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& & &EEE (therapeutic angiogenesis) ¥ i%, Il
 EHEREETF R 7 OBEF, b5V EEPRMMmE
faerReThEFE2RESE, BRENONE:
E 3 BEETH B, ERBERICETIAOBETF
¥R L LT 45 L5 vascular endothelial growth
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LRI NO>oH 2, E4 DEBREDEMIGHRE
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#%E, BIRRS, BHELESE, ~S) OiER
FESLERREEERFL, BEEOVLLAREH
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fetLre &L BIERSER L 2 —DROEAH

BEE  vol. 39 no. 7, 2005

*ED VEGF BEa%s¥51T 5L, RELALEBYE
E%ﬁ%u#ﬁ%%&«tﬁé?%muﬁﬁ%m
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heta Crysallographica Section ¢ Crystallization and preliminary X-ray
Structural Biology . .
and Crystallization crystallographic analysis of two vascular
f:"‘"‘““'catm“s apoptosis-inducing proteins (VAPs) from Crotalus
ISSN 1744-3091 .

atrox venom
Tomoko lgarashi,® Yuko Oishi,? VAPs are haemorrhagic snéke-venom toxins belonging to the reprolysin family
Satohiko Araki,® Hidezo Mori® of zinc metalloproteinases. In vitro, VAPs induce apoptosis specifically in
and Soichi Takeda®<* cultured vascular endothelial cells. VAPs have a modular structure that bears

structural homology to mammalian ADAMs (a disintegrin and metalloprotein-

*Department of Cardiac Physiology, National ases). VAP1 is a homodimer with a MW of 110 kDa in which the monomers are

Cardiovascular Center Research Institute, connected by a single disulfide bridge. VAP2 is homologous to VAP1 and exists

5-7-1 Fujishiro-dai, Suita, Osaka 565-8565, as a monomer with a MW of 55 kDa. In the current study, several crystal forms
b, : . . : . . . B

Japan, "Sugashima Marine Biological of VAPl and VAP2 were obtained using the vapour-diffusion method and

Laboratory, Graduate School of Science, - . . . .
Nagoya University, Toba, Mie 517-0004, Japan, diffraction data sets were collected using SPring-8 beamlines. The best crystals

and “Laboratory for Structural Biochemistry, of VAPl and VAP2 generated data sets to 2.5 and 2.15 A resolution,

Riken Harima Institute at SPring-8, 1-1-1 Kouto, respectively.
Mikazuki, Sayo, Hyogo 679-5148, Japan

1. Introduction
Correspondence e-mail: stakeda@ri.ncvc.go.jp
Haemorrhagic snake venoms contain factors that induce apoptosis

specifically in cultured vascular endothelial cells (Araki ez al., 1993).
Received 11 May 2006 The vascular apoptosis-inducing proteins VAP1 and VAP2 were
Accepted 12 June 2006 originally isolated from the venom of the western diamondback
rattlesnake Crotalus atrox (Masuda er al., 1997, 1998) and similar
apoptotic toxins (VAPs) have been isolated from other snake venoms
(Masuda et al., 2001; You ez al., 2003; Trummal et al., 2005). VAP1is a
disulfide-bonded homodimeric protein with a molecular weight of
110 kDa and an isoelectric point of 8.5. VAP2 is an acidic single-chain
protein with a molecular weight of 55 kDa and an isoelectric point of
4.5 (Masuda ez al., 1997, 1998). VAP1 (Masuda er al, 2000) and VAP2
(S. Masuda, H. Hayashi & S. Araki, in preparation) are modular
metalloproteinases with nucleotide-sequence homology to genes
encoding the mammalian membrane-anchored metalloproteinases
known as ADAMs. ADAMs are an emerging class of metallo-
proteinases whose function has been implicated in cell-cell and cell-
matrix adheston and signalling. They also appear to be associated
with numerous diseases including arthritis, Alzheimer’s disease and
cancer (White, 2003; Blobel, 2005; Seals & Courtneidge, 2003; Moss &
Bartsch, 2004; Duffy et al, 2003).

Viperidae snake venoms contain a number of metalloproteinases,
the snake-venom metalloproteinases (SVMPs), that induce local and
systemic haemorrhage by disrupting the wall of the blood vessels in
envenomed patients (Gutierrez et al., 2005). All known VAPs belong
to the P-III class of SVMPs, which have been shown to be the most
potent haemorrhagic toxins from snake venoms. The P-IIT SVMPs
have a modular structure consisting of metalloproteinase (M),
disintegrin (D) and cysteine-rich (C) domains (Fox & Serrano, 2005).
SVMPs and ADAMs are members of the reprolysin group of
zinc-dependent metalloproteinases, which together with astasins,
serralysin and matrix metalloproteinases comprise the metzincin
superfamily of metalloproteinases (Bode er al, 1993). All these
enzymes share a signature consensus zinc-binding motif,
HEXXHXXGXXH, in their catalytic region that defines proteins of
the class, as well as a methionine-containing turn that serves as a
structural base for the three active histidine residues (Bode et al.,

1993). :
© 2006 intemnational Union of Crystallography The crystal structures of several SVMPs of the P-I class, whic)
All rights reserved contain only an M domain, and of isolated domains of ADAMs have
688 doi:10.1107/51744309106022548 Acta Cryst. (2006). F62, 688—691
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Table 1
Data-collection statistics for VAP1 crystals.

Values in parentheses are for the highest resolution shell. For each data set, a single
crystal was used for measurement.

Form 1-1 Form 1-2
Space group P42,2 P2,2,2,
Unit-cell parameters
a (A) 939 86.7
b (A) 93.9 933
c(A) 2448 137.7
a=8=y() 90 90

Beamiine (detector)

¢ BLASPX . (Rigaku Jupiter) BLASPX (Rigaku R-AXIS V)
Wavelength (A) 098 1.0

Resolution (A) 50-2.50 (2.59-2.50) 50-2.50 (2.59-2.50)
No. of unique reflections 38868 (3773) 38926 (3800)
Reerget 0.084 (0.380) 0.072 (0369)
llo() 187 (1.1) 144 (29) -
Completeness (%) 9.7 (99.6) 99.4 (98.8)
Redundancy 127 39

No. of molecules in ASU 1 1

Matthews value (A>Da™") 25 25

Solvent content (%) 51 51

t Roerge = Jpis 3 |i(RKL) — (J(RKD)W/ S s 3 1,(hKD), where I(hkl) is the ith intensity
measurement of reflection hkl and {I(hkl)) is its average.

been determined. However, structures of SVMPs or ADAMs
containing M, D and C domains have not been determined. To
understand more about the structure of P-III SVMPs and ADAMs
and how it relates to the molecular mechanism of VAP-induced
apoptosis, we initiated the crystallographic analysis of VAP1 and
VAP?2. This is the first report of the crystallization and preliminary
X-ray analysis of apoptotic SVMPs. Three-dimensional crystal
structures of VAP1 derived from the two distinct crystal forms
described in this report have recently been described (Takeda er al,
2006); the structural analysis of VAP2 is ongoing.

2. Methods
2.1. Purification

VAP1 and VAP2 were purified as described previously (Maruyama
et al., 2005; Masuda et al, 1998) with some modifications. Briefly,
crude C. atrox venom (Sigma-Aldrich, USA) was dissolved in buffer
containing 10 mM Tris-HCl pH 7.0 and 10 mM NaCl and then
applied onto a CM-Sepharose (Amersham Bioscience, USA) column
equilibrated with the same buffer. VAP2 was eluted from the column
with the above buffer, whereas VAP1 was eluted with buffer
containing 10 mM Tris~HCI pH 7.0 and 50 mM NaCl.

The VAP1 was further purified on a hydroxylapatite column. The
VAP1-containing CM-Sepharose fraction was first diluted with an

equal amount of distilled water and then applied onto a hydroxyl-
apatite column equilibrated with 25 mM sodium phosphate pH 7.0.
VAP1 was eluted using buffer containing 50 mM sodium phosphate
pH 7.0 and then concentrated using an Amicon Ultra membrane
(Millipore) with a nominal molecular-weight limit (NMWL) of
50 000 Da. The final protein concentration was 6.5 mg ml~'. During
the concentration step, the buffer was replaced with 10 mM Tris-HCl
pH 7.0. ’ ‘

The VAP2-containing CM-Sepharose fraction was loaded onto a
Resource Q (GM Healthcare) column equilibrated with 10 mM Tris-
HCl pH 8.0 and 50 mM NaCl and then eluted with a gradient of NaCl.
55 kDa molecular-weight fractions, which were eluted at about
130 mM NaCl, were pooled and concentrated by Amicon Ulitra with a
30000 NMWL membrane. The final protein concentration was
3.8mg ml™' in buffer containing 10 mM Tris—-HCl pH 8.0.

