. Surg.* 19 (2005) 838–842.
- [13] L.T. Cooper, Beraprost for the treatment of intermittent claudication, *J. Am. Coll. Cardiol.* 41 (2003) 1679–1686.
- [14] Y. Okano, T. Yoshioka, A. Shimouchi, T. Satoh, T. Kunieda, Orally active prostacyclin analogue in primary pulmonary hypertension, *Lancet* 349 (1997) 1365.

[15] N. Nagaya, M. Uematsu, Y. Okano, T. Satoh, S. Kyotani, F. Sakamaki, N. Nakanishi, K. Miyatake, T. Kunieda, Effect of orally active prostacyclin analogue on survival of outpatients with primary pulmonary hypertension, *J. Am. Coll. Cardiol.* 34 (1999) 1188–1192.

[16] A.M. Lefer, M.L. Ogletree, J.B. Smith, M.J. Silver, K.C. Nicolaou, W.L. Barnette, G.P. Gasic, Prostacyclin: a potentially valuable agent for preserving myocardial tissue in acute myocardial ischemia, *Science* 200 (1978) 52–54.

[17] B.I. Jugdutt, G.M. Hutchins, B.H. Bulkley, L.C. Becker, Dissimilar effects of prostacyclin, prostaglandin E1, and prostaglandin E2 on myocardial infarct size after coronary occlusion in conscious dogs, *Circ. Res.* 49 (1981) 685–700.

[18] J.A. Melin, L.C. Becker, Salvage of ischemic myocardium by prostacyclin during experimental myocardial infarction, *J. Am. Coll. Cardiol.* 2 (1983) 279–286.

[19] K. Niwano, M. Arai, K. Tomaru, T. Uchiyama, Y. Ohyama, M. Kurabayashi, Transcriptional stimulation of the eNOS gene by the stable prostacyclin analogue beraprost is mediated through cAMP-responsive element in vascular endothelial cells: close link between PGI2 signal and NO pathways, *Circ. Res.* 93 (2003) 523–530.

[20] A. Aicher, C. Heeschen, C. Mildner-Rihm, C. Urbich, C. Ihling, K. Technau-Ihling, A.M. Zeiher, S. Dommeler, Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells, *Nat. Med.* 9 (2003) 1370–1376.

[21] T. Nishikimi, K. Uchino, E.D. Frohlich, Effects of α 1-adrenergic blockade on intrarenal hemodynamics in heart failure rats, *Am. J. Physiol. Regul. Integr. Comp. Physiol.* 262 (1998) R198–R203.

[22] P.S. Douglas, N. Reichek, T. Plappert, A. Muhammad, M.G. St John Sutton, Comparison of echocardiographic methods for assessment of left ventricular shortening and wall stress, *J. Am. Coll. Cardiol.* 9 (1987) 945–951.

[23] Y.W. Chien, R.W. Barbee, A.A. Macphee, E.D. Frohlich, N.C. Trippondo, Increased ANF secretion after volume expansion is preserved in rats with heart failure, *Am. J. Physiol.* 254 (1988) R185–R191.

[24] T. Ito, A. Suzuki, E. Imai, M. Okabe, M. Hori, Bone marrow is a reservoir of repopulating mesangial cells during glomerular remodeling, *J. Am. Soc. Nephrol.* 12 (2001) 2625–2635.

[25] P.J. Simpson, R.F. Todd 3rd, J.C. Fantone, J.K. Mickelson, J.D. Griffin, B.R. Lucchesi, Reduction of experimental canine myocardial reperfusion injury by a monoclonal antibody (anti-Mo1, anti-CD11b) that inhibits leukocyte adhesion, *J. Clin. Invest.* 81 (1988) 624–629.

[26] W.W. Nichols, J. Mehta, T.J. Wargovich, D. Franzini, D. Lawson, Reduced myocardial neutrophil accumulation and infarct size following thromboxane synthetase inhibitor or receptor antagonist, *Angiology* 40 (1989) 209–221.

[27] M. Kainoh, R. Imai, T. Nakadake, M. Hattori, S. Nishio, Prostacyclin and beraprost sodium as suppressors of activated rat polymorphonuclear leukocytes, *Biochem. Pharmacol.* 39 (1990) 477–483.

[28] Y. Ueno, Y. Miyachi, S. Nishio, Beraprost sodium protects occlusion/reperfusion injury in the dog by inhibition of neutrophil migration, *Gen. Pharmacol.* 25 (1994) 427–432.

[29] A. Kawamoto, T. Tkebuchava, J. Yamaguchi, H. Nishimura, Y.S. Yoon, C. Milliken, S. Uchida, O. Masuo, H. Iwaguro, H. Ma, A. Hanley, M. Silver, M. Learney, D.W. Losordo, J.M. Isner, T. Asahara, Intramyocardial transplantation of autologous endothelial progenitor cells for therapeutic neovascularization of myocardial ischemia, *Circulation* 107 (2003) 461–468.

[30] A. Kawamoto, T. Asahara, D.W. Losordo, Transplantation of endothelial progenitor cells for therapeutic neovascularization, *Cardiovasc. Radiat. Med.* 3 (2002) 221–225.

[31] A. Weber, I. Pedrosa, A. Kawamoto, N. Himes, J. Munasinghe, T. Asahara, N.M. Rofsky, D.W. Losordo, Magnetic resonance mapping of transplanted endothelial progenitor cells for therapeutic neovascularization in ischemic heart disease, *Eur. J. Cardiothorac. Surg.* 26 (2004) 137–143.

