Fig. 1. DFS (A) and OS (B) curves in breast cancer patient groups divided by IHC intrinsic subtypes. subtype (77.1%), and unclassified (81.8%). They also differed in 5-year overall survival (OS, P < 0.001): luminal A (96.9%), luminal B (86.6%), HER2+/ER- (86.9%), basal-like subtype (86.2%), and unclassified (83.3%). Kaplan-Meier survival curves are presented in Fig. 1. Both DFS and OS were significantly worse among basal-like and HER2+/ER- breast cancer patients compared with luminal A patients. Differences in DFS and OS by IHC subtypes were seen among lymph node-positive patients (P=0.006 for DFS and P<0.001 for OS) but not lymph node-negative patients; however, the number of patients after stratifying by lymph node status was limited and these data should be interpreted with caution. Five-year DFS within lymph node-positive patients by subtype was as follows: luminal A (79.3%), luminal B (71.2%), HER2+/ER- (35.2%), basal-like subtype (68.1%), and unclassified (50.0%). Five-year OS within lymph node-positive patients was as follows: luminal A (96.3%), luminal B (75.6%), HER2+/ER- (84.1%), basal-like subtype (83.9%), and unclassified (60.0%). #### Discussion Carey et al. have recently reported for the first time the population-based prevalence of intrinsic subtypes of breast tumors. They refined an IHC-based assay to identify breast tumor intrinsic subtypes instead of gene expression profiling.¹⁵ This IHC-based assay has been verified against gene expression profiles to estimate the prevalence of intrinsic subtypes. ^{15,20} Additionally, large-scale subtyping using gene expression profiling from formalin-fixed, paraffin-embedded samples is not currently feasible; therefore, we conducted this cohort study to investigate the prevalence of intrinsic subtypes using the IHC-based assay in Japanese breast cancer patients. According to Carey et al., 15 the prevalence of basal-like and luminal A tumors in the Carolina Breast Cancer Study was 27% and 47% in AA patients and 16% and 54% in non-AA patients, respectively. Since breast cancer-specific survival was significantly worse in patients with basal-like tumors than with luminal A tumors, the higher prevalence of a basal-like subtype could contribute to a worse prognosis in AA patients. Moreover, the prevalence of basal-like and luminal A tumors was 39% and 36% in premenopausal AA patients, respectively. In contrast, the prevalence of basal-like and luminal A tumors was 8% and 63% in Japanese breast cancer patients, respectively, in the present study. The prevalence of basal-like tumors was 2-3 times lower in Japanese patients than in non-AA patients or AA patients. In addition, the prevalence of luminal A tumors was 9-16% higher in Japanese patients than in non-AA patients or AA patients. Breast cancer patients with basal-like tumors had a poorer prognosis in terms of DFS and OS than those with luminal A tumors in the present study (Fig. 1) as previously indicated in the report by Carey et al. 15 These findings have suggested that the lower prevalence of basal-like tumors and higher prevalence of luminal A tumors in Japanese patients could contribute to their better prognosis. A limited number of studies have investigated the prevalence of intrinsic subtypes by the IHC-based assay in different races. On the other hand, the prevalence of triple-negative breast tumors has recently become available. Triple-negative tumors include both basal-like and unclassified tumors. The prevalence of basal-like tumors was reported to be approximately 70% in triple-negative tumors¹⁵; it was 78% in the present study. The prevalence of triple-negative tumors was 22% in the Carolina Breast Cancer Study, 15 16% in a large series of patients in the UK,21 26% in conservatively managed patients in the USA,²² and 31% in consecutive patients in Korea.