2.2. Initial crystallization screen

Initial screening for appropriate crystallization conditions for
VAP1 and VAP2 was carried out using the sitting-drop vapour-
diffusion method and Crystal Screen (Hampton Research, USA),
with or without 63 g ml™! (almost twice the molar protein concen-
tration) of the hydroxyamate inhibitor 3-(N-hydroxycarboxamide)-
2-isobutyl-propanoyl-Trp-methylamide (GM6001, Calbiochem) in
the protein solution. A volume of 0.3-0.5 pl protein solution was
mixed with an equal amount of reservoir solution and droplets were
allowed to equilibrate against 0.1 ml reservoir solution at 293 K.

2.3. Diffraction data collection

Crystals were cryoprotected, mounted in a nylon loop (Hampton
Research, USA) or in a Lytho Loop (Protein Wave Corp., Japan) and
immediately exposed to a stream of nitrogen gas at 100 K to flash-
freeze the samples. The preliminary X-ray data were collected using
an in-house X-ray diffractometer (Rigaku Micromax-007 X-ray
generator with R-AXIS VII imaging-plate detector) and crystals that
diffracted well were selected for data acquisition using the beamlines
at SPring-8. All diffraction data sets were collected using undulator
beamlines (BL41XU, BL4SXU) at 100 K and diffraction images were
processed using the HKL2000 software (Otwinowski & Minor, 1997).

3. Results
3.1. VAP1 crystals

3.1.1. Crystallization. VAP1 was reproducibly crystallized in two
distinct crystal forms. Crystals were initially obtained using Crystal

(@) )
Figure 1
VAP crystals. (@) Form 1-1. (b) Form 1-2. The scale bars indicate 0.1 mm.
Acta Cryst. (2006). F62, 688—691 lgarashi et al. + Vascular apoptosis-inducing proteins 689
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Table 2
Data-collection statistics for VAP2 crystals.

Values in parentheses are for the highest resolution shell. For each data set, a single crystal was used for measurement.

Form 2-1 Form 2-2 Form 2-3 Form 24 Form 2-5

GM6001 + + + + -
Space group P2, P2,2,2, P4, P6322 Q2
Unit-cell parameters

a(A) 569 57.7 60.7 156.8 220.7

b(A) 138.0 1182 60.7 156.8 79.5

c(A) 59.2 1385 2579 95.6 58.7

a(?) ] 90 90 90 90

B () 915 90 90 90 91.7

y () 90 90 90 120 90
Beamline (detector) BLAIXU (ADSC Quantum 310R CCD detector)
Wavelength (A) 10 1.0 1.0 1.0 1.0
Resolution (A) 50-2.15 (2.23-2.15) 50-2.50 (2.59-2.50) 50-3.20 (3.31-3.2) 50-3.80 (3.94-3.80) 50-2.70 (2.80-2.70)
No. of unique reflections 48664 (4428) 33288 (2925) 15097 (1437) 7169 (682) 26911 (2313)
Reerget 0.081 (0.196) 0.089 (0.321) 0.091 (0.360) 0.117 (0.397) 0.085 (0.231)
Ho(l) 9.8 (4.6) 10.3 (3.7) 10.9 (4.0} 84 (6.5) 10.1 (5.5)
Completeness (%) 98.1 (89.5) 98.6 (88.4) 99.5 (95.7) 99.8 (99.9) 95.9 (82.5)
Redundancy 33 65 70 19.2 34
No. of molecules in ASU 2 2 2 1 2
Matthews value (A® Da™") 24 24 25 3.1 27
Solvent content (%) 49 49 50 60 54

t Ruerge = Dopus 3¢ Hi(hkD) — (ICRKDY /Y 0y 3 1k, where I{hkl) is the ith intensity measurement of reflection ki and (I(hkl)) is its average.

Screen solution No. 46, but these crystals diffracted poorly. Subse-
quently, droplets were prepared by mixing 1 pl protein solution and
1l reservoir solution containing 15% PEG 8000, 0.1 M sodium
cacodylate pH 6.5 and then equilibrated against 1 ml reservoir solu-
tion. Within a couple of weeks, using the hanging-drop method,
improved tetragonal crystals (form 1-1; Fig. 1a) were obtained.
Orthorhombic crystals (form 1-2; Fig. 1b) were obtained using
Additive Screen (Hampton Research, USA). The droplet was made
by mixing 0.3 yl protein solution and 0.3 pl reservoir solution

Figure 2
VAP?2 crystals. (a) Form 2-2, (b) form 2-3, (¢) form 2-4 and (d) form 2-5 crystals. The
scale bars indicate 0.1 mm. .

supplemented with one-fifth of the volume of 0.1 M cobalt(II)
chloride (Additive Screen solution No. 4). The best crystals were
obtained using the sitting-drop method after equilibration for 3 d
against 0.1 ml of the same reservoir solution used to obtain form 1-1
crystals.

3.1.2. X-ray analysis. For X-ray measurements, crystals of either
crystal form were soaked in a solution containing 15% PEG 8000, 5%
methanol, 20% xylitol and 0.1 M sodium cacodylate pH 6.5 for
cryoprotection prior to flash-freezing. X-ray diffraction data were
obtained by the oscillation method using beamline BL45XU and an
oscillation angle of 0.75° per image. Data sets were collected using a
CCD detector (Rigaku Jupiter) for crystal form 1-1 or an imaging-
plate detector (Rigaku R-AXIS V) for crystal form 1-2. The unit-cell
parameters and the data statistics for the two crystal forms are
summarized in Table 1. The structures were determined at 2.5 A
resolution by the molecular-replacement method using the P- SVMP
acutolysin-C (PDB code 1qua) as a starting model (Takeda et al,
2006). The coordinates and the structure factors have been deposited
in the PDB (2erq for form 1-1 and 2ero for form 1-2 crystals).

3.2. VAP2 crystals

3.2.1. Crystallization. Five distinct crystal forms of VAP2 were
analyzed by X-ray diffraction. The initial screening for VAP2 crystals
was performed in the presence and absence of the inhibitor GM6001.

In the presence of GM6001, Crystal Screen solution No. 10 yielded
crystals. With this as a starting condition, the pH of the mother liquor,
the PEG concentration and molecular weight and the species and
concentrations of salts and additives were optimized and four distinct
crystal forms were obtained (forms 2-1, 2-2, 2-3 and 2-4). These four
forms were only obtained in the presence of GM6001 and were never
obtained in jts absence. Monoclinic (form 2-1) and orthorhombic
(form 2-2; Fig. 2a) forms were obtained by the sitting-drop method
under identical conditions as follows: droplets were made by mixing
0.5 ul protein solution with 0.5 pl reservoir solution containing 30%
PEG 8000, 0.1 M ammonium acetate, 0.1 M sodium cacodylate pH 6.5
and were equilibrated against 0.1 m! reservoir solution. Tetragonal
form crystals (form 2-3: Fig. 2b) were obtained by adding a one-tenth
volume of 1 M potassium chloride (Additive Screen solution No. 16)
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to the mother liquor and using a reservoir solution containing 30%
PEG 8000, 0.1 M ammonium acetate, 0.1 M sodium acetate pH 4.6
with the same drop and reservoir volumes described above. Hexa-
gonal crystals (form 2-4; Fig. 2c) were obtained by the hanging-drop
method using 1 ml of a reservoir solution containing 20% PEG
20000, 0.2 M calcium acetate, 0.1 M sodium cacodylate pH 6.5. The
droplet was made by mixing 1 u! protein solution and 1 pi reservoir
solution supplemented with a one-fifth volume of 0.3 M glycyl-glycyl-
glycine solution (Additive Screen solution No. 34).