[32] J. Kajstura, M. Rota, B. Whang, S. Cascapera, T. Hosoda, C. Bearzi, D. Nurzynska, H. Kasahara, E. Zias, M. Bonafe, B. Nadal-Ginard, D. Torella, A. Nascimbene, F. Quaini, K. Urbanek, A. Leri, P. Anversa, Bone marrow cells differentiate in cardiac cell lineages after infarction independently of cell fusion, *Circ. Res.* 96 (2005) 127–137.

[33] R. Lanza, M.A. Moore, T. Wakayama, A.C. Perry, J.H. Shieh, J. Hendrikx, A. Leri, S. Chimenti, A. Monsen, D. Nurzynska, M.D. West, J. Kajstura, P. Anversa, Regeneration of the infarcted heart with stem cells derived by nuclear transplantation, *Circ. Res.* 94 (2004) 820–827.

[34] Y. Uchida, T. Hanai, K. Hasegawa, K. Kawamura, T. Oshima, Recanalization of obstructed coronary artery by intracoronary administration of prostacyclin in patients with acute myocardial infarction, *Adv. Prostaglandin Thromboxane Leukot. Res.* 11 (1983) 377–383.

[35] C.Y. Xiao, A. Hara, Yuhki K. T. Fujino, H. Ma, Y. Okada, O. Takahata, T. Yamada, T. Murata, S. Narumiya, F. Ushikubi, Roles of prostaglandin I(2) and thromboxane A(2) in cardiac ischemia-reperfusion injury: a study using mice lacking their respective receptors, *Circulation* 104 (2001) 2210–2215.

[36] A. Szczeklik, J. Szczeklik, R. Nizankowski, P. Gluszko, Prostacyclin for unstable angina, *N. Engl. J. Med.* 303 (1980) 881.

[37] M.L. Knudtson, V.F. Flintoft, D.L. Roth, J.L. Hansen, H.J. Duff, Effect of short-term prostacyclin administration on restenosis after percutaneous transluminal coronary angioplasty, *J. Am. Coll. Cardiol.* 15 (1990) 691–697.

[38] F. Kuethe, H.R. Figulla, M. Herzau, M. Voth, M. Fritzenwanger, T. Opfermann, K. Pachmann, A. Krack, H.G. Sayer, D. Gottschild, G.S. Werner, Treatment with granulocyte colony-stimulating factor for mobilization of bone marrow cells in patients with acute myocardial infarction, *Am. Heart J.* 150 (2005) 115.

[39] H.J. Kang, H.S. Kim, S.Y. Zhang, K.W. Park, H.J. Cho, B.K. Koo, Y.J. Kim, D. Soo Lee, D.W. Sohn, K.S. Han, B.H. Oh, M.M. Lee, Y.B. Park, Effects of intracoronary infusion of peripheral blood stem cells mobilised with granulocyte-colony stimulating factor on left ventricular systolic function and restenosis after coronary stenting in myocardial infarction: the MAGIC cell randomised clinical trial, *Lancet* 363 (2004) 751–756.

[40] R.M. Calif, K.F. Adams, W.J. McKenna, M. Gheorghiade, B.F. Uretsky, S.E. McNulty, H. Darius, K. Schulman, F. Zannad, E. Handberg-Thurmond, F.E. Harrell Jr., W. Wheeler, J. Soler-Soler, K. Swedberg, A randomized controlled trial of eprostoenol therapy for severe congestive heart failure: The Flolan International Randomized Survival Trial (FIRST), *Am. Heart J.* 134 (1997) 44–54.

[41] M. Lievre, S. Morand, B. Besse, J.N. Fiessinger, J.P. Boissel, Oral beraprost sodium, a prostaglandin I(2) analogue, for intermittent claudication: a double-blind, randomized, multicenter controlled trial. Beraprost et Claudication Intermittente (BERCI) Research Group, *Circulation* 102 (2000) 426–431.

[42] E.R. Mohler 3rd, W.R. Hiatt, J.W. Olin, M. Wade, R. Jeffs, A.T. Hirsch, Treatment of intermittent claudication with beraprost sodium, an orally active prostaglandin I2 analogue: a double-blinded, randomized, controlled trial, *J. Am. Coll. Cardiol.* 41 (2003) 1679–1686.

Granulocyte Colony-Stimulating Factor Mediates Cardioprotection Against Ischemia/Reperfusion Injury via Phosphatidylinositol-3-Kinase/Akt Pathway in Canine Hearts

Hiroyuki Takahama · Tetsuo Minamino ·
Akio Hirata · Akiko Ogai · Hiroshi Asanuma ·
Masashi Fujita · Masakatsu Wakeno ·
Osamu Tsukamoto · Ken-ichiro Okada ·
Kazuo Komamura · Seiji Takashima ·
Yoshiro Shinohara · Hidezo Mori · Naoki Mochizuki ·
Masafumi Kitakaze

Published online: 16 June 2006
© Springer Science + Business Media, LLC 2006

Abstract

Purpose Recent studies suggest that G-CSF prevents cardiac remodeling following myocardial infarction (MI) likely through regeneration of the myocardium and coronary vessels. However, it remains unclear

whether G-CSF administered at the onset of reperfusion prevents ischemia/reperfusion injury in the acute phase. We investigated acute effects of G-CSF on myocardial infarct size and the incidence of lethal arrhythmia and evaluated the involvement of the phosphatidylinositol-3 kinase (PI3K) in the *in vivo* canine models.

