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Fig. 5. Detection of H,O: production. A: left circumflex artery (LCX;; baseline without ACh). B: LCX (control). C: left anterior descending coronary artery (LAD:
control). D: LAD (L-NMMA). E: LAD (catalase). F: fluorescent intensity (B, baseline without ACh; C, control, L, t-NMMA; Cat, catalase). No. of arterioles
per animals used was 5/5 for each group. Dashed line, outline of vessels. Bar, 100 pm.

pletely abolish the ACh-induced vasodilatation in both sized
arteries, whereas L-NMMA plus catalase markedly attenu-
ated the residual vasodilatation in vivo as did TEA, indicat-
ing that H,O-, exerts important vasodilator effects during I/R
injury in canine coronary microcirculation in vivo (Figs. 3
and 4). Furthermore, in the present study, endogenous
H,0,-mediated coronary vasodilatation was noted to a
greater extent in arterioles than in small arteries (Figs. 3 and
4), confirming the predominant role of H,0; in microvessels
and that of NO in relatively large arteries in vivo (25).
Compensatory vasodilator mechanism among H,0;, NO,
and adenosine. 1t is well known that coronary vascular tone
is regulated by the interactions among several endogenous
vasodilators, including NO, H,0,, and adenosine (33).
These vasodilators play an important role in compensatory
vasodilatation of coronary microvessels during myocardial
ischemia (35). In the present study (Figs. 3 and 4), endo-
thelium-dependent arteriolar vasodilatation to ACh during
coronary /R was significantly increased by L-NMMA while
small arterial vasodilatation to ACh was increased by cata-
lase and 8-SPT, and the residual arteriolar dilation was
further inhibited by both of them (L-NMMA plus catalase or
TEA). Furthermore, fluorescent microscopy with DCF and
DAR, respectively, showed that H,0, and NO production
after /R were enhanced in small coronary arteries and
arterioles by L-NMMA [fluorescent intensity (FI) 1.8] and
catalase (FI 1.9) compared with those in the LAD of control
group (Figs. 5 and 6, FI: DAR 1.2 and DCF 1.1). The

residual small arteriolar dilatation after combined adminis-
tration of L-NMMA + catalase was completely blocked by
8-SPT, an adenosine receptor blocker, indicating that aden-
osine also compensated for the loss of action of NO and
H,0,. Taken together, these results indicate the compensa-
tory vasodilator effects among NO, H,O,, and adenosine to
maintain coronary blood flow during coronary I/R injury in
vivo. H,O,; and NO were mutually compensatory in both
small arteries and arterioles, and in the presence of their
inhibitors (catalase and L-NMMA), adenosine also caused
arteriolar vasodilatation, as we reported previously (35).
This finding is consistent with our finding that NO, H,0,,
and adenosine play an important compensatory role in
coronary autoregulation in canine coronary microcirculation
in vivo (35). It was reported that TEA inhibited adenosine-
induced vasodilatation of canine subepicardial coronary
arteries in vitro (3). Furthermore, H,O, stimulates protein
kinase C, phospholipase A,, and arachidonic acid release
and increases intracellular cAMP levels (10). These findings
suggest that cAMP-mediated pathway is involved, at least in
part, during coronary vasodilatation through Kca channels
after /R injury.

Role of H,0; during coronary I/R. It is known that K¢,
channels substantially contribute to coronary vasodilatation
in myocardial ischemia (22) and that H,O, also activates
Kca channels (11). However, it remains to be examined
whether H;O» contributes to coronary vasodilatation during
I/R in vivo. The present results demonstrate that H,O,
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substantially contributes to coronary vasodilatation during
I/R in vivo as a compensatory mechanism for the loss of

NO. Several mechanisms have been proposed for K¢, chan- A

nel opening during coronary I/R, including cellular acidosis
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Fig. 8. Endothelium-independent coronary vasodilatation before and after
; coronary I/R injury in dogs in vivo. A: small artery (2100 wm). B: arteriole
LCX LAD LCX LAD (<100 pm). No. of small arteries and anterioles per animals used (n/n) was 7/5

for control, 8/5 for L-NMMA, 10/5 for catalase, 6/5 for 8-SPT, 8/5 for

) L-NMMA plus catalase, 5/5 for L-NMMA pius TEA, and 5/5 for L-NMMA

Control  Catalase " plus catalase plus 8-SPT in small arteries; and 12/5 for control, 16/5 for

Fig. 7. Western blotting showing the effects of catalase on endothelial nitric  L-NMMA, 12/5 for catalase, 5/5 for 8-SPT, 10/5 for L-NMMA plus catalase,
oxide synthase (eNOS) protein expression in the myocardium of LAD and  8/5 for -NMMA plus TEA, and 7/5 for L-NMMA plus catalase plus 8-SPT in

LCX. No. of animals used was 3 for each group. arterioles.
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(27), increase in intracellular Ca®* concentration after is-
chemia (28), and H20; production by inflammatory cells
(5). Furthermore, an inhibitor of NO synthesis [N®-nitro-L-
arginine methyl ester (.-NAME)] or that of Kca channels
(charybdotoxin) partly inhibits the protective effect on myo-
cardial infarct size (22). Liu et al. (14) demonstrated that
peroxynitrite inhibits K¢, channel activity in human coro-
nary arterioles during I/R. This mechanism might contribute
to impaired H,O;-mediated dilation in /R where NO syn-
thase activity is increased in the presence of excess of O .
In the present study, inhibition of H,O» or NO alone did not
significantly increase myocardial infarct size compared with
control conditions (Fig. 9). These results suggest that H,0,
and NO exert cardioprotective effects against the develop-
ment of myocardial infarction in a compensatory manner.

Recently, we have demonstrated that the expression of
eNOS protein is decreased in the ischemic myocardium, which
is improved by a selective Rho-kinase inhibitor, hydroxyfa-
sudil, during coronary /R injury in dogs in vivo (36). Further-
more, a physiological concentration (2 pmol/l) of H,O, im-
proved the recovery of both cardiac contractile function and
energy metabolism after I/R in perfused rat heart (37). In the
present study, the expression of eNOS protein was decreased in
the ischemic myocardium, which was increased by catalase
during IR injury (Fig. 7). All these mechanisms may be
involved in the beneficial effects of H,05 on the I/R-induced
myocardial injury. It also is conceivable that /R reduces
endothelial tetrahydrobiopterin levels in coronary vessels and
impairs eNOS function (30).