²³ In the present study, the prevalence of triple-negative tumors was only 10%, 1.6-3 times lower in Japanese patients than in patients of other races. These findings also support the lower prevalence of basal-like tumors in Japanese patients. Differences in genetic influences or lifestyle may explain the prevalence of intrinsic subtypes among different races. Differences in the distribution of breast cancer risk factors, such as breast cancer family history, age at menarch, age at first birth, body mass index, and hormone replacement therapy, have been extensively investigated, and these differences may explain differences in breast caner incidence rates among different races. However, the investigation of causative factors leading to differences in the prevalence of intrinsic subtypes in different races remains to be investigated. Because of a close correlation between the prevalence of intrinsic subtypes and the prognosis of breast cancer patients indicated by us and others, 15,20 nutritional or environmental factors influencing the prevalence may provide hints for developing new intervention strategies to reduce breast cancer mortality rates. It has been indicated that the intake of green tea or soy beans relates to a reduction in breast cancer incidence rates.^{24,25} Furthermore, the consumption of green tea was suggested to correlate with not only a reduction in breast cancer incidence but also improved outcome of breast cancer patients in Japanese women.²⁶ In addition, it is suggested that breast cancer patients with a high intake of green tea tend to have less aggressive and hormone-responsive breast tumors.²⁷ Interestingly, recent experimental studies have revealed that green tea extracts such as (-)-epigallocatechin gallate have significant anti-tumor activity in breast cancer cells with basal-like phenotypes. ^{28–30} These findings suggest that green tea intake may modify the biological characteristics of breast tumors and the prevalence of intrinsic subtypes. Further epidemiologic and experimental studies are warranted to investigate the role of green tea intake in breast cancer development and progression. In conclusion, the present study suggests for the first time that a lower prevalence of basal-like breast tumors and a higher prevalence of luminal A breast tumors could contribute to a favorable prognosis of Japanese breast cancer patients. Taken together with the worse prognosis of AA patients having a higher prevalence of basal-like tumors and a lower prevalence of luminal A tumors, it could be concluded that the prevalence of intrinsic subtypes differs among different races and such a difference may explain differences in the prognosis of breast cancer patients of different races. From the clinical point of view, the prevalence of intrinsic subtypes should be taken into account when analyzing survival data in a multi-racial/ international clinical study. In addition, causative factors influencing the prevalence of intrinsic subtypes should be explored to develop intervention strategies to reduce breast cancer incidence and the mortality rate. #### Conflict of Interest Statement None declared. #### Acknowledgments This study was supported in part by grants from the Japanese Breast Cancer Society, Kawasaki Medical School, and the Ministry of Education, Culture, Sports, Science and Technology, Japan (No. 18591448). #### References Boyle P. Breast cancer control: signs of progress, but more work required. Breast 2005;14:429-38. - Blackman DJ, Masi CM. Racial and ethnic disparities in breast cancer mortality: are we doing enough to address the root causes? J Clin Oncol 2006;24:2170-8. - Li CI, Malone KE, Daling JR. Differences in breast cancer hormone receptor status and histology by race and ethnicity among women 50 years of age and older. Cancer Epidemiol Biomarkers Prev 2002;11: 601-7 - Porter PL, Lund MJ, Lin MG, et al. Racial differences in the expression of cell cycle-regulatory proteins in breast carcinoma. Cancer 2004:100:2533-42. - Chlebowski RT, Chen Z, Anderson GL, et al. Ethnicity and breast cancer: factors influencing differences in incidence and outcome. J Natl Cancer Inst 2005;97:439-48. - Polednak AP. Racial differences in mortality from obesity-related chronic diseases in US women diagnosed with breast cancer. Ethn Dis 2004;14:463-8. - Tammemagi CM, Nerenz D, Neslund-Dudas C, Feldkamp C, Nathanson D. Comorbidity and survival disparities among black and white patients with breast cancer. JAMA 2005;294:1765-72. - Smith-Bindman R, Miglioretti DL, Lurie N, et al. Does utilization of screening mammography explain racial and ethnic differences in breast