Methods In open-chest dogs, left anterior descending coronary artery (LAD) was occluded for 90 minutes followed by 6 hours of reperfusion. We intravenously administered G-CSF (0.33 µ/kg/min) for 30 minutes from the onset of reperfusion. Wortmannin, a PI3K inhibitor, was selectively administered into the LAD after the onset of reperfusion.

Results G-CSF significantly ($p < 0.05$) reduced myocardial infarct size ($38.7 \pm 4.3\%$ to $15.7 \pm 5.3\%$) and the incidence of ventricular fibrillation during reperfusion periods (50% to 0%) compared with the control. G-CSF enhanced Akt phosphorylation in ischemic canine myocardium. Wortmannin blunted both the infarct size-limiting and anti-arrhythmic effects of G-CSF. G-CSF did not change myeloperoxidase activity, a marker of neutrophil accumulation, in the infarcted myocardium.

Conclusion An intravenous administration of G-CSF at the onset of reperfusion attenuates ischemia/reperfusion injury through PI3K/Akt pathway in the *in vivo* model. G-CSF administration can be a promising candidate for the adjunctive therapy for patients with acute myocardial infarction.

Takahama and Hirata contributed equally to this work.

H. Takahama · A. Ogai · H. Asanuma · M. Wakeno ·
K. Komamura · H. Mori · M. Kitakaze
Department of Cardiovascular Medicine,
National Cardiovascular Center,
Suita 565-8565, Osaka, Japan

H. Takahama · M. Wakeno · N. Mochizuki
Department of Structural Analysis,
National Cardiovascular Center,
Suita 565-8565, Osaka, Japan

H. Takahama · M. Wakeno · N. Mochizuki
Department of Bioregulatory Medicine,
Osaka University Graduate School of Medicine,
Suita 565-0871, Osaka, Japan

T. Minamino (✉) · A. Hirata · M. Fujita · O. Tsukamoto ·
K.-i. Okada · S. Takashima
Department of Cardiovascular Medicine,
Osaka University Graduate School of Medicine,
2-2 Yamadaoka, Suita 565-0871, Osaka, Japan
e-mail: minamino@medone.med.osaka-u.ac.jp

Y. Shinohara
Department of Physiological Science,
Tokai University School of Medicine,
Isehara 259-1193, Kanagawa, Japan

Key words G-CSF · myocardial infarction · ischemia-reperfusion injury · ventricular fibrillation · phosphatidylinositol-3 kinase · Akt

Abbreviations

VF	ventricular fibrillation
G-CSF	granulocyte colony-stimulating factor
WTMN	wortmannin

Introduction

Granulocyte colony-stimulating factor (G-CSF), a 20-kDa glycoprotein, promotes the proliferation, survival and differentiation of hematopoietic cells [1]. Furthermore, G-CSF can mobilize hematopoietic stem cells from bone marrow [2, 3]. Thus, G-CSF is believed to improve cardiac remodeling after myocardial infarction (MI) through regeneration of the myocardium and angiogenesis [4, 5]. In addition to these effects of G-CSF, Komuro and colleagues clearly demonstrated that the high dose of G-CSF acutely reduces infarct size by preventing apoptosis in the isolated hearts [6]. However, it remains unclear whether clinically relevant dosages of G-CSF can reduce the infarct size in the *in vivo* model and, if so, it is not clear which downstream signaling pathway is involved in the acute cardioprotective effects of G-CSF. Furthermore, although lethal arrhythmias are a major cause of death in patients with acute myocardial infarction [7, 8], anti-arrhythmic effects of G-CSF have not been determined.

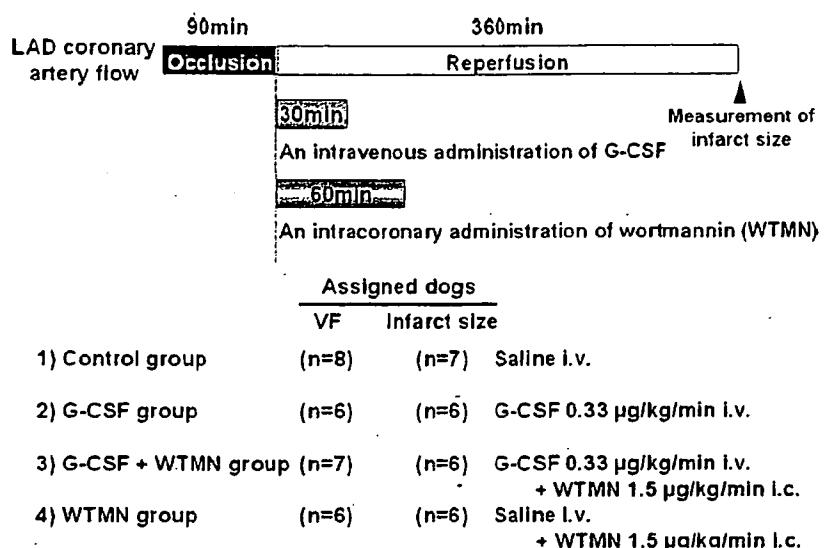
Thus, we investigated the acute effects of a clinical relevant dose of G-CSF on ischemia/reperfusion injury including both lethal arrhythmias and infarct size in canine hearts. We also examined a role of the PI3K/Akt pathway, a down stream of G-CSF receptors, in the cardioprotective effects of G-CSF. In the present study, we adopted ischemia/reperfusion protocols that have not been tested in previous studies [4, 5], because coronary revascularization has been established as a standard therapy to attenuate cardiac damage after MI.