In the absence of GM6001, crystals were obtained with Crystal
Screen solution No. 46, but these crystals yielded poor diffraction
data. To improve the quality of the crystals, several additives were
screened. Monoclinic crystals (form 2-5; Fig. 2d) were obtained by
adding a one-tenth volume of 40% n-propanol solution (Additive
Screen solution No. 90) to the reservoir solution (final composition
4% n-propanol, 162% PEG 8000, 0.18 M calcium acetate, 0.09 M
sodium cacodylate pH 6.5). A mixture of 0.5 pl protein solution and
0.5 pl reservoir solution was equilibrated against 0.1 ml reservoir
solution. These form 2-5 crystals were only obtained in the absence of
GM6001 and were never obtained in its presence.

3.2.2, X-ray analysis. The mother liquors of the form 2-2 and 2-3
crystals were suitable for freezing; all others were first cryoprotected.
For form 2-1 and 2-4 crystals, 20% glycerol was added to the reservoir
solution for cryoprotection. For form 2-1, the cryogenic solution was
added gradually to the crystal droplet in order to avoid cracking
induced by osmotic shock. Crystal form 2-5 was rinsed in a solution
containing 15% PEG 8000, 5% methanol, 20% xylitol and 0.1 M
sodium cacodylate pH 6.5 and then immediately flash-frozen at
100 K. Because these crystals were extremely thin and fragile, they
were mounted in a LithoLoop, an etched Mylar film, to prevent
bending of the crystal.

All diffraction data sets for the VAP2 crystals were acquired using
the oscillation method and beamline BL41XU (the oscillation angle
was 1.0° for all data sets) at a wavelength of 1.0 A and data were
collected using an ADSC Quantum 310R detector. The unit-cell
parameters and statistics for the data sets are summarized in Table 2.
The estimated number of molecules in the asymmetric unit for each
crystal form was obtained by a preliminary molecular-replacement
method using MOLREP from the CCP4 suite (Collaborative
Computational Project, Number 4, 1994) and the metalloproteinase

(M) and cysteine-rich (C) domains of VAP1 (Takeda er al, 2006) as
the starting models. Structural analyses of these crystals along with
the molecular-replacement phases are ongoing.

We thank Mariko Tomisako for her help in crystallization experi-
ments and the staff of SPring-8 for assistance with data acquisition.
This work was partly supported by Grant Nano-001 for Research on
Advanced Medical Technology from the Ministry of Health, Labour
and Welfare of Japan and by grants from the Takeda Science Foun-
dation, from the Kao Foundation for Arts and Science and from the
Senri Life Science Foundation.
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Kawada. Toru, Toji Yamazaki, Tsuyoshi Akivama, Ka-
unori Uemura, Atsunori Kamiya, Toshiaki Shishido. Hidezo
Mori. and Masaru Sugimachi. Effects of Ca*” channel antago-
nists on nerve stmulation-induced and ischemia-induced myocar-
; dial interstitial acetvlcholine release in cats. Am J Physiol Heart
} Cire Physiol 2910 H2187-H2191. 2006. First published June 9.
2006: doiz 1011 52/ajpheart. 001 75.2006.—Although an axoplasmic
Cua” " increase is associated with an exocytatic acetvicholine (ACh)
release from the parasvimpathetic postganglionic nerve endings. the
role of veltage-dependent Ca® " channels in ACh release in the
mammalian cardiac parasvmpathetic nerve is not clearly under-
stoad. Using a cardiac microdialvsis technigue. we examined the
effects of Ca=  channel antagonists on vagal nerve stimulation-
ind ischemia-induced myocardial interstitial ACh releases in anes-
thetized cats. The vagal stimulation-induced ACh release {22.4 nM
(SD 10.6). n = 7] was significantly attenuated by local adminis-
tratien of an N-type Ca™ " channel antagonist w-conotoxin GVIA
[11.7 nM (SD 5.8 n = 7. P = 0.0054]. or a P/Q-tvpe Ca*~
channel antagonist w-conotoxin MVIIC (3.8 nM (SD 2.3). n = 6.
£ = 0.0002] but not by local administration of an L-type Ca”’
chunnel aptagonist verapamil [23.5 nM (SD 6.0). n = 5. P =
0.758]. The ischemia-induced myocardial interstitial ACh releasc
[13.0 nM (SD 8.3). n = 8] was not attenuated by local adminis-
tration of the L-. N-. or P/Q-type Ca” " channel antagonists. by
inhibition of Na /Ca=" exchange. or by hlockade of inositol
I.4.5-trisphosphate [Ins(1.4.5)P3] receptor but was significantly
suppressed by local administration of gadolinium [2.8 nM (SD
26 0 = 6. P = (.0283]. In conclysion. sumulation-induced ACh
release from the cardiac postganglionic nerves depends on the N-
and P/Q-tvpe Ca” " channcls (with a dominance of P/Q-type) but
prohably not on the L-tvpe Ca=° channels in cats. In contrast.
ischemia-induced ACh release depends on nonselective cation
channels or cation-selective streteh activated channels but not on
L-. Neoor P7Q wpe Ca- chunnels. Na /Ca”™  exchange. or
Inst ). 4.5 receptor-mediated pathway,

ardiac microdialvsis: w-conotoxin GVIA: w-conotoxin MVIC: KB-
R7943: verapmnil: vagal sumulation™

arruouaH N-tvpe Ca® conansgels play a dominant role in
norcpinephrine release from sympathetic nerve endings (8. 33.
34). the typetsy of Ca” ™ channcels controlling ACh release in
the mammalian parasympathetic system is not fully understood
and show diversity among reports. To name a few. in isolated
parasympathedce submandibular gangha from the rat. ncuro-
transmission is mediated by Ca™" channels that are resistant 1o
the L-. N-. P/Q-. and R- type Ca® " channel antagonists (29).
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 Effects of Ca®* channel antagonists on nerve stimulation-induced
‘and ischemia-induced myocardial interstitial acetyicholine release in cats

Toru Kawada,' Toji Yamazaki,” Tsuyoshi Akiyama,” Kazunori Uemura,’

Atsunori Kamiya,' Toshiaki Shishido,' Hidezo Mori,> and Masaru Sugimachi’

‘Deparmment of Cardiovascular Dyvaamics. Advanced Medical Engineering Center. National Cardiovascular Center Rescarch
Instinge and =Depariment of Cardiac Physiology. National Cardiovascular Center Research Insiitwe. Osaka. Japan

When the negative inotropic response 10 field stimulation was
examined in the isolated guinea pig atria. Hong and Chang (8)
reported the importance of P/Q-type Ca®" channels. whereas
Serone el al. (28) reported the importance of N-type Ca®
channels. Because field stimulation in the isolated preparations
could induce responses different from those in the in vivo
conditions, we aimed to examine the effects of Ca” " channel
antagonists on the vagal nerve sumulation-induced myocurdial
interstitial ACh release in the in vivo feline heart.

Aside from the important role of the normal physiological
regulation of the heart. the vagal nerve can be a therapeutic wrget
for certain cardiovascular discases (2. 3. 13, 22. 27). In previous
studies. we have shown that acute miyocardial ischemia causes
myocardial interstital ACh release in the ischemic region inde-
pendently of efferent vagal nerve acuvity (12, 14). The compar-
ison of the effects of Ca®' channel antgonists on the ACh
releases induced by vagal nerve stimulation and by acute myo-
cardial ischenia may deepen our understanding about the ische-
mia-induced myocardial intersutial ACh release.

A cardiac microdialysis technique offers detailed analyses of
in vivo myocardial interstitial ACh release (1, 15). Because the
local administration of pharmacological agents through a dial-
ysis probe can modulale ACh release without significantly
affecting systemic hemodynamics. a combination of cardiac
microdialysis with local pharmacological interventions is use-
ful for analyzing the mechanisms of ACh releasce in vivo. In the
present study. we examined the effects of Ca™ * channel antag-
onists on nerve stimulation- and ischemia-induced ACh re-
leases i anesthetized cats. The resuls indicate that stimula-
ton-induced ACh release from the cardiae parasympathetic
postganglionic nerves depends on the N- and P/Q-type Cu”
channels but probably not on the L-type Ca®' chunnels. In
contrast. ischemia-induced myocardial interstitial ACh releuse
is resistant 1o the inhibition of L-. N-. and P/Q-1ype Ca®
channels. In addition. the ischemia-induced myocardial ACh
releasc is resistant o the inhibition of Na /Cua” ' exchanger
and the blockade of inositol 1.4.5-wrisphosphate [Ins(1.4.5)P;)
receptor but is suppressed by gadolinium. suggesting that
nonselective catton channels or cation-sclective stretch-uacti-
vated channels are involved.