cancer? Ann Intern Med 2006;144:541-53. - Sassi F, Luft HS, Guadagnoli E. Reducing racial/ethnic disparities in female breast cancer: screening rates and stage at diagnosis. Am J Public Health 2006;96:2165-72. - Gwyn K, Bondy ML, Cohen DS, et al. Racial differences in diagnosis, treatment, and clinical delays in a population-based study of patients with newly diagnosed breast carcinoma. Cancer 2004;100: 1595-604. - Gorin SS, Heck JE, Cheng B, Smith SJ. Delays in breast cancer diagnosis and treatment by racial/ethnic group. Arch Intern Med 2006; 166:2244-52. - Joslyn SA. Racial differences in treatment and survival from earlystage breast carcinoma. Cancer 2002;95:1759-66. - Li CI, Malone KE, Daling JR. Differences in breast cancer stage, treatment, and survival by race and ethnicity. Arch Intern Med 2003; 163:49-56 - Bickell NA, Wang JJ, Oluwole S, et al. Missed opportunities: racial disparities in adjuvant breast cancer treatment. J Clin Oncol 2006; 24:1357-62. - Carey LA, Perou CM, Livasy CA, et al. Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. JAMA 2006;295: 2492-502. - Braun KL, Fong M, Gotay C, Pagano IS, Chong C. Ethnicity and breast cancer in Hawaii: increased survival but continued disparity. Ethn Dis 2005;15:453-60. - Elston EW, Ellis IO. Method for grading breast cancer. J Clin Pathol 1993;46:189-90. - Rosen PP. Rosen's breast pathology. Philadelphia: Lippincott Williams & Wilkins; 2001. p. 325-64. - Jacobs TW, Gown AM,
Yaziji H, Barnes MJ, Schnitt SJ. Specificity of HercepTest in determining HER-2/neu status of breast cancers using the United States Food and Drug Administration-approved scoring system. J Clin Oncol 1999;17:1983-7. - Nielsen TO, Hsu FD, Jensen K, et al. Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res 2004;10:5367-74. - Rakha EA, El-Sayed ME, Green AR, Lee AH, Robertson JF, Ellis Prognostic markers in triple-negative breast cancer. Cancer 2007;109:25-32. - Haffty BG, Yang Q, Reiss M, et al. Locoregional relapse and distant metastasis in conservatively managed triple negative early-stage breast cancer. J Clin Oncol 2006;24:5652-7. - 23. Kim MJ, Ro JY, Ahn SH, Kim HH, Kim SB, Gong G. Clinicopathologic significance of the basal-like subtype of breast cancer: a comparison with hormone receptor and Her2/neu-over-expressing phenotypes. Hum Pathol 2006;37:1217-26. - Sun CL, Yuan JM, Koh WP, Yu MC. Green tea, black tea and breast cancer risk: a meta-analysis of epidemiological studies. *Carcinogenesis* 2006;27:1310-5. - Messina M, McCaskill-Stevens W, Lampe JW. Addressing the soy and breast cancer relationship: review, commentary, and workshop proceedings. J Natl Cancer Inst 2006;98:1275-84. - Seely D, Mills EJ, Wu P, Verma S, Guyatt GH. The effects of green tea consumption on incidence of breast cancer and recurrence of breast cancer: a systematic review and meta-analysis. *Integr Cancer Ther* 2005;4:144-55. - Nakachi K, Suemasu K, Suga K, Takeo T, Imai K, Higashi Y. Influence of drinking green tea on breast cancer malignancy among Japanese patients. Jpn J Cancer Res 1998;89:254-61. - Roy AM, Baliga MS, Katiyar SK. Epigallocatechin-3-gallate induces apoptosis in estrogen receptor-negative human breast carcinoma cells via modulation in protein expression of p53 and Bax and caspase-3 activation. Mol Cancer Ther 2005;4:81-90. - Bigelow RL, Cardelli JA. The green tea catechins, (-)-epigallocatechin-3-gallate (EGCG) and (-)-epicatechin-3-gallate (ECG), inhibit HGF/Met signaling in immortalized and tumorigenic breast epithelial cells. Oncogene 2006;25:1922-30. - Kim J, Zhang X, Rieger-Christ KM, et al. Suppression of Wnt signaling by the green tea compound (-)-epigallocatechin-3gallate (EGCG) in invasive breast cancer cells. Requirement of the transcriptional repressor HBP1. J Biol Chem 2006;281: 10865-75 THE BREAST ww.elsevier.com/locate/breast #### ORIGINAL ARTICLE # Favorable outcome in patients with breast cancer in the presence of pathological response after neoadjuvant endocrine therapy [☆] Sadako Akashi-Tanaka^{a,*}, Mutsuko Omatsu^{b,d}, Chikako Shimizu^c, Masashi Ando^c, Kotoe Terada^a, Tadahiko Shien^a, Takayuki Kinoshita^a, Yasuhiro Fujiwara^c, Kunihiko Seki^b, Tadashi Hasegawa^{b,d}, Takashi Fukutomi^{a,e} Received 21 September 2006; received