Materials and methods

Materials

G-CSF was provided by Kirin brewery company (Tokyo, Japan). Recombinant human G-CSF can

increase the number of white blood cells in dogs [9]. Wortmannin was obtained from Sigma (St. Louis, MO), and antibodies against Phospho-Akt and Akt were obtained from Cell signaling technologies (Beverly, MA).


Instrumentation

Twenty-nine beagle dogs (Kitayama Labes, Gifu, Japan) weighing 8 to 12 kg were anesthetized by an intravenous injection of sodium pentobarbital (30 mg/kg), intubated and ventilated with room air mixed with oxygen (100% O₂ at flow rate of 1.0 to 1.5 l/min). Thoracotomy was done at the fifth left intercostal space, and the heart was suspended in a pericardial cradle. After intravenous administration of heparin (500 U/kg), the left anterior descending coronary artery (LAD) was cannulated for perfusion with blood from the left carotid artery through an extracorporeal bypass tube. This allows the selective infusion of drugs into the LAD-perfused areas through this bypass tube. The left atrium was catheterized for microsphere injection to measure myocardial collateral blood flow during ischemia as described previously [10]. Hydration was maintained by a slow normal saline infusion. Both systemic blood pressure (SBP) and heart rate (HR) were monitored continuously during the study. All procedures were performed in conformity with the Guide for the care and use of laboratory animals (NIH Publication No. 85-23, 1996 revision), and were approved by the *Osaka University Committee for Laboratory Animal Use*.

Experimental protocols

Protocol 1. Acute effects of G-CSF on infarct size and lethal arrhythmias in canine hearts

After hemodynamic stabilization, we intravenously administered either saline (Control group; $n = 9$) or G-CSF (0.33 µg/kg/min) (G-CSF group; $n = 6$) for 30 min following the onset of reperfusion. An intracoronary administration of wortmannin (WTMN), a PI3K inhibitor, was selectively administered into the LAD (1.5 µg/kg/min) for 60 min after the onset of reperfusion (GCSF + WTMN group, $n = 7$; WTMN group, $n = 7$) (Fig. 1). We have previously confirmed that the dose of wortmannin used prevents the phosphorylation of Akt in myocardium [10]. We measured infarct size and myocardial collateral blood flow during ischemia. In brief, infarct size was evaluated at the end of the protocol by Evans blue/TTC staining. Collateral blood flow during 90 min of ischemia was assessed by the non-radioactive microsphere method [10]. We also counted

Fig. 1 Experimental protocols to assess myocardial infarct size and ventricular fibrillation (VF) in canine hearts. Myocardial infarct size was measured after 90 min of left anterior descending coronary artery (LAD) occlusion followed by 360 min of reperfusion. The incidence of VF was evaluated during reperfusion for 360 min. Intravenous administration of granulocyte colony-stimulating factor (G-CSF) was started at the onset of reperfusion and continued for 30 min. Intracoronary administration of wortmannin (WTMN) was started at the onset of reperfusion and continued for 60 min.

the incidence of VF during the 6 h reperfusion period (Fig. 1).

Finally, we measured myeloperoxidase (MPO) activity in LAD-perfused myocardium to check the accumulation of neutrophils in infarcted myocardium.

Protocol 2. Phosphorylation of Akt in ischemic myocardium

In this protocol, we used 11 dogs in Control group ($n = 3$), G-CSF group ($n = 4$), and G-CSF + WTMN group ($n = 4$). After 90 min of ischemia followed by 30 min of reperfusion, hearts were excised. The myocardial tissue in the ischemic zone, which was identified as the edge of the region showing necrosis, and non-ischemic zone were quickly placed into liquid nitrogen and stored at -80°C . Phosphorylation of Akt and total content of Akt were evaluated by immunoblotting as reported previously [10].

Immunoblotting

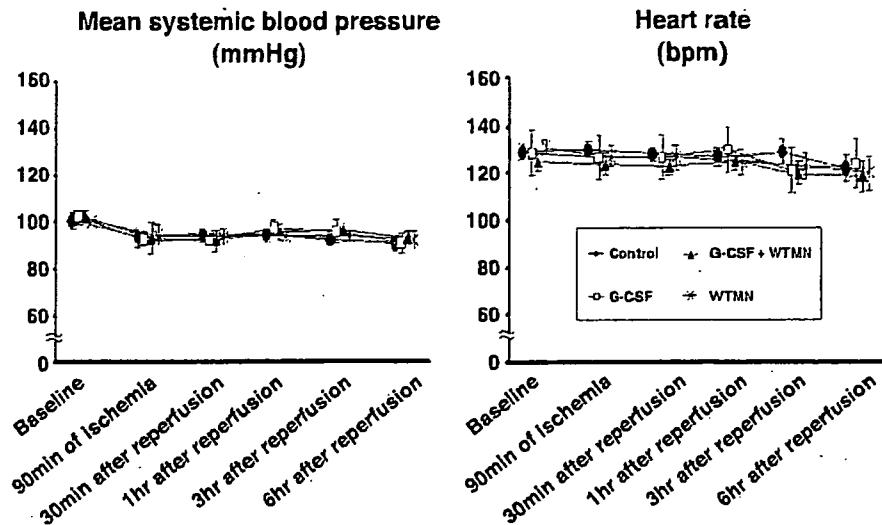
Immunoblotting was performed as described previously [11], and the immunoreactive bands were quantified by densitometry (Molecular Dynamics).