Limitations of the swtudy. Several limitations should be
mentioned for the present study. First, we did not examine
coronary vasodilatation in response to SOD/SOD mimetic
(e.g., Tempol) or peroxynitrite inhibitor (e.g., ebselen) after
I/R. However, because of the complex interactions among
the oxygen species, we consider that both Tempol and
ebselen also affect H,O, metabolism by scavenging super-
oxide anions and peroxynitrite, respectively. Second, in
addition to catalase, endogenous glutathione peroxidase
(GSH) also plays an important role in removing H.0,, and
NO also could be a substrate for endogenous catalase (1).
However, in the present study, we used exogenous catalase
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to remove H,O, to examine the role of the reactive oxygen
species. Third, the exact source of vascular H,O, production
remains to be elucidated (e.g., the endothelium, smooth
muscle, or cardiomyocytes). Fourth, while we were able to
demonstrate the production of H,O, using fiuorescent mi-
croscopy with DCF, we were unable to quantitatively mea-
sure the H,0, production because DCF detects H,0,,
ONOO™, and HOCI as well. Fifth, we were unable to find
smaller arterioles because of the limited spatial resolution of
our CCD intravital microscope. If we had an intravital
camera with higher resolution, we would be able to observe
coronary vasodilator responses of smalier arterioles.

Clinical implications and conclusions. During coronary
I/R, microemboli of atherosclerosis debris and platelet plugs
are released into the coronary microcirculation, particularly
at revascularization with thrombolysis and/or percutaneous
coronary intervention. Thus preexisting coronary endothe-
lial dysfunction with various risk factors may be an impor-
tant determinant for I/R injury in acute myocardial infarc-
tion. The synthesis and/or action of endothelium-derived
NO are impaired under various pathological conditions,
such as hypertension, hyperlipidemia, and diabetes mellitus
(26, 34). In hypertension, K channel activities are increased
in a compensatory manner with reduced NO activity (13).
The present results suggest that NO and H,0, compensate
each other to cause coronary vasodilatation during I/R
injury in vivo.

In conclusion, we were able to demonstrate that endogenous
H>0,, in cooperation with NO, plays an important cardiopro-
tective role in coronary R injury in vivo. The present findings
may have important clinical implications because H>05-medi-
ated mechanisms substantially contribute to endothelium-de-
pendent vasodilatation in coronary /R in vivo.
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Abstract

Beraprost sodium, an orally active prostacyclin analogue, has vasoprotective effects such as vasodilation and antiplatelet activities.
We investigated the therapeutic potential of beraprost for myocardial ischemia. Immediately after coronary ligation of Sprague~Dawley
rats, beraprost (200 pg/kg/day) or saline was subcutaneously administered for 28 days. Four weeks after coronary ligation, administra-
tion of beraprost increased capillary density in ischemic myocardium, decreased infarct size, and improved cardiac function in rats with
myocardial infarction. Beraprost markedly increased the number of CD34-positive cells and c-kit-positive cells in plasma. Also, four
weeks after coronary ligation of chimeric rats with GFP-expressing bone marrow, bone marrow-derived cells were incorporated into
the infarcted region and its border zone. Treatment with beraprost increased the number of GFP/von Willebrand factor-double-positive
cells in the ischemic myocardium. These results suggest that beraprost has beneficial effects on ischemic myocardium partly by its ability

to enhance neovascularization in ischemic myocardium by mobilizing bone marrow cells.

© 2006 Elsevier Inc. All rights reserved.

Keywords: Prostacyclin analogue; Myocardial infarction; Neovascularization; Bone marrow mobilization

Interruption of myocardial blood flow leads to rapid
death of cardiomyocytes and vascular structures, resulting
in the development of heart failure [1]. Stemn or progenitor
cells are mobilized from bone marrow into the peripheral
blood in response to tissue ischemia, migrate to sites of
injured tissues, and differentiate into endothelial cells and
cardiomyocytes [2—4]. However, the compensatory mecha-
nisms are insufficient to heal infarcted myocardium. Earlier
studies have shown that bone marrow cells artificially
mobilized by cytokines repair the infarcted heart and
improve cardiac function after acute myocardial infarction
{5,6). Therefore, enhancement of bone marrow cell mobili-

" Corresponding author. Fax: +81 6 6833 9865.
E-mail address: nnagaya@ri.ncve.go.jp (N. Nagaya).

0006-291X/$ - see front matter © 2006 Elsevier Inc. All rights reserved.
doi:10.1016/).bbrc.2006.08.178

zation leading to neovascularization following revasculari-
zation would be beneficial for the treatment of acute
myocardial infarction.

Beraprost sodium (BPS) 1s a chemically stable prostacy-
clin analogue owing to its cyclo-pentabenzofuranyl struc-
ture [7). It has been well established that BPS has
vasoprotective effects such as vasodilation and antiplatelet
activities [8-11]. Thus, BPS has been used in the treatment
of peripheral arterial disease {12,13) and pulmonary arterial
hypertension [14,15]. Although a limited number of studies
suggest therapeutic potential of prostacyclin for the treat-
ment of myocardial ischemia [16-18], the underlying mech-
anisms still remain unclear. In addition, little information
is available regarding the therapeutic potential of prostacy-
clin analogues such as BPS for myocardial ischemia. A
recent study has shown that BPS activates endothelial
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nitric oxide synthase (eNOS) through the c-AMP/protein
kinase A pathway [19] Activation of eNOS is known to
contribute to bone marrow cell mobilization, leading to
neovascularization [20]. These results raise the possibility
that BPS may have beneficial effects on the ischemic myo-
cardium through enhancement of bone marrow cell
mobilization.

Thus, the purposes of this study were: (1) to examine the
effect of BPS on mobilization and recruitment of bone mar-
row cells after acute myocardial infarction, (2) to investi-
gate whether BPS induces neovascularization in the
ischemic myocardium, and (3) to investigate whether treat-
ment with BPS improves cardiac function in rats with myo-
cardial infarction.