MATERIALS AND METHODS
Cominent Preparation

Animal care was provided in accordance with the Guiding Princi-
ples for the Care and Use of Animals in the Ficld of Physiological

The costs of publication of this article were defraved in part by the payment
ol page charges. The article musi therefore be hereby marked “wdvertisenent”

in accordance with 18 U.8.C. Section 1734 solely o indicae this fact.
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Seiences approved by the Physiological Society of Japan. All proto-
cols were approved by the Animal Subjects Committee of the Na-
tional Cardiovascular Center. Adult cats weighing from 2.2 10 4.2 kg
were anesthetized via an intraperitoneal injection of pentobarbital
sodium (30-35 mg/kg) and ventilated mechanically with room air
mixed with oxvgen. The depth of anesthesia was maintained with a
§ continuous intravenous  infusion  of pentobarbital  sodium  (1-2
mg-kg '*h ") through a catheter inserted from the right femoral
vein, Systemic arterial pressure was monitored from a catheter in-
serted from the right temoral artery. The vagi were sectioned bilater-
allv at the neek. The esophageal wemperature of the animal. which was
measured by a thermometer (CTM-303. TERUMO. Japan). was
maintained at around 377°C using a heated pad and a lamp.

With the animal in the lateral position. the left fifth and sixth ribs
were resected o expose the heart. A dialysis probe was implanted
transversely. using o fine guiding needle. into the anterolateral free
wall of the left ventricle perfused by the left amerior descending
coronary artery (LADY. Heparin sodium (100 Wkg) was administered
intravenousty to prevent blood coagulation. At the end of the exper-

iment. the experimental animals were killed with an overdose of

pentobarbital sodium. Postmortem examination confirmed that the
dialvsis probe had been threaded in the middle layer of the left
ventricular myocardium. The thickness of the left ventricular free wall
was 7-8 mm. and the semipermeable membrane of the dialysis
probe was positioned -~ 3-4 mm from the epicardial surface.

Dialysis Technigue

The materials and properties of the dialysis prohe have been
desceribed previousiy (1), Brieflv. we designed o transverse dialysis
4 probe. A dialvsis fiber of semipermeahle membrane (13 mm length.
310 m OD. 200 um ID: PAN-1200. 30.000 molecular weight cutoff.
Asuhi Chemical. Japan) was glued at both ends to pnl\'uh\'lun tubes
25 em dength, SO0 m OD. 200w 1Dy, The dialvsis probe was
perfused ot o rae of 2 pl/min with Ringer solution containing o
cholinesterase inhibitor eserine (physostigmine. 100 M), Experi-
mental protocols were started 2 h after the dialvsis probe was im-
planted when the ACh concentration in the dialysate reached a steady

Wi state. The ACh concentration in the dialysate was measured by

high-performance liquid chromatography with electrochemical detee-
ton (Eicom. Kvoto. Japan).
Local administration of a pharmacological agent was carried out

gy through o dialysis probe. That is 1o say. we added the pharmacological

agcm to the perfusate and allowed 1 h for a settling time. The
b pharmacological agent should spread  around the semipermeable
membrane. therehy affecting the neurotransmitter release in the vi-
cinity of the semipermeable membrane. Because the distribution
across the semipermeahle membrane 1s required. based on previous
¥ oresults (33, 34) we used the pharmacological agent at the concentra-
8 von 10-100 times higher than that required for complete channel
blockade in experimental settings in vitro.

Specitic: Preparvation and Protocols

Protocol [ Bipolar platinum clectrodes were attached bilaterally to
the cardiae ends of the seetioned vagi 8t the neck. The nerves and
clectrodes were covered with warmed mineral il f(n' insulation. The
vagal nerves were stimulated for 15 min (20 Hzo 1o H) VY We
measured the stimulation- mduu‘d ACh release in thc absence of Ca™”
= 7} and examined the effects of an
L-tvpe Ca " channel Ant.ngnnisl verapmnil (100 pM. » = 3 an
® Netvpe Ca L'hunm:l antagonist w-conotoxin GVIA (10 pM.n = 7).
g Lo PAQ-type Cut " channel antagonist w-conotoxin MVIC (10 M.
o e = 0). and combined administration of w-conotoxin GVIA and

Froiocol 20 Because a preliminary result from protocol | suggested
that Tocal administration of verapamil was ineffective in suppressing
L stimulation-induced ACh release. we examined the effects of the

intravenous administration of verapamil (300 pg/kg. n = 6) on
stimulation-induced ACh release in vagotomized animals as o supple-
mental experiment.

Protocol 3. A 60-min LAD occlusion was performed by using a 3-0
silk suture passed around the LAD just distal to the first diagonal
branch. We measured the ACh levels during 45-60 min of ischemia
in the absence of -Ca”" channel blockade (conuol. # = 8) and
examined the effects of verapamil (100 pM. n = 5. w-conotoxin
GVIA (J0 uM. n = 5. and w-conotoxin MVIC (10 uM. n = 51 A
previous result indicated that the ischemia-induced ACh release
reached the steady state during 45-60 min of ischemia (14). We also
examined the effects of three additional agents. a Na /Ca® " exchange
inhibitor KB-R7943 (10 uM. n = 3) (9. 10L an Ins(] 4.5 receptor
blocker xestospongin C (500 pM. n = 6) (25). and a nonselective
cation channel blocker or a cation-selective streteh activated channel
hlocker gadolinium (1 mM) (3. 171 on the ischemia-induced ACh
release.

Siaristical Analvsis

All data are presented as mean (SD) values. In protocol 1. we
compared stimulation-induced ACh release among the five groups
using one-way analysis of variance followed by the Student-Neuman-
Keuls test (61, In protocal 2. we used an unpaired-/ test (two-sided) to
examine the effect of intravenous verapamil administration on stim-
ulation-induced ACh release. In proiocol 3. we compared ischemiu-
induced ACh release among the seven groups using one-way analvsis
of variance followed by the Dunnett” test against the control. For all
analvses. differences were considered significant when £ < (1L.0S.

RESULTS

In protocol 1. the ACh level during electrical vagal simu-
lation was 22.4 nM (SD 10.6). Locul administration of \uap-
amil did not affect simulation-induced ACh release (Fig. |1
ln contrast. local adminisuation of w-conotoxin GVIA or
w-conotoxin MVIHC suppressed sumulaton-induced ACh re-
lease. The extent of suppression was greater in the lauer. The
ACh level was significantly lower in the simultuncous admin-
istration group (w-conotoxin GVIA + w-conotoxin MVIIC)

T bd V
40 — T - * )
T * y
T * |
. T p % }
— [ ¢ oy
= 304
£
=
2 .
o
T
wn
=
3
S
venicle verapamil | «CTXGVIA | wCTX MVIC 4>EC1:"T'()\MGV\IIIICI‘A
vehicle 0.758 0.0054 0.0002 0.0002
verapamil 0.758 0.0068 0.0002 0.0001
GVIA 0.0054 0.0056 0.035 2.025
MVIC 0.0002 0.0002 0.035 0.581
MVIIC+GVIA 0.0002 0.0001 0.025 0.581

Fig. 1. Effects of Jocal administration ot verapamil. w-conotoxin. GVIA,
m-conatoxin MVIIC. or m-conotoxin GVIA plus w-conotoxin MVHC on vagal
nerve stimulation-induced mvocardial intersutial ACh release. Both an-cono.
toxin GVIA and w-conotoxin MVIIC, bat not verapumil, suppressed stimuli-
tion-induced ACh redease. Datcare mean (S5 vidues, /7 <2 001 P =0 Q.05
The exact F values are presented.
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5 than that in the w-conotoxin GVIA group but was not different
2 from the w-conotoxin MVIIC group.

In protocol 2. the intravenous administration of verapamil
p did not significantly change stumulation-induced ACh release
{21.7 oM (SD 12.8)] compared with the control group (P =
).91).