MPO activity

Several myocardial tissue samples were taken from the ischemic area in the dogs studied, frozen in liquid nitrogen and stored at -80°C until assay. The technical procedure has been described previously [12]. One unit of

MPO activity was defined as that which degrades 1 μmol hydrogen peroxide per minute at 25°C .

Statistical analysis


Results are expressed as the mean \pm SEM. Comparisons of the time course of the change in mean SBP and HR between groups were performed using two-way repeated measures analysis of variance (ANOVA). Comparisons of other data between groups were performed using one-way factorial ANOVA. The Bonferroni-Holm procedure was used for correction of multiple comparisons [13]. The incidence of VF was compared using the χ^2 -test and Fisher's exact probability test. A p value <0.05 was considered to represent statistical significance.

Results

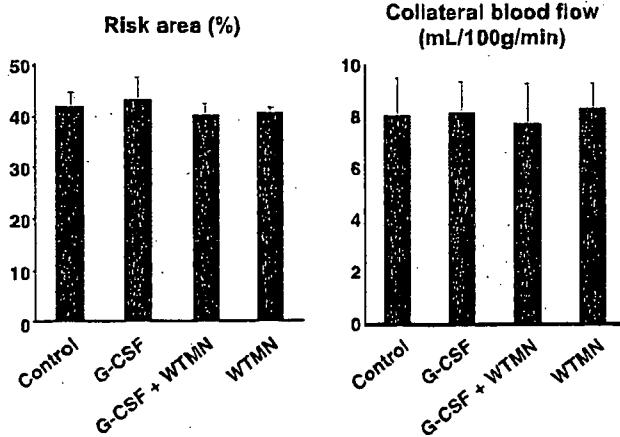
Criteria for exclusion

Since there was a negative correlation between myocardial collateral blood flow during ischemia and the incidence of VF [14, 15], it was important to assess myocardial collateral blood flow and exclude the dogs with high myocardial collateral blood flow. We excluded two dogs with excessive collateral blood flow ($>15 \text{ ml}/100 \text{ g}/\text{min}$) (Control group: 1, WTMN group: 1) among 29 dogs tested. Thus, 27 dogs were

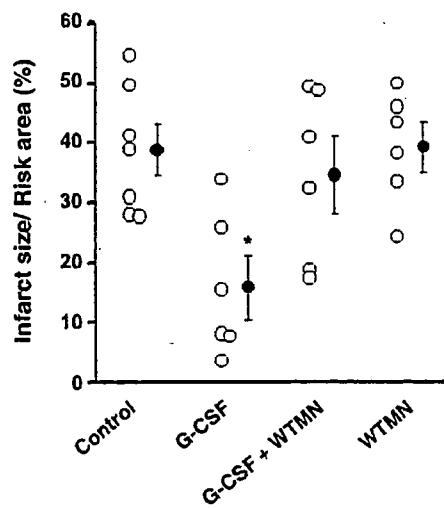
Fig. 2 The changes in mean systemic blood pressure (SBP) and heart rate (HR) during the experiment in groups tested. Neither SBP nor HR differed between the groups tested at baseline, 90 min of ischemia, at 30 min and 1, 3, and 6 h after reperfusion.

evaluated for VF analysis. Among these 27 dogs, we further excluded two dogs (Control group: 1, G-CSF + WTMN group: 1) from infarct size analysis that matched the exclusion criteria of lethal arrhythmia (more than two consecutive attempts required to convert VF with low-energy DC pulses applied directly to the heart) [10].

Effects of G-CSF on infarct size and VF during the reperfusion period


Throughout the study, neither SBP nor HR differed among the four groups (Fig. 2). The area at risk and myocardial collateral blood flow during myocardial ischemia were also comparable in the groups tested (Fig. 3). Figure 4 shows infarct size in the groups tested. G-CSF reduced ($p < 0.05$) infarct size compared with the control group. The intracoronary administration of

wortmannin for 60 min after the onset of reperfusion abrogated the infarct size-limiting effects of G-CSF, although wortmannin alone did not affect infarct size.


G-CSF reduced ($p < 0.05$) the incidence of VF during the reperfusion period compared with the control group (Table 1). The antiarrhythmic effects of G-CSF were abolished by wortmannin.

Effect of G-CSF on MPO activity in infarcted myocardium

MPO activity in infarcted myocardium 6 h after reperfusion in G-CSF group did not differ from that in the control group. (10.0 ± 2.6 versus 10.7 ± 2.1 U/g protein).

Fig. 3 Area at risk and myocardial collateral blood flow during ischemia in groups tested. Neither the area at risk nor myocardial collateral blood flow differed between the groups tested.

Fig. 4 Infarct size as a percentage of the area at risk in groups tested. Intravenous administration of G-CSF limited infarct size. The infarct-size limiting effect of G-CSF was blunted by the intracoronary administration of WTMN during reperfusion. $*p < 0.05$ vs. control group.