Methods

Model of myocardial infarction. We used male Sprague-Dawley rats
(Japan SLC Inc, Hamamatsu, Japan) weighing 185-215 g. Myocardial
infarction was produced by left coronary ligation, as described previ-
ously [21). Briefly, after rats were anesthetized with sodium pentobar-
bital (30 mg/kg), they were artificially ventilated with a volume-
regulated respirator. The heart was exposed via a left thoracotomy
incision. Then, the left coronary artery was ligated 2-3 mm from its
origin between the pulmonary artery conus and the left atrium with a
6-0 Prolene suture. Finally, the heart was restored to its normal posi-
tion, and the chest was closed. Experimental protocols were performed
in accordance.with the “Guidelines of the Animal Care Ethics Com-
mittee of the Mational Cardicvascular Center Research Institute”,
which complies NIH Guidelines. :

Administration of BPS. Immediately after coronary ligation, BPS
(200 pg/kg/day, Astellas Pharma Inc., Tokyo, Japan) was subcutaneously
administered to surviving rats using an osmotic mini-pump for 4 weeks
(BPS group, n=12). As a control, saline was similarly administered to
rats receiving coronary ligation (Control group, n = 12).

Echocardiographic studies. Echocardiographic studies were performed
4 weeks after coronary ligation. M-mode tracings were obtained at the
level of the papillary muscles using an echocardiographic system equipped
with a 7.5-MHz phased-array transducer (HP SONOS 5500; Hewlett
Packard Co., Andover, MA). Anterior and posterior end-diastolic and
end-systolic wall thickness, LV end-diastolic and end-systolic dimensions,
and LV fractional shortening were measured by the American Society for
Echocardiography leading-edge method in three consecutive cardiac
cycles. LV meridional wall stress was estimated as 0.344 x LV pressur-
e x {LV dimension/(] + PWT/LV dimension)}, where PWT is posterior
wall thickness {22].

Hemodynamic studies. Hemodynamic studies were performed 4 weeks
after coronary ligation, following echocardiography. After anesthesia with
pentobarbital sodium, a 1.5F micromanometer-tipped catheter (Millar
Instruments Inc., Houston, TX) was advanced into the LV through the
right common carotid artery. Hemodynamic variables were measured with
a pressure transducer connected to a polygraph. After completion of these
measurements, the left and right ventricles and the lungs were excised and
weighed. [nfarct size was determined as a percentage of the entire LV area
(n =5 in each group), as reported previously (23]. Briefly, incisions were
made in the posterior LV so that the tissue could be pressed flat. The
circumference of the entire flat LV and of the visualized infarcted area, as
judged from both the epicardial and endocardial sides, was outlined on a
clear plastic sheet. The difference in weight between the two marked areas
on the sheet was used to determine infarct size and was expressed as a
percentage of LV surface area.

Measurement of plasma ANP level. Blood samples were obtained 4
weeks after coronary ligation. Plasma atrial natriuretic peptide (ANP), a
marker for heart faiiure, was measured by enzyme immunoassay {Penin-
sula Laboratories Inc., San Carlos, CA).

Mononuclear cell mobilization and FACS analysis. To investigate
whether administration of BPS maobilizes bone marrow cells, an additional
12 rats were randomized to receive BPS (200 pg/kg/day, BPS group, n = 6)
or saline (Control group, n=6). On the third day of BPS or saline
treatment, 4 ml of blood was drawn from the inferior vena cava of each
rat. Peripheral blood was obtained at the end of infusion. After mono-
nuclear cells were counted, they were incubated for 30 min at 4 °C with
fluorescein isothiocyanate (FITC)-conjugated mouse monoclonal anti-
bodies against rat CD34 (clone ICO-115, Santa Cruz) and CD45 (clone
OX-1), and FITC-conjugated rabbit anti-rat c-Kit polyclonal antibody
(clone C-19, Santa Cruz). Immunofluorescence-labeled cells were analyzed
by quantitative flow cytometry with a FACSCalibur flow cytometer (BD
Biosciences, Mountain View, CA). Isotype-identical antibodies served as
controls.

RT-PCR assay. To investigate whether bone marrow cells express the
prostacyclin receptor (IP receptor), we analyzed expression of its mRNA
by reverse transcription-polymerase chain reaction (RT-PCR). In brief,
total RNA of bone marrow cells was extracted with guanidine isothio-
cyanate (RNeasy Mini Kit, Qiagen). Then, reverse-transcribed single-
stranded cDNA was subjected to PCR (PCR Amplification Kit, Takara)
using primer sets for the IP receptor (Hokkaido System Science Co., Ltd.,
Sapporo, Japan, forward, 5-GGCACGAGAGGATGAAGTTTACC-3,
reverse, 5-GTCAGAGGCACAGCAGTCAATGG-3') and G3PDH
(Clonetech Laboratories Inc., Mountain View, CA, forward, 5'-TG
AAGGTCGGTGTCAACGGATTTGGC-3'; reverse, 5'-CATGTAGG
CCATGAGGTCCACCAC-3).

Creation of bone marrow-chimeric rats. To assess recruitment of
bone marrow cells after BPS administration, bone marrow transplan-
tation was performed by using male normal Sprague-Dawley rats as
recipients and male Green fluorescent protein (GFP)-transgenic rats
(SD-Tg [Act-EGFP] CZ-0040sb, Japan SLC Inc.) as donors, using a
previously described method [24)}- Briefly, bone marrow was harvested
by flushing the cavity of femurs and tibias from GFP-transgenic rats
with phosphate-buffered saline. Then, 3 x 107 GFP-positive bone mar-
row cells were individually administered to 12 lethally irradiated (900c
Gray) rats via the tail vein. Four weeks after transplantation, flowcy-
tometric analysis determined that 90% of peripheral blood mononuclear
cells from both donors and 8 of 12 chimeric rats were GFP-positive,
suggesting the establishment of stable chimerism. These chimeric rats
were subjected to left coronary ligation, followed by administration of
BPS (200 pg/kg/day, BPS group, n=4) or saline (Control group, n = 4)
using an osmotic mini-pump for 4 weeks.