In prorocol 3. the ACh level in the ischemic region was 14.9
nM (SD 8.3) during 45-60 min of acute myocardial ischemia.
! Inhibition of volwge-dependent Ca? - channels by local admin-
2 istration of verapamil. w-conotoxin GVIA. or w-conoloxin
) MVIIC did not affect ischemia-induced ACh release (Fig. 2).
Inhibition ol the reverse mode action of Na™/Ca®" exchange
F by local administration of KB-R7943 appeared to have aug-
i mented rather than suppressed ischemia-induced ACh releasc,
though there was no statistically significant difference from the
1 control. Biockade of the Ins(1.4.5)Px receptor by local admin-
A istration of xestospongin C did not affect the ischemia-induced
' ACh refease. In conurast. blockade of nonselecuve cation
channels or cation-selective streteh-activated channels by local
administration of gadolinium suppressed the ischemia-induced
ACh release.

DISCUSSTON

Ca ' Channels Involved in Stinndation-induced
8 ACh Release

.

Aithough neurowransmitter release al mammalian sympa-
) thetic neuroefTector junclions predominantly depends on Ca®
y influx through N-type Ca®* channels (23. 33, 34), the type(s)
Lol Ca? " channcls involved in ACh relcase from cardiac para-
¢ sympatheuce neurocffector junctions show diversity among
reports (8. 28). One possible factor hampering investigations
8 into parasympathetic postganglionic neurotransmitter release
n oresponse o vagal nerve stimulation in vivo is that the
parasympathetic ganglia are usually situated in the vicinity of
1 the cffecor orguns, thercby making it difficult o separately
4 assess ACh release from preganghonic and postganglionic
nerves. In the previous study from our laboratory. intravenous
administration. but not local administration of a ganglionic
blocker. hexamethonium reduced vagal stumulation-induced
s ACh release assessed by cardiac nmicrodialysis (1). The negli-
@Bl cible effect of local hexamethonium administration on stimu-
laton-induced ACh release suggests the lack of parasympa-

30 4

20+

:dialysaté ACVh ‘(nM)'

wCTX orCTX KB-
GViIA MVIIC R7943

P=0.9999 P=0.9993 P=0.1896

xesto-
spongin C gad

P=0.994€ P=0.0285

vehicig verapamil olintum

F=0.389¢
> g, 20 Blfects of Jocal administrnion o verapamil. o-conotoxine GVIA.
weconatoning MV, KB-R7943, xestospongin O or gadolinium on acute
5 myovardial ischemia-induced myocardial interstitial ACh refease in the ische-
d mic region. Gadolimum alone suppressed the ischemia-induced ACh release.
8 Dty e mean (SE) values. 77 <0 0,05 The exact £ values are presented.
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thetic ganglia around the dialysis probe. In support of our
speculation. a recent neuroanatomical finding indicates that
three ganglia. away from the left anterior frec wall targeted by
the dialysis probe. provide the major source for left ventricular
postganglionic innervation in cals: a cranioventricular gan-
ghon. a left ventricular ganglion 2 (so designated), and an
intervenuriculo-septal ganglion (11). Therefore. ACh. as mea-
sured by cardiac microdialysis. is considered 10 predominantly
reflect ACh release from  parasympathetic  postganglionic
nerves.

Local (protocal 1) or intravenous (protocol 2) admimistration
of verapamil did not affect stimulation-induced ACh release. In
contrast, vagal stimulation-induced ACh refease was reduced
in both the w-conotoxin GVIA and w-conotoxin MVIIC groups
but 1o a greater extent in the lauer (Fig. ). Therefore. both N-
and P/Q-lype. but probably not L-type. Ca”' channcls are
involved in stimulaton-induced ACh relcase from the cardiac
parasympathetic postganglionic nerves in cats. The contribu-
tion of P/Q type Ca”" channels 10 ACh release might be greater
than that of N-type Ca® " channcls. Hong and Chang (8)
reported that the negative motropic response to ficld sumula-
tion depends predominanty on the P/Q-type Ca®  channcls in
isolated guinea pig atria. whereas Serone et al. (28) reported
the predominance of N-type Ca® ™ channcls. In those stodies.
the ficld sumulation employed differed from ordinary activa-
tion of the postganglonic nerves by nerve discharge and. in
addition, ACh release was not directly measured. The present
study directly demonstrated the involvement of P/Q- and N-
type Ca*" channels in the stimulation-induced ACh release in
the cardiac parasympathetic postganglhonic nerves. These re-
sults support the concept that multiple subtypes of the vollage-
gated Ca?” channel mediate transmitter release from the same
population of parasympathetic ncurons (31).

Stimulation-induced ACh release was suppressed by = -50%:
i the w-conotoxin GVIA group and by ~80% in the w-cono-
oxin MVIIC group. The algebraic summation of the extent of
suppression exceeded 100%. The phenomenon may be in part
due to the nonlinear dose-response relationship between Ca®
influx and transmitter release (32). The supra-additive phenom-
enon may be also due o the affinity of w-conotoxin MVIIC 10
N-type Ca? ™ channels (8. 26. 36). Combined focal administra-
tion of w-conotoxin GVIA and w-conotoxin MVIIC almost
completely suppressed stimulation-induced ACh release w0
level similar 1o that achieved by the Na© channcl inhibior
tetrodotoxin (15). Thercfore. mvolvement of anather untesied
type of Cu®” channel(s) is unlikely in the stimulation-induced
ACh release from the cardiac parasympathetic postganghonic
nerves in cuts.

Ca~ ' Channels und lschemia-Induced ACh Release

In @ previous study. we showed thal acute mvocardial
ischemia evokes myvocardial interstitial ACh release in the
ischemic region via a focal mechanism independent of efferent
vagal nerve acuvity (14). In that swdy. the inhibition of
intracclular Co® " mobilization by local administraiion ol
34 5-rimethoxybenzoie acid 8-idicthyl aminoj-octyl csier
(TMB-8) suppressed aschemia-induced ACh release. suggest-
ing that an axoplasxmic Ca”  clevation ix essential for the
ischemia-induced ACh releuse. Because tissue Ko concentra-
von increases in the ischemic region (7. 18). high K -induced
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depolarization could activate voltage-dependent Ca®~ channels
{ cven in the absence ol efferent vagal nerve activity. However,
ischemia-induced ACh release was not suppressed by local
B administration of verapamil. w-conotoxin GVIA, or w-cono-
toxin MVIIC (Fig. 2). Therefore, Ca®* enury through the
¥ vollage-dependent Ca” * channels is unlikely a mechanism for
the ischemia-induced myocardial interstival ACh release.
Acule myocardial ischemia causes energy depletion in the
¢ ischemic region. which impairs Na”-K ™ -ATPase activity. Is-
y chemia also causes acidosis in the ischemic region, which
{ promotes Na ' /H™ exchange. As a result, ischemia causes
Fintraccllular Na© accumulaton. The decrease in the Na’
gradicnt across the plusma membrane may then cause the
¥ Na /Ca” " exchanger 1o operate in the reverse mode. facilitat-
¥ ing invucelular Co® overload. KB-R7943 can inhibit the
reverse mode of Na /Ca? * exchange (9, 10) and its potential 1o
) protect against ischemia-reperfusion injury has been reported

{ KB-R7943 failed 1o suppress and rather increased ACh release
B during ischemia as opposed 10 our expectation. It is plausible
g that the inhibition of reverse mode of Na™/Ca® may have
facilitated the accumulation of mwracellular Na ™ and induced
j adverse cffects that cancelled the possible beneficial effects
3 derived from the inhibition of Ca?™ emry through the Na™/
% Ca® " exchanger itself. In addition. KB-R7943 could inhibit the
forward mode o Na ' /Ca?” cxchange and reduce Ca" cfflux

‘ {16). contributing 0 the intracellular Ca®™ accumulation and
g ACh release. In the present study. we observed the effects of
e

KB-R7943 only during the ischemic period. However, accu-
i mulation of inuacellular Na™ through Na’/H™ exchange is
i cnhuanced on repertusion due 1o the washout of extracellular
b H ) (20). The inhibition of Na /Ca® " cxchange o suppress
¥ Ca-* overload might become more important during the reper-

4 8 he left ventricle was improved by KB-R7943 during reperfu-
B8 <ion but not during ischemia (35).