Table 1 Effects of G-CSF on the incidence of VF during reperfusion periods

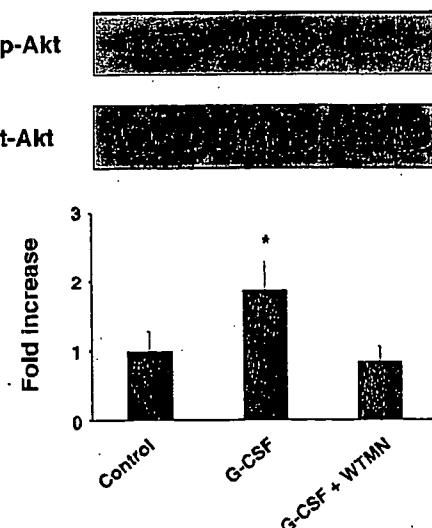
Group	Incidence of VF (%)	
Control	50.0	(4/8)
G-CSF	0*	(0/6)
G-CSF + WTMN	42.9	(3/7)
WTMN	50.0	(3/6)

* $p < 0.05$ vs. control group

Effect of G-CSF on Akt phosphorylation in ischemic myocardium

G-CSF augmented Akt phosphorylation in the LAD-perfused myocardium. The increase in Akt phosphorylation was attenuated by wortmannin (Fig. 5).

Discussion


The present study demonstrated that administration of G-CSF following the onset of reperfusion limited infarct size in acute phase and reduced the incidence of lethal arrhythmia. The intracoronary administration of wortmannin abrogated these cardioprotective effects of G-CSF, suggesting that G-CSF mediated cardioprotection via the PI3K/Akt pathway. To our knowledge, this is the first study to reveal the acute effect of G-CSF against ischemia/reperfusion injury via the PI3K/Akt pathway in *in vivo* canine hearts.

Previous studies have reported that G-CSF improves cardiac remodeling after MI in the chronic ligation model of coronary artery [4, 5, 16]. It has been believed that G-CSF exerts cardioprotective effects through regeneration of myocardium and angiogenesis. Recently, Komuro and colleagues clearly demonstrated that the high dose of G-CSF limits infarct size in the acute phase in the isolated hearts [6]. To translate their remarkable findings into the clinical setting, we need to consider the dose of G-CSF and experimental models in their study. They used a perfusate containing 300 ng/ml G-CSF in the isolated heart model. This dose is relatively high compared with the dose used in clinical settings [17, 18]. In addition, effects of G-CSF on neutrophil function cannot be tested in the isolated heart model. In the present study, we demonstrated that a clinical relevant dose of G-CSF acutely limits infarct size in the *in vivo* model. In contrast with previous studies [4, 5, 16], we examined the effects of G-CSF in the ischemia/reperfusion model, because coronary revascularization is principally applied for patients with acute MI to attenuate ischemia/reperfusion injury. We found that G-CSF following the onset of reperfusion effectively

limited infarct size. Our findings strongly support that G-CSF would be a promising candidate as an adjunctive therapy for patients with acute MI. Indeed, two recent publications by the FIRSTLINE-AMI trial clearly demonstrated that subcutaneous administration of G-CSF after percutaneous coronary intervention improved cardiac function and prevented cardiac remodeling [19, 20]. Considering our present data, the improvement of cardiac function by G-CSF in clinical studies will be due to limiting infarct size in the acute phase as well as preventing cardiac remodeling.

G-CSF can provoke multiple intracellular signal transductions including Jak/Stat, ERK and PI3K/Akt [16, 21]. Recently, we and others demonstrated that post-interventions which activate PI3K/Akt during the reperfusion protect against ischemia/reperfusion injury [10, 22]. Thus, we investigated a role of PI3K/Akt in G-CSF-mediated cardioprotection. WTMN significantly blunted the infarct size-limiting effects of G-CSF, and G-CSF enhanced Akt phosphorylation in the ischemic myocardium, indicating that G-CSF reduces infarct size via PI3K/Akt-dependent pathway. Further investigations will be needed to clarify the molecular target of PI3K/Akt and the role of other signals activated by G-CSF in this condition.

Although we demonstrated that G-CSF mediated cardioprotection, one small clinical study showed that G-CSF may induce coronary re-stenosis [23]. In contrast, other large-scale studies did not show that G-CSF induced coronary restenosis [19, 20]. Since there is still controversy about the restenosis effects of G-

Fig. 5 Akt phosphorylation in LAD-perfused areas. G-CSF phosphorylated Akt in LAD-perfused myocardium. Akt phosphorylation by G-CSF was prevented by co-treatment with WTMN. Akt phosphorylation was normalized by total Akt. * $p < 0.05$ vs. control group.

CSF, this issue will be minimized by the concomitant use of a drug-eluting stent and G-CSF. Another possible adverse effect of G-CSF will be enhancement of neutrophil function. G-CSF appears not only to stimulate the formation of granulocyte colonies from bone marrow-derived precursors, but also to enhance the function of mature neutrophils [24] and elevates the number of white blood cells, which may predict adverse prognosis in the patients of acute MI [25]. Consistent with previous studies [26, 27], we also showed that G-CSF did not change MPO activity, a marker of neutrophil accumulation, in the infarcted myocardium. These findings suggest that G-CSF exerted cardioprotective effects independent of white blood cells. Although our findings suggest that the overall effect of G-CSF may be beneficial for ischemia/reperfused myocardium, we need to be cautious about these potential adverse effects of G-CSF.