Histological examination. To detect fibrosis in the cardiac muscle, the
LV myocardium (n =35, each group) was fixed in 10% formalin, cut
transversely in three sections, embedded in paraffin, and stained with
Masson’s trichrome. To detect capillary endothelial cells in the peri-in-
farct area, we performed DAB staining (LSAB2 System HRP, Dako
Cytomation Co., Denmark) using rabbit polyclonal anti-von Willebrand
factor (VWF) antibody (Dako). A total of 10 different fields from three
different sections were randomly selected, and the number of capillaries
was counted in the peri-infarct area using a light microscope at 200x
magnification. Capillary density was expressed as the mean number of
capiliaries per square millimeter. Also, 4 weeks after coronary ligation in
bone marrow-chimeric rats (n =4 in each group), the LV myocardium
was excised, embedded in OCT compound, snap-frozen in liquid nitro-
gen, and cut transversely into 6-um-thick sections from base to apex.
Immunofluorescent staining was performed using rabbit polyclonal anti-
vWF antibody (Dako), mouse monoclonal anti-cardiac troponin T
antibody (Neomarkers, Fremont, CA), and rabbit polyclonal Alexa 488-
conjugated anti-GFP antibody (Molecular Probes Inc., Eugené, OR).
The nuclei were counterstained with 4',6’-diamidino-2-phenylindole
(DAPI). We measured the number of GFP/vWF-double-positive cells
incorporated into vascuiar structures in 10 randomly selected fields in the
peri-infarct area per section in a blinded fashion using a fluorescence
microscope. ’

Statistical analysis. Numerical values are expressed as means + SEM.
Comparisons of parameters between two groups were made by unpaired
Student’s ¢ test. A value of p < 0.05 was considered significant.
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Results
Cardiac structure

Body weight at 4 weeks after coronary ligation was sig-
nificantly greater in the BPS group than in the Control
group (Table 1). Right ventricular weight and lung weight
in the BPS group were significantly smaller than those in
the Control group, although LV weight did not differ
between the two groups. Moderate to large infarcts were

Table |
Physiological profiles of experimental groups

’ Control BPS
Number 12 12
Body weight (g)

Baseline 198 £3 204 £ 3
After treatment 319+6 352+ 9
LV wt/body wt (g/kg) 2.28 £ 0.04 227 £0.04
RV wt/body wt (g/kg) 0.99 4+ 0.05 0.61 +0.02"*
Lung wt/body wt (g/kg) 6.55 +0.62 3.88+0.1"°

Plasma AND level (pg/ml) 798 + 99 498 £ 57°

Control, infarct rats without treatment; BPS, infarct rats treated with BPS
administration; AND, atrial natriuretic protein. Data are expressed as
means = SEM. *p <0.05, *"p <0.01 vs. Control group.
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observed in the Control group (Fig. 1A). However, admin-
istration of BPS significantly decreased infarct size in rats
with myocardial infarction (Fig. 1A and B). BPS signifi-
cantly decreased LV end-diastolic dimension (LVDD)
(Fig. 1C).

Cardiac function

Neither heart rate nor mean arterial pressure differed
between the BPS and Control groups (Table 2). LV frac-
tional shortening and LV maximum dP/d: in the BPS
group were significantly greater than those in the Control
group (Fig. 2A and B). LV end-diastolic pressure (LVEDP)
in the BPS group was significantly lower than that in the
Control group (Fig. 2C). LV minimum dP/d: was also
improved by BPS (Fig. 2D). Treatment with BPS attenuat-
ed the increase in plasma ANP level after myocardial

infarction (Table 1). BPS significantly increased anterior

wall thickening, although it did not significantly alter pos-
terior wall thickening (Table 2). Thickness of the anterior
and posterior walls tended to be greater in the BPS group,
but these changes did not reach statistical significance. LV
diastolic wall stress in the BPS group was significantly low-
er than that in the Control group.

~ 10 1
g
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E * %k
a 91
>
[}
8 =
7 I
Control BPS

Fig. 1. (A) Representative examples of Masson’s trichrome staining of transverse sections of LV myocardium 4 weeks after coronary ligation. Scale
bars =2 mm. (B,C) Quantitative analysis of infarct size and LV end-diastolic dimension (LVDD). Infarcted area and LVDD in the BPS group were
significantly smalier than those in the Control group. Data are expressed as means + SEM. "p <0.05, **p <0.01 vs. Control group.
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Table 2
Echocardiographic and hemodynamic data

Control BPS
AWT diastole (mm) 0.62 + 0.04 0.74 £0.05
AW thickening (%) 17£3 34467
PWT diastole (mm) 1.55 £ 0.07 1.70 £ 0.04
PW thickening (%) 43+ 4 49+3
Heart rate (bpm) 458 £7 471 £ 10
Mean arterial pressure (mmHg) 1035 115+4
LV systolic pressure (mmHg) 113 +4 1274+ 5°
LV diastolic wall stress (kdyne/cmz) 24+4 51
LV systolic wall stress (kdyne/cm?) 267+ 18 225+ 14

AWT, anterior wall thickness; AW, anterior wall; PWT, posterior wall
thickness; PW, posterior wall. Data are expressed as means = SEM.
*p <0.05, “°p<0.01 vs. Control group.

Mobilization of bone marrow cells

RT-PCR demonstrated that IP receptor mRNA was
expressed in bone marrow cells (Fig. 3A), indicating a
direct effect of BPS on these cells. Three-day administra-
tion of BPS significantly increased the number of periphe-
ral blood mononuclear cells compared to saline
administration (Fig. 3B). Administration of BPS markedly
increased the number of circulating progenitor cells such as
CD234-positive cells and c-kit-positive cells (Fig. 3C and D).
BPS also increased the number of CD45-positive hemato-
poietic lineage cells (Fig. 3E).

BPS-induced neovascularization

Chimeric rats with GFP-expressing bone marrow were
used to assess recruitment of bone marrow cells. Four
weeks after coronary ligation, bone marrow-derived
GFP-positive cells were incorporated predominantly into
the infarcted region and its border zone (Fig. 4A), while
these cells were rarely detected in the noninfarcted myocar-
dium. Some of the GFP-positive cells stained for vWF and
formed vascular structures. Semi-quantitative analysis
demonstrated that the number of GFP-positive cells in
the myocardium was significantly greater in the BPS group

§ =l
il Reaill

C

LVEDP (mmHg)

1245

than in the Control group (Fig. 4B). The number of GFP-
vWF double-positive cells (bone marrow-derived endothe-
lial cells) in the ischemic myocardium was significantly
greater in the BPS group than in the Control group
(Fig. 4C). In addition, a small number of GFP-troponin
T-double-positive cells were observed in the BPS group
(Fig. 4D).

Capillary density

In the peri-infarct area, clustering of relatively small ves-
sels was seen in BPS-treated hearts, which is indicative of
recent endothelial regeneration (Fig. 5A). Semi-quantita-
tive analysis also demonstrated that administration of
BPS significantly increased the capillary density in the
peri-infarct area compared to the Control group (Fig. 5B).