in revised form 6 January 2007; accepted 6 February 2007 #### **KEYWORDS** Breast cancer; Ki-67; Neoadjuvant endocrine therapy; Pathological response; Prognostic factor Neoadjuvant endocrine therapy (NAET) can expand the number of breast cancer patients who can be treated with breast-conserving surgery and can predict benefit from adjuvant endocrine therapy. Because no validated surrogate markers for long-term outcome have been established, we conducted prospective trials to evaluate pathological response and Ki-67 index following treatment with tamoxifen or anastrozole. The study population included postmenopausal women with operable breast tumors that were both estrogen and progesterone receptor-positive and larger than 3 cm. Response was classified as pathological response (minimal response or better) and non-response. Non-responding (25.5%, vs. response 85.9%, p = 0.002), axillary node-positive (58.4% vs. node negative 100%, p = 0.045), and high pretreatment Ki-67 index (41.4% vs. low Ki-67 87.1%, p = 0.03) patients were significantly associated with poor 5-year relapse-free survival. Multivariate analysis of relapse-free survival indicated that pathological response was independent. Therefore, pathological response may be a favorable prognostic factor after NAET. © 2007 Elsevier Ltd. All rights reserved. E-mail address: sakashi@ncc.go.jp (S. Akashi-Tanaka). Division of Breast Surgery, National Cancer Center Hospital, 1-1 Tsukiji 5-chome, Chuo-ku, Tokyo 104-0045, Japan ^bDivision of Pathology, National Cancer Center Research Institute, Tokyo, Japan ^cDivision of Medical Oncology, National Cancer Center Hospital, Tokyo, Japan ^dDepartment of Surgical Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan ^eDepartment of Breast and Endocrine Surgery, Aichi Medical University, Aichi, Japan $^{^{*}}$ Supported in part by Grants for Scientific Research from the Expenses for Health and Welfare Program (17-7) and for Research on Advanced Medical Technology (H-14 toxico-007) from the Ministry of Health, Labour and Welfare of Japan. ^{*}Corresponding author. Tel.: +81 3 3542 2511; fax: +81 3 3542 3815. #### Introduction With the recent development of aromatase inhibitors, neoadjuvant endocrine therapy (NAET) has attracted attention as a potentially effective therapy that might allow breast conservation even in women with large breast tumors¹⁻⁴. In addition, NAET offers the possibility of testing therapeutic efficacy in vivo, which is of great importance for optimal adjuvant treatment. However, the short history of NAET leaves several questions to be answered. First, short-term surrogate markers of subsequent risk of relapse and death from breast cancer have not been established for NAET⁵. Recently, early changes in Ki-67 have been reported to be possible predictors of long-term outcome⁶⁻⁸. The short-term reduction in Ki-67 levels in NAET (in the IMPACT trial) paralleled that observed in patients who received the same endocrine therapy in the adjuvant setting (ATAC); this suggested that the changes in Ki-67 in NAET might be predictive of long-term outcome⁷. However, these data were not obtained in direct long-term follow-up studies of NAET. Second, classifications of pathological therapeutic response, which have been mainly produced based on pathological changes following chemotherapy or radiotherapy, have not been validated for tumors treated by NAET. We conducted a small study to clarify the significance of the classification of pathological therapeutic response and the Ki-67 index as prognostic factors of long-term outcome in response to NAET. #### Patients and methods This analysis includes 45 postmenopausal women with operable estrogen and progesterone receptor (ER and PgR)-positive breast tumors that were larger than 3cm as confirmed by core needle biopsy. These women were enrolled in two-phase II studies on NAET at the National Cancer Center Hospital (NCCH), Tokyo. Between February 1999 and July 2002, 31 patients were enrolled in a neoadjuvant tamoxifen study (neo TAM), in which they received tamoxifen for 4 months preoperatively. Between November 2002 and 2004, 17 patients were enrolled in a neoadjuvant anastrozole study (neo ANZ), in which they received anastrozole for 5 months