8 As alrcady mentioned. the ischemia-induced ACh release
¥ cun be blocked by TMB-8 and thus the intracceltular Ca®”
8 mobilization is required for the ischemia-induced ACh release
, (14}, Besides the Ca® * entries through voltage-dependent Ca®
8 channcls and via the reverse mode of Na™/Ca®” exchanger,

# cndoplusmic reticulum Ins(14.5)Ps receptor. rendering the
Oxy . . . O . . < M.
i channel insensituve o autoinhibivon by-high cytosolic Ca-

concentration and resulting in enhanced endoplasmic reticulum

2
W)

ekl tration of gadolinium significantly suppressed the ischemia-
< g

-*{ induced ACh releuse. Therefore. nonselective cation channels
‘ ;ﬁ?{ or cation-selective streteh-activated channels contribute to the
w.:l 1.\'ch:cnnu-njduccd. ACh releasc. .Durmg m_\-'(wurdu'xl lschcmxg,
‘"% the ischemic region can be subjected o paradoxical systolic
*‘.‘%‘! bulging. Such bulging likely opens stretch-activated channels
§ and causes myocardial interstitial ACh release. possibly Tead-
ing o cardioprotection hy ACh against ischemic injury (2).

# (21). In the present swdy, however. local administration of

# fusion phase. For instance. the pereent segment shortening of

Ca?" CHANNELS IN CARDIAC PARASYMPATHETIC NERVES

Limitations

First, the experiment was performed under anesthetic con-
ditions, which may have influenced basal autonomic activity.

However, because we sectioned the vagi at the neck. basal -

autonomic activity may have had only a minor effect on ACh
relcase during the vagal sumulation and during acute myocar-
dial ischemia. Sccond. we added eserine 10 the perfusaie w0
inhibil immediate degradation of ACh (24). which may have
increased the ACh level in the synaptic clefl and activated
regulatory pathways such as autoinhibition of ACh releuase via
muscarinic receptors (24), However. the myocardial interstital
ACh level measured under this conditon could reflect chunges
induced by Na ' channel inhibitor, choline uptake mnhibitor.
and vesicular ACh wansport inhibitor as deseribed in 2 previ-
ous study (15). Therefore. we think that the interpretation of
the present results is reasonable. Third. tssue and specics
differences should be taken into account when extrapolating
the present findings. because significant heterogeneity in the
Ca®" channels involved in the mammalian parasympathetic
system may exist. Finally, we used verapamil o test the
involvement of L-type Ca® " channels in the ACh release.
There are three major types of L-tvpe Ca® ™ channel antagonists
with different binding domains (verapamil. nifedipine, and
diltazem) (19). Whether the effects on the ACh release are
common among the three types of L-type Ca? " channel antag-
onists remains unanswered.

In conclusion. the N- and P/Q-tvpe Ca®™ channels (with the
P/Q-type dominant). but probably not the L-type Ca®" chan-
nels. are involved in vagal sumulation-induced ACh release
from the cardiac parasympathetic postganglionic nerves in
cats. In contrast. myocardial interstitial ACh relcase in the
ischemic myocardium is resistant o the blockade of L-. N-. and
P/Q-type Ca?" channels. In addition. the ischemia-induced
myocardial ACh release i resistant o the inhibition of Na ™/
Ca®" exchanger and the blockade of Ins(1.4.5)Ps receptor but
is suppressed by gadolintum, suggesting that nonsclective
cation channels or cation-sclective streteh-uctivated channcls
arc involved.
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Yada, Toyotaka, Hiroaki Shimokawa, Osamu Hiramatsu, Yoshisuke
Haruna, Yoshitaka Morita, Naoki Kashihara, Yoshiro Shinozaki, Hi-
dezo Mori, Masami Goto, Yasuo Ogasawara, and Fumihiko Kajiya.
Cardioprotective role of endogenous hydrogen peroxide during ischemia-
reperfusion injury in canine coronary microcirculation in vivo. Am J Physiol
Heart Circ Physiol 291: H1138-H1146, 2006. First published April 28,
2006; doi:10.1152/ajpheart.00187.2006.—We have recendy demonstrated
that endogenous H.O- plays an important role in coronary autoregulation in

vivo. However, the role of H>O, during coronary ischernia-reperfusion I/R)

injury remains to be examined. In this study, we examined whether endog-
enous H,O; also plays a protective role in coronary I/R injury in dogs in vivo.
Canine subepicardial small coronary arteries (=100 um) and arterioles
(<100 pm) were continuously observed by an intravital microscope during
coronary /R (90/60 min) under cyclooxygenase blockade (n = 50). Coro-
nary vascular responses to endothelium-dependent vasodilators (ACh) were
examined before and after /R under the following seven conditions: control,
nitric oxide (NO) synthase (NOS) inhibitor A°-monomethyi-L-arginine (L-
NMMA), catalase (a decomposer of H205), 8-sulfophenyltheophylline (8-
SPT, an adenosine receptor blocker), L-NMMA + catalase, L-NMMA +
tetraethylammonium (TEA, an inhibitor of large-conductance Ca* -sensitive
potassium channels), and L-NMMA + catalase + 8-SPT. Coronary /R
significantly impaired the coronary vasodilatation to ACh in both sized
arteries (both P < 0.01); L-NMMA reduced the small anterial vasodilatation
(both P < 0.01), whereas it increased (P < 0.05) the ACh-induced coronary
arteriolar vasodilatation associated with fluorescent H,O, production after
I/R. Catalase increased the small arterial vasodilatation (P < 0.01) associated
with fluorescent NO production and increased endothelial NOS expression,
whereas it decreased the arteriolar response after IR (P < 0.01).
L-NMMA + catalase, .L-NMMA + TEA, or t-NMMA + catalase + 8-SPT
further decreased the coronary vasodilatation in both sized arteries (both, P <
0.01). L-NMMA + catalase, L-NMMA + TEA, and L-NMMA + catalase +
8-SPT significantly increased myocardial infarct area compared with the
other four groups (control, L-NMMA, catalase, and 8-SPT; all, P < 0.01).
These results indicate that endogenous H,0,, in cooperation with NO, plays
an important cardioprotective role in coronary IR injury in vivo.

endothelium-derived relaxing factor; myocardial infarction; vascular
endothelial function

VASCULAR ENDOTHELIAL CELLS play an important role in main-
taining vascular homeostasis by synthesizing and releasing
endothelium-derived relaxing factors (EDRFs), including pros-
tacyclin (PGI), nitric oxide (NO), and endothelium-derived
hyperpolarizing factor (EDHF) (6, 9, 26). Endothelial dysfunc-
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tion is thus characterized by a reduction in the activity of PGI;,
NO, and EDHF, thereby enhancing vasoconstrictor responses
mediated by endothelin, serotonin, and thrombin (26). Endo-
thelial injury secondary to myocardial ischemia-reperfusion
(UR) decreases the production and activity of EDRFs in acute
myocardial infarction (18).

Among the three different EDRFs, the roles of PGI, and NO
have been extensively investigated (6, 9, 26). Regarding
EDHF, since the first reports on its existence (6, 9), several
candidates for EDHF have been proposed, including cyto-
chrome P-450 metabolites (2, 4), endothelium-derived K* (7),
and electrical communications through gap junctions between
endothelial cells and vascular smooth muscle cells (29). Ma-
toba et al. (16, 17) have previously identified that endothelium-
derived H,O is a primary EDHF in mesenteric arteries of mice
and humans. Morikawa et al. (21) have recently confirmed that
endothelial Cu,Zn-SOD plays an important role as an EDHF
synthase in mice. We have subsequently confirmed the impor-
tance of H.O, in canine coronary microcirculation during
coronary autoregulation with reduced coronary perfusion pres-
sure in vivo (35).

However, it remains to be examined whether H,O, also
exerts cardioprotective effects during I/R in the coronary mi-
crocirculation in vivo, and if so, whether such effects of H,O,
compensate the impaired NO-mediated responses due to /R
injury in vivo. In this study, we tested our hypothesis that H>0,
plays an important cardioprotective and compensatory role
during coronary I/R injury in dogs in vivo.

METHODS

This study conformed to the Guideline on Animal Experiments of
Kawasaki Medical School, and approved by an independent review
committee from the same institution, and the Guide for the Care and
Use of Laboratory Animals published by the National Institutes of
Health.