Discussion

In the present study, we demonstrated that treatment
with BPS (1) decreased infarct size and improved cardiac
structure and function in rats with acute myocardial infarc-
tion, (2) increased the number of circulating progenitor
cells such as CD34-positive cells and c-kit-positive cells in
rats, and (3) increased the number of bone marrow-derived
endothelial cells and the capillary density in the ischemic
myocardium. These results suggest that BPS may have ben-
eficial effects on ischemic myocardium at least in part
through enhancement of neovascularization by mobilizing
bone marrow cells.

Earlier studies have reported that prostacyclin has car-
dioprotective effects in ischemia-reperfusion injury
through inhibition of neutrophil activation and migration
[25,26]. BPS is also reported to inhibit chemotaxis and
superoxide anion production of neutrophils which contrib-
ute to tissue damage by releasing tissue destructive lyso-
somal enzymes [27]. Infusion of BPS has been shown to
reduce infarct size in the dog heart with left coronary occlu-
sion by reducing myocardial oxygen demand and by inhibi-
tion of the migration of neutrophils [28]. However, these
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Fig. 2. Cardioprotective effects of BPS on echocardiographic and hemodynamic parameters. FS, fractional shortening; LVEDP, LV end-diastolic
pressure; Max and Min dP/di, maximum and minimum dP/d:. Data are expressed as means £ SEM. p < 0.05, ~p < 0.01 vs. Control group.
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Fig. 3. BPS-induced mobilization of bone marrow cells. (A) Expression of prostacyclin receptor (IP receptor) on bone marrow cells. (B-E) Quantification
of BPS-induced MNC mobilization by FACS analysis. Administration of BPS markedly increased the number of circulating progenitor cells such as

YA e

CD34-positive cells and c-kit-positive cells. BPS alsc increased the number of CD45-positive hematopoietic lineage cells. Data are expressed as

means + SEM. *p <0.05, ~*p <0.01 vs. Control group.

biological activities of BPS appear to be insufficient to
explain the decrease in infarct size as well as suppression
of LV remodeling.

Recent studies have shown that mobilization of bone
marrow cells by cytokines promotes myocardial repair
and regeneration after acute myocardial infarction [5,6].
In the present study, three-day administration of BPS
markedly increased the number of circulating progenitor
cells such as CD34-positive cells and c-kit-positive cells in
rats. In addition, treatment with BPS enhanced recruitment
of bone marrow cells to the ischemic myocardium and
increased capillary density in the peri-infarct area. Earlier
studies have shown that CD?34-positive cells have angio-
genic potential to treat ischemic heart [29-31]. Also, anoth-
er stem cell fraction, c-kit-positive cells have ability to
repair ischemic myocardium by differentiating into vascu-
lar endothelial cells {32,33]. These findings suggest that
administered BPS induces neovascularization partly via
enhancement of bone marrow cell mobilization. RT-PCR
demonstrated that IP receptor mRNA was expressed in
bone marrow cells, indicating a direct effect of BPS on
these cells. A recent study has shown that BPS increases
eNOS expression in cultured endothelial cells through acti-
vation of c-AMP/Protein kinase A signal transduction [19].
Also, earlier studies have shown that eNOS plays essential
role in the recruitment of EPCs to the ischemic myocardi-
um [20]. Taken together, administered BPS may act as a

potent stimulator of cell mobilization from bone marrow,
although further studies are necessary to examine the
underlying mechanisms.

In the present study, treatment with BPS significantly
attenuated infarct size after myocardial infarction. BPS -
improved cardiac function and attenuated the development
of LV remodeling after acute myocardial infarction, as
indicated by increases in LV fractional shortening and
maximum dP/d:, and decreases in LVEDP and LVDD.
Taken together, BPS may attenuate myocardial infarction
through enhancement of neovascularization via modifica-
tion of bone marrow kinetics. Interestingly, a small frac-
tion of mobilized bone marrow cells expressed cardiac
troponin T in the ischemic myocardium in the BPS group,
suggesting that BPS may partially contribute to myocardial
regeneration after acute myocardial infarction. Earlier
studies have demonstrated that BPS has other beneficial
effects for ischemic heart disease including anti-thrombotic
activity [34], inhibition of reperfusion injury {35], and pre-
vention of coronary spasm [36], and re-stenosis [37]. These
findings suggest that administration of BPS may be a
promising therapy for acute myocardial infarction.

Granulocyte colony stimulating factor (G-CSF) is cur-
rently used agent for mobilization of bone marrow. Infu-
sion of G-CSF after myocardial infarction improves LV
function increasing peripheral stem cell fraction [5,38] A
recent clinical trial, however, claimed the G-CSF therapy
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has serious problem with re-stenosis after recanalization
[39]. On the other hand, the safety of BPS has been identi-
fied in the treatment of peripheral arterial disease [12,13]
and pulmonary arterial hypertension [14,15]. A random-
ized, controlled clinical trial failed to demonstrate thera-
peutic potential of prostacyclin for the treatment of
severe congestive heart failure [40], which has long discour-
aged the pursuit of prostacyclin as a therapeutic option for
the treatment of acute myocardial infarction. Interestingly,
however, double-blinded, randomized, placebo-controlled,
large-scale studies showed that treatment with BPS
decreased’ vascular events in patients with peripheral

Fig. 4. BPS-induced neovascularization. (A) Representative immunofluorescent images stained with antibodies to von-Willbrand factor (vWF, red) and
green fluorescent protein (GFP, green). Nuclei were counterstained with DAPI (blue). (B,C) Semi-quantitative analyses of numbers of GFP-positive cells
and GFP-vWF double-positive cells in the peri-infarct area. (D) Representative immunofluorescent image of GFP-positive cells (green) expressing cardiac
troponin T (red) observed in the BPS group. Scale bars = 50 um. Data are expressed as means = SEM. ""p < 0.01 vs. Control group.

arterial disease [41,42]. Thus, adequate use of BPS for only
acute myocardial infarction may have beneficial effects on
ischemic myocardium, although further preclinical trials
are required to verify the safety and efficacy of BPS.