preoperatively. Three patients in the neo TAM group were excluded from this analysis because they received preoperative chemotherapy following NAET and their tumors could not be evaluated for pathological response to endocrine therapy; two of these patients rejected mastectomy when there was no reduction of their tumors by NAET. These patients received chemotherapy with the hope that their tumors might shrink enough to allow breast-conserving surgery. Unfortunately, their tumors remained widespread in a mosaic pattern and they finally agreed to mastectomies. The third patient showed progressive disease, which led to skin invasion, and received chemotherapy before surgery. All patients provided written informed consent for study participation as approved by the institutional review board of the NCCH. Patients who responded to NAET continued the same endocrine therapy postoperatively for 5 years. Patients who showed clinically progressive disease or stable disease and pathological lymph node involvement after NAET received adjuvant chemotherapy, if tolerable, with a regimen containing anthracycline or classical CMF (cyclophosphamide, methotrexate, and 5-fluorouracil) following surgery. All patients who underwent breast-conserving surgery received postoperative radiotherapy to the ipsilateral breast. #### Tumor response Primary tumors were clinically assessed every month. Clinical complete response (cCR) was defined as the clinical disappearance of the tumor at the end of NAET, and clinical partial response (cPR) was defined as a $\geqslant 70\%$ decrease from baseline of the largest diameter. Clinical progressive disease was defined as a $\geqslant 20\%$ increase from the most reduced size of the largest diameter. If progressive disease was observed, patients immediately underwent radical mastectomy. #### Outcome measures Relapse-free survival (RFS) was defined as the time from the initiation of treatment to local, regional, or distant treatment failure. #### Histological examination Evaluation of ER and PgR status was by immuno-histochemical studies using antibodies 1D5 and PgR636 (DAKO, Glostrup, Denmark), and tumors with more than 10% strongly stained nuclei were described as ER- or PgR-positive. Tumors obtained by core needle biopsy judged as positive for both receptors before treatment were eligible for this study. HER2 status was evaluated immunohistochemically using HercepTest (Dako), and 3+: strong complete membrane staining in >10% of tumor cells was defined as positive. Ki-67 was stained using the MIB-1 antibody (DAKO) according to previously described methodology¹⁰. Ki-67 was scored as the percentage of positively stained cells among 1000 malignant cells in specimens obtained by either core needle biopsy before treatment (baseline) or by surgery after NAET. The cut-off value for Ki-67 positivity
was defined as the median value of the Ki-67 index in this study population. The proportional change in Ki-67 expression from baseline was calculated as (residual Ki-67 index—pretreatment Ki-67 index) × 1/pretreatment Ki-67 index⁷. Histopathological therapeutic response was classified according to the General Rules for the Clinical and Pathological Recording of Breast Cancer 2005¹¹. For Grade 0, no response was observed; Grade 1a comprised those tumors with mild changes in cancer cells regardless of the area, or marked changes seen in less than one-third of cancer cells; Grade 1b comprised tumors with marked changes seen in more than one-third but less than two-thirds of tumor cells; Grade 2 tumors contained marked changes in more than two-thirds of tumor cells; and Grade 3 tumors demonstrated a complete response, with no cancerous cells remaining. Mild changes include slight degenerative changes in cancer cells not suggestive of cancer cell death (including cancer cells with vacuolation of the cytoplasm, eosinophilic cytoplasm, swelling of the nucleus, etc). Marked changes include marked degenerative changes in cancer cells suggestive of cancer cell death (including liquefaction, necrosis, and disappearance of cancer cells). The pathological response group was defined as tumors with Grade1a, 1b, and 2 responses. The non-response group was defined as tumors with Grade 0 