Importantly, we clearly demonstrated that G-CSF reduced the incidence of VF during reperfusion via the PI3/Akt-dependent pathway. Since lethal arrhythmias are one of the major causes of death in patients with acute MI [8], the anti-arrhythmic effects of G-CSF have great clinical impact. We have previously demonstrated that another cytokine, erythropoietin, also reduced the incidence of lethal arrhythmia via the PI3/Akt pathway [10]. Although our findings suggest that the PI3K/Akt-dependent pathway will play an important role in the generation of lethal arrhythmias, further investigation will be needed to clarify the potential mechanism by which G-CSF exerts anti-arrhythmic effects. We need to consider whether G-CSF exerts anti-arrhythmic effects by the reduction of myocardial infarct size or by some other actions of G-CSF.

In conclusion, the intravenous administration of a clinically relevant dose of G-CSF will be a promising strategy to treat patients with acute MI. Further controlled studies will be warranted to check the safety and efficacy of G-CSF treatment in the acute phase after MI.

Acknowledgments We thank Yuko Okuda, and Yoko Nagamachi for their technical assistance.

References

1. Clark SC, Kamen R. The human hematopoietic colony-stimulating factors. *Science* 1987;236:1229–37.
2. To LB, Haylock DN, Simmons PJ, Juttner CA. The biology and clinical uses of blood stem cells. *Blood* 1997;89:2233–58.
3. Kronenwett R, Martin S, Haas R. The role of cytokines and adhesion molecules for mobilization of peripheral blood stem cells. *Stem Cells* 2000;18:320–30.
4. Orlic D, Kajstura J, Chimenti S, et al. Mobilized bone marrow cells repair the infarcted heart, improving function and survival. *Proc Natl Acad Sci USA* 2001;98:10344–9.
5. Ohtsuka M, Takano H, Zou Y, et al. Cytokine therapy prevents left ventricular remodeling and dysfunction after myocardial infarction through neovascularization. *Faseb J* 2004;18:851–3.
6. Harada M, Qin Y, Takano H, et al. G-CSF prevents cardiac remodeling after myocardial infarction by activating the Jak-Stat pathway in cardiomyocytes. *Nat Med* 2005;11:305–11.
7. Nicod P, Gilpin E, Dittrich H, et al. Late clinical outcome in patients with early ventricular fibrillation after myocardial infarction. *J Am Coll Cardiol* 1988;11:464–70.
8. Rouleau JL, Talajic M, Sussex B, et al. Myocardial infarction patients in the 1990s—their risk factors, stratification and survival in Canada: the Canadian Assessment of Myocardial Infarction (CAMI) Study. *J Am Coll Cardiol* 1996;27:1119–27.
9. Lothrop CD Jr, Warren DJ, Souza LM, Jones JB, Moore MA. Correction of canine cyclic hematopoiesis with recombinant human granulocyte colony-stimulating factor. *Blood* 1988;72:1324–8.
10. Hirata A, Minamino T, Asanuma H, et al. Erythropoietin just before reperfusion reduces both lethal arrhythmias and infarct size via the phosphatidylinositol-3 kinase-dependent pathway in canine hearts. *Cardiovasc Drugs Ther* 2005;19:33–40.
11. Maruyama R, Takemura G, Aoyama T, et al. Dynamic process of apoptosis in adult rat cardiomyocytes analyzed using 48-hour videomicroscopy and electron microscopy: beating and rate are associated with the apoptotic process. *Am J Pathol* 2001;159:683–91.
12. Asanuma H, Kitakaze M, Funaya H, et al. Nifedipine limits infarct size via NO-dependent mechanisms in dogs. *Basic Res Cardiol* 2001;96:497–505.
13. Holm S. A simple sequentially rejective multiple test procedure. *Scand J Statist* 1979;6:65–70.
14. Hale SL, Lange R, Alker KJ, Kloner RA. Correlates of reperfusion ventricular fibrillation in dogs. *Am J Cardiol* 1984;53:1397–400.
15. Bolli R, Patel B. Factors that determine the occurrence of reperfusion arrhythmias. *Am Heart J* 1988;115:20–9.
16. Iwanaga K, Takano H, Ohtsuka M, et al. Effects of G-CSF on cardiac remodeling after acute myocardial infarction in swine. *Biochem Biophys Res Commun* 2004;325:1353–9.
17. Gabrilove JL, Jakubowski A, Fain K, et al. Phase I study of granulocyte colony-stimulating factor in patients with transitional cell carcinoma of the urothelium. *J Clin Invest* 1988;82:1454–61.
18. Bensinger WI, Clift RA, Anasetti C, et al. Transplantation of allogeneic peripheral blood stem cells mobilized by recombinant human granulocyte colony stimulating factor. *Stem Cells* 1996;14:90–105.
19. Ince H, Petzsch M, Kleine HD, et al. Prevention of left ventricular remodeling with granulocyte colony-stimulating factor after acute myocardial infarction: final 1-year results of the Front-Integrated Revascularization and Stem Cell Liberation in Evolving Acute Myocardial Infarction by Granulocyte Colony-Stimulating Factor (FIRSTLINE-AMI) Trial. *Circulation* 2005;112:173–80.
20. Ince H, Petzsch M, Kleine HD, et al. Preservation from left ventricular remodeling by front-integrated revascularization and stem cell liberation in evolving acute myocardial infarction by use of granulocyte-colony-stimulating factor (FIRSTLINE-AMI). *Circulation* 2005;112:3097–106.
21. Avalos BR. Molecular analysis of the granulocyte colony-stimulating factor receptor. *Blood* 1996;88:761–77.