Conclusion

In summary, administration of BPS improved cardiac
structure and function in rats with acute myocardial infarc-
tion. This beneficial effect of BPS may be mediated partly
by its ability to enhance neovascularization in ischemic
myocardium by mobilizing bone marrow cells.
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Fig. 5. (A) Rep‘resemative samples stained with antibody to von Willebrand factor by bright-field DAB. (B) Quantitative analysis of capillary density in
peri-infarct area. Administration of BPS increased capillary density by 37%. Scale bars = 50 pm. Data are expressed as means = SEM. "*p < 0.01 vs.

Control group.
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Abstract

Purpose Recent studies suggest that G-CSF prevents
cardiac remodeling following myocardial infarction
(MI) likely through regeneration of the myocardium
and coronary vessels. However, it remains unclear
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whether G-CSF administered at the onset of reperfu-
sion prevents ischemia/reperfusion injury in the acute
phase. We investigated acute effects of G-CSF on
myocardial infarct size and the incidence of lethal
arrhythmia and evaluated the involvement of the
phosphatidylinositol-3 kinase (PI3K) in the in vivo
canine models.

Methods In open-chest dogs, left anterior descending
coronary artery (LAD) was occluded for 90 minutes
followed by 6 hours of reperfusion. We intravenously
administered G-CSF (0.33 wkg/min) for 30 minutes
from the onset of reperfusion. Wortmannin, a PI3K
inhibitor, was selectively administered into the LAD .
after the onset of reperfusion.

Results G-CSF significantly (p < 0.05) reduced myocar-
dial infarct size (38.744.3% to 15.7£53%) and the
incidence of ventricular fibrillation during reperfusion
periods (50% to 0%) compared with the control. G-
CSF enhanced Akt phospholylation in ischemic canine
myocardium. Wortmannin blunted both the infarct size-
limiting and anti-arthythmic effects of G-CSF. G-CSF

"did not change myeloperoxidase activity, a marker of

neutrophil accumulation, in the infarcted myocardium.
Conclusion An intravenous administration of G-CSF at
the onset of reperfusion attenuates ischemia/reperfu-
sion injury through PI3K/Akt pathway in the in vivo
model. G-CSF administration can be a promising
candidate for the adjunctive therapy for patients with
acute myocardial infarction.
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Abbreviations
VF ventricular fibrillation.
G-CSF  granulocyte colony-stimulating factor

WTIMN  wortmannin

Introduction

Granulocyte colony-stimulating factor (G-CSF), a
20-kDa glycoprotein, promotes the proliferation, sur-
vival .and differentiation of hematopoietic cells [1].
Furthermore, G-CSF can mobilize hematopoietic stem
cells from bone marrow [2, 3]. Thus, G-CSF is believed
to improve cardiac remodeling after myocardial in-
farction (MI) through regeneration of the myocardium
and angiogenesis [4, 5]. In addition to these effects of

G-CSF, Komuro and colleagues clearly demonstrated .

that the high dose of G-CSF acutely reduces infarct
size by preventing apoptosis in the isolated hearts [6].
However, it remains unclear whether clinically rele-
vant dosages of G-CSF can reduce the infarct size in
the in vivo model and, if so, it is not clear which
downstream signaling pathway is involved in the
acute .cardioprotective effects of G-CSF. Further-
more, although lethal arthythmias are a major cause
of death in patients with acute myocardial infarction
[7, 8], anti-arrhythmic effects of G-CSF have not been
determined. '

Thus, we investigated the acute effects of a clinical
relevant dose of G-CSF on ischemia/reperfusion injury
including both ‘lethal arrhythmias and infarct size in
canine hearts. We also examined a role of the PI3K/
Akt pathway, a down stream of G-CSF receptors, in
the cardioprotective effects of G-CSF. In the present
study, we adopted ischemia/reperfusion protocols that
have not been tested in previous studies [4, 5], because
coronary revascularization has been established as a
standard therapy to attenuate cardiac damage after
ML :

Materials and methods
Materials

G-CSF was provided by Kirin brewery company
(Tokyo, Japan). Recombinant human G-CSF can

@ Springer

increase the number of white blood cells in dogs [9].
Wortmannin was obtained from Sigma (St. Louis, MO),
and antibodies against Phospho-Akt and Akt were ob-
tained from Cell signaling technologies (Beverly, MA).

. Instrumentation

Twenty-nine beagle dogs (Kitayama Labes, Gifu,
Japan) weighing 8 to 12 kg were anesthetized by an
intravenous injection of sodium pentobarbital (30 mg/
kg), intubated and ventilated with room air mixed with
oxygen (100% O, at flow rate of 1.0 to 1.5 l/min).
Thoracotomy was done at the fifth left intercostal
space, and the heart was suspended in a pericardial
cradle. After intravenous administration of heparin
(500 U/kg), the left anterior -descending coronary
artery (LAD) was cannulated for perfusion with blood
from the left carotid artery through an extracorporeal
bypass tube. This allows the selective infusion of drugs
into the LAD-perfused areas through this bypass tube.
The left atrium was catheterized for microsphere
injection to measure myocardial collateral blood flow
during ischemia as described previously [10]. Hydra-
tion was maintained by a slow normal saline infusion.
Both systemic blood pressure (SBP) and heart rate
(HR) were monitored- continuously during the study.
All procedures were performed in conformity with the
Guide for the care and use of laboratory animals (NIH
Publication. No. 85-23, 1996 revision), and were
approved by the Osaka University Committee for
Laboratory Animal Use.

Experimental protocols

Protocol 1. Acute effects of G-CSF on infarct size
and lethal arrhythmias in canine hearts

After hemodynamic stabilization, we intravenously
administered either saline (Control group; n = 9) or
G-CSF (0.33 pg/kg/min) (G-CSF group; n = 6) for 30
min following the onset of reperfusion. An intracoro-
nary administration of wortmannin (WTMN), a PI3K
inhibitor, was selectively administered into the LAD
(1.5 pg/kg/min) for 60 min after the onset of reperfusion
(GCSF + WTMN group, n =7; WIMN group, n = 7)
(Fig. 1). We have previously confirmed that the dose of
wortmannin used prevents the phosphorylation of Akt
in myocardium [10]. We measured infarct size and
myocardial collateral blood flow during ischemia. In
brief, infarct size was evaluated at the end of the pro-
tocol by Evans blue/TTC staining. Collateral blood flow
during 90 min of ischemia was assessed by the non-
radioactive microsphere method [10). We also counted
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Fig. 1 Experimental protocols to assess myocardial infarct size and ventricular fibrillation (VF) in canine hearts. Myocardial infarct
size was measured after 90 min of left anterior descending coronary artery (LAD) occlusion followed by 360 min of reperfusion. The
incidence of VF was evaluated during reperfusion for 360 min. Intravenous administration of granulocyte colony-stimulating factor
(G-CSF) was started at the onset of reperfusion and continued for 30 min. Intracoronary administration of wortmannin (WTMN ) was

started at the onset of reperfusion and continued for 60 min.

the incidence of VF during the 6 h reperfusion period
_(Fig. 1). '
Finally, we measured myeloperoxidase (MPO) ac-
tivity in LAD-perfused myocardium to check the accu-
mulation of neutrophils in infarcted myocardium.