Animal preparation. Anesthetized mongrel dogs (15-25 kg in body
wt, n = 50) of either sex were ventilated with a ventilator (model
VS600, IDC, Pittsburgh, PA). Aortic pressure and left ventricular
(LV) pressure were continuously monitored with a catheter (SPC-
784A, Millar, TX). The blood flow of the left anterior descending
coronary artery (LAD) was continuously measured by a transonic
flow probe (T206, Transonic Systems, Ithaca, NY).
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Measurements of coronary diameter by intravital microscope. We
continuously monitored coronary vascular responses by an intravital
microscope (VMS 1210, Nihon-Kohden, Tokyo) with a needle probe
in vivo as previously described (32). We genily placed the needle
probe on subepicardial microvessels. When a clear vascular image
was obtained, end-diastolic vascular images were taken with 30
pictures/s (32).

Measurements of regional myocardial blood flow. Regional myo-
cardial blood fiow was measured by the nonradioactive microsphere
(Sekisui Plastic, Tokyo) technique, as previously described (20).
Brefly, the microsphere suspension was injected into the left atrium
85 min after the onset of coronary occlusion. Myocardial collateral
flow in the apex during suturing of the collateral vessels from the left
circumflex artery (LCX) was calculated according to the formula:
time flow = tissue counts X (reference flow/reference counts) and
was expressed in milliliters per gram per minute (20).

Detection of H,0; and NO production. 2',7'-Dichlorodihydrofiuo-
rescein diacetate (DCF, Molecular Probes, Eugene, OR) and diamino-
rhodamine-4M AM (DAR, Daiichi Pure Chemicals, Tokyo) were
used to detect H,O, and NO production in coronary microvessels
without a different NO scavenger (e.g., methylene blue), respectively,
as previously described (21). Briefly, fresh and unfixed heart tissue
was cut into several blocks and frozen in optimal cutting temperature
compound (Tissue-Tek, Sakur: Fine Thewiicn! Tokus wnhm a few
hours. Fluorescent images of .-+ .. : s
after application of ACh by usi:; .
pus BX51, Tokyo) (21). We used different animals fur Lic i, .
treatment (DCF and DAR) and the 2,3,5-triphenyltetrazolium chloriac
(TTC) treatment.

Western blotting. Portions of myocardial samples were homoge-
nized in lysis buffer. After centrifugation, the supernatants were used
for Western immunoblotting. The proteins were transferred by semi-

H1139

were then blocked and incubated with horseradish peroxidase-conju-
gated rabbit anti-endothelial NO synthase (eNOS, dimer form) poly-
clonal antibody (Santa Cruz Biotechnology, Santa Cruz, CA) or
anti-actin antibody (Santa Cruz Biotechnology). The antibody was
visualized by using an enhanced chemiluminescence method (ECL;
Amersham Biosciences, Tokyo). The integrated density of the bands
was quantified by using NIH Image analysis, and the protein expres-
sion level of eNOS was normalized to that of actin (24).

Experimental protocols. After the surgical procedure and instru-
mentation, at least 30 min was allowed for stabilizaiion while hemo-
dynamic variables were monitored. The following protocols were
examined. A

Coronary vascular responses to endothelium-dependent [ACh, 0.5
and 1.0 ng/kg intracoronary (ic)) and -independent [sodium nitroprus-
side (SNP), 40 and 80 pg/min ic} vasodilators were examined before
ischemia (90 min)-reperfusion (60 min) (I/R). ACh and SNP were
continuously and retrogradely infused into the diagonal branch of the
LAD by using a syringe pump (STC 525, Terumo, Tokyo). The
coronary vascular responses to ACh and SNP were examined for 2
min, and the image of maximal vasodilatation was taken at 2 min of
infusion of ACh or SNP.

Coronary vasodilator responses to ACh and SNP were examined
before and after coronary ischemia (90 min)-reperfusion (60 min) by
proximal LAD occlusion under the following seven conditions with
'vclooxygenase blockade (|buprofen 12.5 mg/kg iv) to evaluate the
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Table 1. Hemodynamics during coronary ischemia-reperfusion injury in dogs

Before /R After I/R
Ischemia
" Baseline ACh SNP (85 min) Baseline ACh SNP
MBP, mmHg
Control 5 92%4 91%6 92%5 9314 92+4 91=5 92=+6
L-NMMA 5 97+8 98=7 949 92x10 97=%7 988 958
Cat 5 968 928§ 94+9 92+9 96*7 96=8 98=*6
L-NMMA + Cat 5 94x4 93%9 97=9 95=11 958 98%5 94=*5
t-NMMA + TEA 5 95+12 93=13 95+14 94x10 91+14 93+15 9810
L-NMMA +
Cat + 8-SPT 5 953 96*4 95%3 93%11 963 974 95+3
Heart rate, beats/min
Control 5 1525 1553 1543 1567 1565 [54=5 153%5
L-NMMA 5 1575 156x5 157%6 158%6 153%S 153=5 1535
Cat S 1554 159%6 158%5 157%6 15127 1558 154+8
L-NMMA + Cat 5 156%12 158=*13 15813 154*5 156*13 15614 159%13
L-NMMA + TEA 5 153+13 15412 15511 1555 15010 151%1) 152=10
L-NMMA +
Cat + 8-SPT 5 152%7 [155*9 1533 153%5 1527 1516 153x7

Resulis are expressed as means = SE; n = no. of dogs. I/R, ischemia-reperfusion; MBP, mean blood pressure; Cat, catalase; SNP, sodium nitroprusside; TEA,
tetraethylammonium; 8-SPT, sulfophenyltheophylline; L-NMMA, NC-monomethyl-L-arginine.

conductance Ca®*-sensitive potassium (Kc,) channels], and 7) cata-
lase plus L-NMMA with 8-SPT (35). These inhibitors were given at 30
min before UR. An interval between each treatment was 5 min. The
basal coronary diameter was defined as that before administration of
ACh or SNP either before or after I/R. L-NMMA, catalase, TEA, and
8-SPT were administered alone at 5 min after administration of ACh
or SNP. Microspheres were administered at 85 min after the initiation
of coronary occlusion. In the combined infusion (L-NMMA + cata-
lase + 8-SPT), catalase solution was infused into the LAD at a rate of
0.5 ml/min at 5 min after infusion of L-NMMA, and then 8-SPT was
added into the LAD at 15 min after the initiation of L-NMMA.

After 1 h of reperfusion, coronary vasodilator responses to ACh
and SNP were examined.

After 5 h of reperfusion, we reoccluded the LAD and injected
Evans blue dye into a systemic vein. Then, myocardial slices (5 um
thick) were incubated in 1% TTC (Sigma) solution to detect the
infarct area (36). Different animals were used for fluorescent treat-
ment (DCF and DAR) and TTC treatment.

Drugs. All drugs were obtained from Sigma Chemical and were
diluted in a physiological saline immediately before use.

Statistical analysis. Results are expressed as means = SE. Vascular
responses (see Figs. 3C, 5F, 6F, 7, and 9A) were analyzed by one-way
ANOVA followed by Scheffé’s post hoc test for multiple compari-
sons. Difference in the effects of ACh and SNP on subepicardial
coronary microvessels before and after I/R (see Figs. 3, A and B, 4,
and 8, A and B), and difference between infarct size/risk area and
transmurai collateral flow in control and other inhibitors (see Fig. 9B8)
were examined by a multiple regression analysis by using a model in
which the change in coronary diameter was set as a dependent
variable (y) and vascular size as an explanatory variable (x), while the

statuses of control and other inhibitors were set as dummy variables
(D4, D) in the following equation: y = ag + a\x + a2D, + a3D,,
where agp through a3 are partial regression coefficients (36). The
criterion for statistical significance was at P < 0.05.

RESULTS

Hemodynamics and blood gases during I/R injury. Immedi-
ately after reperfusion, coronary biood flow was increased and
some arthythmias occurred; however, those changes returned
to the control levels 1 h after reperfusion when we repeated the
measurements. Thus, throughout the experiments, mean aortic
pressure and heart rate at baseline were constant and compa-
rable, and Po,, Pco,, and pH were maintained within the
physiological ranges (pH 7.35-7.45, Po, > 70 mmHg, and
Pco, 25-40 mmHg,). Hemodynamic variables at baseline did
not significantly change after /R compared with those before
I/R (Tables 1 and 2).