22. Tsang A, Hausenloy DJ, Mocanu MM, Yellon DM. Post-conditioning: a form of “modified reperfusion” protects the myocardium by activating the phosphatidylinositol 3-kinase-Akt pathway. *Circ Res* 2004;95:230–2.
23. Kang HJ, Kim HS, Zhang SY, et al. Effects of intracoronary infusion of peripheral blood stem-cells mobilised with granulocyte-colony stimulating factor on left ventricular systolic function and restenosis after coronary stenting in myocardial infarction: the MAGIC cell randomised clinical trial. *Lancet* 2004;363:751–6.
24. Weisbart RH, Golde DW, Clark SC, Wong GG, Gasson JC. Human granulocyte-macrophage colony-stimulating factor is a neutrophil activator. *Nature* 1985;314:361–3.
25. Barron HV, Cannon CP, Murphy SA, Braunwald E, Gibson CM. Association between white blood cell count, epicardial blood flow, myocardial perfusion, and clinical outcomes in the setting of acute myocardial infarction: a thrombolysis in myocardial infarction 10 substudy. *Circulation* 2000;102: 2329–34.
26. Adachi Y, Imagawa J, Suzuki Y, et al. G-CSF treatment increases side population cell infiltration after myocardial infarction in mice. *J Mol Cell Cardiol* 2004;36: 707–10.
27. Sugano Y, Anzai T, Yoshikawa T, et al. Granulocyte colony-stimulating factor attenuates early ventricular expansion after experimental myocardial infarction. *Cardiovasc Res* 2005;65:446–56.

ELSEVIER

Cardiovascular Research 72 (2006) 412–421

Cardiovascular
Research

www.elsevier.com/locate/cardiores

Heavy ion radiation up-regulates Cx43 and ameliorates arrhythmogenic substrates in hearts after myocardial infarction

Mari Amino^{a,f,1}, Koichiro Yoshioka^{a,1}, Teruhisa Tanabe^a, Etsuro Tanaka^b, Hidezo Mori^c, Yoshiya Furusawa^d, Wojciech Zareba^e, Masatoshi Yamazaki^f, Harumichi Nakagawa^f, Haruo Honjo^f, Kenji Yasui^f, Kaichiro Kamiya^f, Itsuo Kodama^{f,*}

^a Department of Cardiology, Tokai University School of Medicine, Isehara, Japan

^b Department of Nutritional Sciences, Tokyo University of Agriculture, Tokyo, Japan

^c Department of Cardiac Physiology, National Cardiovascular Center Research Institute, Osaka, Japan

^d National Institute of Radiological Sciences, Chiba, Japan

^e Cardiology Unit, University of Rochester, Rochester, USA

^f Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan

Received 4 June 2006; received in revised form 12 September 2006; accepted 15 September 2006

Available online 20 September 2006

Time for primary review 17 days

Abstract

Objective: Radiation has been shown to enhance intercellular communication in the skin and lungs through an increase of connexin43 (Cx43) expression. If analogous Cx43 up-regulation is induced in the diseased heart, it would provide a new perspective in radiation therapy for arrhythmias. The aim of the present study is to test this hypothesis.

Methods: Non-transmural myocardial infarction (MI) was created in 24 rabbits by microsphere injection into the coronary arteries. Twenty-four rabbits without MI were used as controls. Targeted external heavy ion beam irradiation (THIR; 15 Gy) was applied 2 weeks after MI with an accelerator (HIMAC, Chiba, Japan).

Results: The THIR was associated with an increase of Cx43 mRNA and protein levels in the left ventricle in control as well as in MI rabbits. THIR also increased lateralization of Cx43, which was no longer colocalized with cadherins. In MI hearts, immunoreactive Cx43 signals were reduced in the peri-infarct zone, and the reduction was reversed by THIR. *In-vivo* epicardial potential mapping on the free wall (64 unipolar electrodes to cover 7 × 7 mm) in MI hearts revealed reduced conduction velocity, whereas dispersion of the activation-recovery interval (ARI) was increased compared with controls, and these changes were reversed by THIR. The vulnerability for ventricular tachyarrhythmias (VT/VF), which was estimated by programmed stimulation, was increased in MI hearts, and this increased vulnerability to arrhythmias was reversed by THIR.

Conclusions: THIR increases Cx43 expression, improves the conductivity, decreases the spatial heterogeneity of repolarization, and reduces the vulnerability of rabbit hearts to ventricular arrhythmias after MI. THIR could have an antiarrhythmic potential through an improvement of electrical coupling.

© 2006 European Society of Cardiology. Published by Elsevier B.V. All rights reserved.

Keywords: Gap junctions; Connexin43; Heavy ion radiation; Myocardial infarction; Ventricular arrhythmias; Arrhythmia (mechanisms); Epicardial mapping

1. Introduction

Modalities currently available for treatment and prevention of life-threatening ventricular tachyarrhythmias (VT/VF) are antiarrhythmic drugs, catheter ablation and implantable cardioverter/defibrillator (ICD). The usefulness of these therapeutic options is limited by either low efficiency, intolerable side

* Corresponding author. Tel.: +81 52 789 3871; fax: +81 52 789 3890.
E-mail address: ikodama@riem.nagoya-u.ac.jp (I. Kodama).

¹ The first two authors contributed equally to this work.