Protocol 2. Phosphorylation of Akt
in ischemic myocardium

In this protocol, we used 11 dogs in Control group (1 = 3),
G-CSF group (n = 4), and G-CSF + WIMN group (n =
4). After 90 min of ischemia followed by 30 min of
reperfusion, hearts were excised. The myocardial tissue in
the ischemic zone, which was identified as the edge of the
region showing necrosis, and non-ischemic zone were
quickly placed into liquid nitrogen and stored at —80°C.
Phosphorylation of Akt and total content of Akt were
evaluated by immunoblotting as reported previously [10].

Immunoblotting

Immunoblotting was performed as described previous-
Iy [11], and the immunoreactive bands were quantified
by densitometry (Molecular Dynamics).

MPO activity

Several myocardial tissue samples were taken from the
ischemic area in the dogs studied, frozen in liquid nitro-
gen and stored at —80°C until assay. The technical pro-
cedure has been described previously [12]. One unit of

MPO activity was defined as that which degrades 1 pmol
hydrogen peroxide per minute at 25°C.

Statistical analysis

Results are expressed as the mean + SEM. Comparisons
of the time course of the change in mean SBP and HR
between groups were performed using two-way repeat¥
ed measures analysis of variance (ANOVA). Compar-
isons of other data between groups were performed
using one-way factional ANOVA. The Bonferroni-
Holm procedure was used for correction of multiple
comparisons {13}. The incidence of VF was compared
using the y>-test and Fisher’s exact probability test. A
p value <0.05 was considered to represent statistical
significance.

Results
Criteria for exclusion

" Since there was a negative correlation between myo-
cardial collateral blood flow during ischemia and the
incidence of VF [14, 15], it was important to assess
myocardial collateral blood flow and exclude the dogs
with high myocardial collateral blood flow. We
excluded two dogs with excessive collateral blood
flow (>15 ml/100 g/min) (Control group: 1, WITMN
group: 1) among 29 dogs tested. Thus, 27 dogs were
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evaluated for VF analysis. Among these 27 dogs, we
further excluded two dogs (Control group: 1, G-
CSF + WIMN group: 1) from infarct size analysis
that matched. the exclusion criteria of lethal arrhyth-
mia (more than two consecutive attempts required to
convert VF with low-energy DC pulses applied
directly to the heart) [10].

Effects of G-CSF on infarct size and VF during
the reperfusion period

Throughout the study, neither SBP nor HR differed
among the four groups (Fig. 2). The area at risk and
‘myocardial collateral blood flow during myocardial
ischemia were also comparable in the groups tested
(Fig. 3). Figure 4 shows infarct size in the groups tested.
G-CSF reduced (p < 0.05) infarct size compared with
the control group. The intracoronary administration of
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50 '
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a0 - - "
30
20
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Fig. 3 Area at risk and myocardial collateral blood flow during
ischemia in groups tested. Neither the area at risk nor myocardial
collateral blood flow differed between the groups tested.
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wortmannin for 60 min after the onset of reperfusion
abrogated the infarct size-limiting effects of G-CSF,
although wortmannin alone did not affect infarct size.

G-CSF reduced (p < 0.05) the incidence of VF dur-
ing the reperfusion period compared with the control
group (Table 1). The antiarrhythmic effects of G-CSF
were abolished by wortmannin.

Effect of G-CSF on MPO activity
in infarcted myocardium -

MPO activity in infarcted myocardium 6 h after reper-
fusion in G-CSF group did not differ from that in the
control group. (10.0 + 2.6 versus 10.7 £ 2.1 U/g protein).
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Fig. 4 Infarct size as a percentage of the area at risk in groups
tested. Intravenous administration of G-CSF limited infarct size.
The infarct-size limiting effect of G-CSF was blunted by the
intracoronary administration of WTMN during reperfusion. *p <
0.05 vs. control group.
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Table 1 Effects of G-CSF on the incidence of VF during
reperfusion periods ‘

Group Incidence of VF (%)

Control 50.0 (4/8)
G-CSF 0* (0/6)
G-CSF + WTMN 429 &In)
WTMN 50.0 (3/6)

*p < 0.05 vs. control group

Effect of G-CSF on Akt phosphorylation
in ischemic myocardium

G-CSF augmented Akt phosphrylation in the LAD-
perfused myocardium. The increase in Akt phosphor-
ylation was attenuated by wortmannin (Fig. 5).

Discussion -

The present study demonstrated that administration
of G-CSF following the -onset of reperfusion limited
infarct size in acute phase and reduced the incidence
of lethal arrhythmia. The intracoronary administra-
tion of wortmannin abrogated these cardioprotective
effects of G-CSF, suggesting that G-CSF mediated car-
dioprotection via the PI3K/Akt pathway. To our knowl-
edge, this is the first study to reveal the acute effect of
G-CSF against ischemia/reperfusion injury via the
PI3K/Akt pathway in in vivo canine hearts.