Dose responses to ACh and SNP. ACh (0.5 and 1.0 pg/kg ic)
and SNP (40 and 80 g/min ic) caused coronary vasodilatation
in a dose-dependent manner at both small arteries and arte-
rioles (Fig. 2). Then we chose the maximal dose of the
vasodilators (ACh, 1.0 wg/kg ic, and SNP, 80 pg/min ic) in the
following experiments.

Endothelium-dependent coronary vasodilatation before and
after I/R. There was no significant difference in baseline
diameter after ACh before VR among the groups. All inhibitors
did not affect resting coronary artery diameter or coronary

Table 2. Baseline vascular diameter before I/R in response to ACh

Small Artery Aneriole
Control 104-150 pm (1207, n = 7) 37-96 um (70%6, n = 12)
L-NMMA 106-164 pm (13127, n = 8) 36-95 pm (63%5, n = 16)
Cat 100-147 pm (1215, n = 10) 28-89 um (616, n = 12)
8-SPT 114-162 pm (130%8, n = 6) 30-88 um (60%10,n = 5)
L-NMMA + Cat 102-141 pm (118%5, n = 8) 34-95 uwm (774, n = 10)
L-NMMA + TEA 105-142 pm (1236, n = 5) 34-95 pum (62+9, n = 8)
L-NMMA + Cat + 8-SPT 110-145 um (1286, n = 5) 38-87 um (67%7, n = 7)

Results are expressed as range (means * SE); n = no. of blood vessels.
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Fig. 2. Dose responses to0 ACh (A and B) and SNP (C and D) before
ischemia-reperfusion (I/R). Number of small arteries (4 and C) and arterioles
(8 and D) per animals used was 5/5 for each group. *P < 0.05, **P < 0.01
vs. ACh (0.5 p.g/kg) and SNP (40 ng).

blood flow. Under control conditions (before I/R), intracoro-
nary administration of ACh caused a significantly greater
coronary vasodilatation in arterioles than in small arteries (Fig.
3, A and B). Coronary I/R significantly impaired the coronary
vasodilatation to ACh in both sized arteries (Figs. 3A and 4A),
and L-NMMA reduced the vasodilatation in small arteries
(Figs. 3A and 4B) but rather increased the response in arterioles
compared with control (Figs. 3B and 4A) after /R. Catalase
and 8-SPT increased the ACh-induced vasodilatation in small
arteries (Figs. 3A and 4, C and D) but decreased the response
in arterioles (Fig. 3B) after I/R. There was no significant

difference in coronary blood flow before and after I/R among
the control, the L-NMMA, and the catalase group (Fig. 3C).
L-NMMA + catalase (Figs. 3, A and B, and 4E) or L-NMMA +
TEA (Figs. 3, A and B, and 4F) decreased the vasodilatation in
both sized arteries (Fig. 3, A and B) with decrement of coronary
blood flow (Fig. 3C), and L-NMMA plus catalase with 8-SPT
further decreased the vasodilatation in both sized arteries (Figs.
3, A and B, and 4G) compared with other groups (Fig. 3, A-C).

Detection of H,0, and NO production. Fluorescent micros-
copy with DCF showed that /R increased the vascular H,0,
production in control LCX (Fig. 5, B and F) compared with
baseline conditions (Fig. 5, A and F) and decreased the H,0,
production in control LAD (Figs. 5. C and F), which was
enhanced by L-NMMA (Fig. 5, D and F) and was abolished by
catalase (Fig. 5, E and F) in arterioles. By contrast, the
production of NO as assessed with DAR fluorescence was
increased in control LCX (Fig. 6, B and F) compared with
baseline LCX (Fig. 6, A and F) after UR, decreased in control
LAD (Fig. 6, C and F), inhibited by L-NMMA (Fig. 6, D and
F), and was enhanced by catalase (Fig. 6, £ and F) in small
arteries.

Western blotting of eNOS protein expression in myocar-
dium. In the control group, expression of eNOS protein in the
ischemic LAD area was significantly decreased compared with
the nonischemic LCX area (Fig. 7). In the catalase group, this
decrease in the eNOS protein expression was inhibited by
catalase (Fig. 7). .

Endothelium-independent coronary vasodilatation. Coro-
nary vasodilator responses to SNP were comparable under all
conditions in both sized arteries (Fig. 8). Those coronary
vasodilator responses were resistant to the blockade of NO
synthesis with L-NMMA (Fig. 8).

Effect of H;0; on I/R-induced myocardial infarct size. UR
injury caused myocardial infarction, the size of which was
~40% of the LV risk area (Fig. 9A). Intracoronary L-NMMA,
catalase, or 8-SPT alone did not further increase the I/R-
induced infarct size (Fig. 9A). By contrast, intracoronary L-
NMMA plus catalase or TEA markedly increased the infarct
size, and L-NMMA plus catalase with 8-SPT further increased
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Fig. 4. Percent change in diameter after ACh before and after coronary I/R injury in dogs in vivo. No. of small arteries and arterioles per animals used was /5

for control (A), 8/5 for L-NMMA (B), 10/5 for catalase (C), 6/5 for 8-SPT (D),

8/5 for L-NMMA plus catalase (£), 5/5 for L-NMMA plus TEA (F), and 5/5 for

L-NMMA plus catalase plus 8-SPT in small arteries (G); and 12/5 for control (4), 16/5 for L-NMMA (B), 12/5 for catalase (C), 5/5 for 8-SPT (D), 10/5 for
L-NMMA plus catalase (E), 8/5 for L-NMMA plus TEA (F), and 7/S for .-NMMA plus catalase plus 8-SPT in arterioles (G). *P < 0.05, **P < 0.01.

the infarct size (Fig. 9A4). In the control group, there was an
inverse relation between the infarct size and transmural collat-
eral blood flow measured by microsphere technique (r = 0.90,
P < 0.01). There was no significant difference in the relation-
ship among the control, L-NMMA, and catalase treatment (Fig.
9B). L-NMMA plus catalase or TEA significantly shifted the
regression line upward compared with the control group (both
P < 0.01), and L.-NMMA plus catalase with §-SPT further
shifted the regression line upward compared with L-NMMA
plus catalase or TEA (Fig. 9B, both P < 0.01).

DISCUSSION

The major finding of the present study is that endogenous
H,0,, in cooperation with NO, plays an important cardiopro-
tective role during coronary /R injury as a compensatory
mechanism for NO in vivo. To the best of our knowledge, this
is the first report that demonstrates the important protective
role of endogenous H,0,, in cooperation with NO, against
coronary I/R injury in vivo.

Validations of experimental model and methodology. On the
basis of the previous reports (22, 31), we chose the adequate
dose of ACh, SNP, L-NMMA, catalase, TEA, and 8-SPT to
examine the effects of endothelium-dependent and -indepen-
dent coronary vasodilator responses and inhibition of NO
synthesis, H,02, K¢, channels, and adenosine receptor, respec-
tively. In addition, on the basis of previous studies and our own

AJP-Heart Circ Physiol - vOL 291

(31, 35), we choose the doses of ACh and SNP that cause
maximal coronary vasodilatation in dogs in vivo. TEA at low
doses is fairly specific for Kca channel, but at higher doses it
may block a number of other K channels. Because several Kc,
channels are involved in H,O,-mediated responses (26), we
selected the nonselective K¢, inhibitor TEA to inhibit all K¢,
channels (15). We have previously confirmed the validity of
the methods that we used in the present study (32). After
60-90 min of ischemia, ultrastructural damage of coronary
endothelium was observed particularly in the subendocardium
in the present study, a finding consistent with the previous
study (8).

H>0; during coronary I/R in vivo. It was previously re-
ported that relaxations of isolated large canine coronary
arteries to exogenous H,O» were partially endothelium de-
pendent (23). Recently, Matoba et al. (16, 17) identified that
endothelium-derived H,0 is an EDHF in mouse and human
mesenteric microvessels. Subsequently, we (35) and others
(19) have confirmed that endogenous H,O, exerts important
vasodilator effects in canine coronary microcirculation in
vivo and in isolated human coronary microvessels, respec-
tively. It is conceivable that H,O; is produced from super-
oxide anions derived from several sources in endothelial
cells, including eNOS, cyclooxygenase, lipoxygenase, cyto-
chrome P-450 enzymes, and NAD(P)H oxidases (16). In the
present study, L-NMMA or catalase alone did not com-
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