Previous studies have reported that G-CSF improves
cardiac remodeling after MI in the chronic ligation
model of coronary artery [4; 5, 16]. It has been believed
that G-CSF exerts cardioprotective effects through re-
generation of myocardium and angiogenesis. Recently,
Komuro and colleagues clearly demonstrated that the
high dose of G-CSF limits infarct size in the acute phase
in the isolated hearts [6]. To translate their remarkable
findings into the clinical setting, we need to consider
the dose of G-CSF and experimental models in their
study. They used a perfusate containing 300 ng/ml G-
CSF in the isolated heart model. This dose is relatively
high compared with the dose used in clinical settings
[17, 18].-In addition, effects of G-CSF on neutrophil
function cannot be tested in the isolated heart model.
In the present study, we demonstrated that a clinical
relevant dose of G-CSF acutely limits infarct size in the
in vivo model. In contrast with previous studies [4, 5,
16], we examined the effects-of G-CSF in the ischemia/
reperfusion model, because coronary revascularization
is principally applied for patients with acute MI to
attenuate ischemia/reperfusion injury. We found that
G-CSF following the onset of reperfusion effectively

limited infarct size. Our findings strongly support that
G-CSF would be a promising candidate as an adjunctive
therapy for patients with acute MI. Indeed, two recent
publications by the FIRSTLINE-AMI trial clearly
demonstrated that subcutaneous administration of
G-CSF after percutaneous coronary intervention im-
proved cardiac function and prevented cardiac re-
modeling [19, 20}. Considering our present data, the
improvement of cardiac function by G-CSF in clinical
studies will be due to limiting infarct size in the acute
phase as well as preventing cardiac remodeling.

G-CSF can provoke multiple intracellular signal
transductions including Jak/Stat, ERK and PI3K/Akt
[16, 21]. Recently, we and others demonstrated that
post-interventions which activate PI3K/Akt during the
reperfusion protect against ischemia/reprfusion injury
[10, 22). Thus, we investigated a role of PI3K/Akt in
G-CSF-mediated cardioprotection. WI'MN significant-
ly blunted the infarct size-limiting effects of G-CSF,
and G-CSF enhanced Akt phosphorylation in the ische-
mic myocardium, indicating that G-CSF reduces infarct
size via PI3K/Akt-dependent pathway. Further inves-
tigations will be needed to clarify the molecular target
of PI3K/Akt and the role of other signals activated by
G-CSF in this condition.

Although we demonstrated that G-CSF mediated
cardioprotection, one small clinical study showed that
G-CSF may induce coronary re-stenosis {23]. In con-
trast, other large-scale studies did not show that G-
CSF induced coronary restenosis {19, 20]. Since there
is still controversy about the restenosis effects of G-
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Fig. 5 Akt phosphorylation in LAD-perfused areas. G-CSF
phosphorylated Akt in LAD-perfused-myocardium. Akt phos-
phorylation by G-CSF was prevented by co-treatment with
WTMN. Akt phosphorylation was normalized by total Akt
*p < 0.05 vs. control group.
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CSF, this issue will be minimized by the concomitant
use of a drug-eluting stent and G-CSF. Another pos-
sible adverse effect of G-CSF will be enhancement of
neutrophil function. G-CSF appears not only to stimu-
late the formation of granulocyte colonies from bone
marrow-derived precursors, but also to enhance the
function of mature neutrophils [24] and elevates the
number of white blood cells, which may predict adverse
prognosis in the patients of acute MI [25]. Consistent
with previous studies [26, 27], we also showed that G-
CSF did not change MPO activity, a marker of neu-
trophil accumulation, in the infarcted myocardium.
These findings suggest that G-CSF exerted cardiopro-
tective effects independent of white blood cells. Al-
though our findings suggest that the overall effect of
G-CSF may be beneficial for ischemia/reperfused myo-
cardium, we need to be cautious about these potential
adverse effects of G-CSF.

Importantly, we clearly demonstrated that G-CSF
reduced the incidence of VF during reperfusion via the
PI3/Akt-dependent pathway. Since lethal arrhythmias
are one of the major causes of death in patients with
acute MI [8], the anti-arrhythmic effects of G-CSF have
great clinical impact. We have previously demonstrated
that another cytokine, erythropoietin, also reduced the
incidence of lethal arrhythmia via the PI3/Akt pathway
[10]. Although our findings suggest that the PI3K/Akt-
dependent pathway will play an important role in the
generation of lethal arrhythmias, further investigation
will be needed: to clarify the potential mechanism by
which G-CSF exerts anti-arrhythmic effects. We need
to consider whether G-CSF exerts anti-arrhythmic ef-
fects by the reduction of myocardial infarct size or by
some other actions of G-CSF. .

In conclusion, the intravenous administration of a
clinically relevant dose of G-CSF will be a promising
strategy to treat patients with acute MI. Further con-
trolled studies will be warranted to check the safety and
efficacy of G-CSF treatment in the acute phase after ML
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Abstract

Objective: Radiation has been shown to enhance interceltular communication in the skin and lungs through an increase of connexin43
(Cx43) expression. If analogous Cx43 up-regulation is induced in the diseased heart, it would provide a new perspective in radiation therapy
for arrhythmias. The aim of the present study is to test this hypothesis.

Methods: Non-transmural myocardial infarction (MI) was created in 24 rabbits by microsphere injection into the coronary arteries. Twenty-
four rabbits without MI were used as controls. Targeted external heavy ion beam irradiation (THIR; 15 Gy) was applied 2 weeks after Ml
with an accelerator (HIMAC, Chiba, Japan). '

Results: The THIR was associated with an increase of Cx43 mRNA and protein levels in the left ventricle in control as well as in MI rabbits. THIR
also increased lateralization of Cx43, which was no longer colocalized with cadherins. In MI hearts, immunoreactive Cx43 signals were reduced in
the peri-infarct zone, and the reduction was reversed by THIR. In-vivo epicardial potential mapping on the free wall (64 unipolar electrodes to cover
7 %7 mm) in MI hearts revealed reduced conduction velocity, whereas dispersion of the activation-recovery interval (ARJ) was increased compared
with controls, and these changes were reversed by THIR. The vulnerability for ventricular tachyarrhythmias (VT/VF), which was estimated by
programmed stimulation, was increased in M1 hearts, and this increased vulnerability to arrhythmias was reversed by THIR.

Conclusions: THIR increases Cx43 expression, improves the conductivity, decreases the spatial heterogenéity of repolarization, and reduces
the vulnerability of rabbit hearts to ventricular arrhythmias after MI. THIR could have an antiarthythmic potential through an improvement of
electrical coupling. .

© 2006 European Society of Cardiology. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Modalities curmrently available for treatment and prevention
of life-threatening ventricular tachyarrhythmias (VT/VF) are

* Comesponding author. Tel.: +81 52 789 3871; fax: +81 52 789 3890. antiarthythmic drugs, catheter ablation and implantable car-
E-mail addyess: ikodama@riem.nagoya-u.ac.jp (I. Kodama). dioverter/defibrillator (ICD). The usefulness of these therapeu-

' The first two authors contributed equally to this work. tic options is limited by either low efficiency, intolerable side
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