response. #### Statistical analysis The χ^2 test was used for comparisons of tumor characteristics and responses among groups. The Kaplan-Meier methods were used to generate RFS curves. The log rank test was used for the comparison of RFS between two groups. Differences with p < 0.05 were considered to be significant. Table 1 Characteristics of patients and tumors treated with tamoxifen (neo TAM group) and anastrozole (neo ANZ group). | | Neo TAM group $(n = 28)$ | Neo ANZ group $(n = 17)$ | |-----------------------|--------------------------|--------------------------| | Age | 60 (51–75) | 61 (54–87) | | Tumor before NAET | | • | | T2 | 18 | 11 | | T3 | 7 | 4 NS | | T4 | 3 | 2 | | Clinical response | | | | CR | · 1 | 3] | | PR · | 12 | 10 []] | | NC · | 15 | 4 $p = 0.05$ | | PD ' | 0 | o 1 | | Surgery | | | | Mastectomy | 17 | 13 | | BCS | 11 | 4 NS | | Pathological response | | | | Grade 2 | 3 | 3] | | Grade 1b | 4 | 2 | | Grade 1a | 11 | 11 $p = 0.02$ | | Grade 0 | 10 | 1]] | | Axillary nodal status | • | _ | | Negative | 7 | 6 | | 1–3 | 12 | 7 NS | | 4–9 | 7 | 3 | | >10 | 2 | 1 | NAET: neoadjuvant endocrine treatment; CR: complete response; PR: partial response; NC: no change; PD: progressive disease; NS: not significant; BCS: breast-conserving surgery. #### Results Tumor and patient characteristics in the neo TAM and neo ANZ groups are shown in Table 1. The clinical response rates (cCR+cPR) for the neo TAM and neo ANZ groups were 46.4 and 76.5%, respec- tively. Of the neo ANZ group, only four patients underwent breast-conserving surgery, because some patients with good clinical responses chose mastectomies and refused postoperative radiotherapy. Patients treated with neo ANZ showed a statistically significantly higher rate of pathological Table 2 Tumor characteristics and responses to NAET stratified by patients with events and those without events. | | Non-response group $(n = 11)$ | Pathological response group $(n = 34)$ | | | | |---------------------------------------|-------------------------------|--|------|--|--| | Age | 57 (51–73) | 61 (52–87) | | | | | Tumor before NAET | | _ | | | | | T2 | 9 | 20 | | | | | T3 | 1 | 10 | | | | | T4 | 1 | 4 | NS | | | | Histological grade before NAET | | | | | | | Grade 1 | 1 | 8 | | | | | Grade 2 | 6 | 15 | | | | | Grade 3 | 4 | 9 | NS | | | | Not available | 0 | 2 | | | | | HER2 status before NAET | <i>.</i> | | , | | | | Negative | 11 | 34 . | | | | | Positive | 0 | 1 | NS | | | | NAET | | | e e | | | | Tamoxifen | 10 | 18 | | | | | Anastrozole | 1 | 16 | NS | | | | Clinical response | _ | , | | | | | CR | 0 | 4 | | | | | PR | 4 | 18 | | | | | NC , | 7 | 12 | NS | | | | PD | 0 | 0 | • | | | | Ki-67 index before NAET | | 4 7 | | | | | High | 6 | 17 | NC | | | | Low | 5 | 17 | NS | | | | Residual Ki-67 index | • | | • | | | | High | 7 | 16 | | | | | Low | 4 | 18 | NS . | | | | Proportional reduction of Ki-67 index | | | | | | | $Median(Q_1 - Q_3)$ | -0.05 (-0.67-0.37) | -0.46 (-0.85-0.83) | NS | | | | Lymphovascular invasion | | | | | | | Negative | 9 | 28 | Nic | | | | Positive | 2 | , 6 | NS | | | | Axillary nodal status | | 44 | | | | | Negative | 2 | . 11 | | | | | 1–3 | 6 | 13 | | | | | 4-9 | 1 | 9 | | | | | >10 | 2 | 1 | NS | | | | Adjuvant therapy | _ | 20 | | | | | Endocrine only | 5 | 20 | NC . | | | | Chemotherapy added | 6 | 14 | NS | | | Q_1 : first quartile; Q_3 : third quartile. response (Grades 1+2) than those treated with neo TAM (p = 0.02). Tumor characteristics stratified by patients with pathological response or non-response are shown in Table 2. There were no statistically significant differences in tumor size, histological grade, HER2 status, clinical response, lymphovascular invasion, pathological nodal status, or addition of adjuvant chemotherapy between these groups. Reduction of Ki-67 was not significantly associated with either pathological or clinical response. The median follow-up time after NAET was 44.7 months. There were 11 locoregional and/or metastatic events during this time. No ipsilateral breast tumor recurrence was observed after breast-conserving surgery. Patients with pathological nonresponse (25.5%, vs. response group 85.9%, p = 0.002; Fig. 1), axillary node positivity (58.4% vs. node negative 100%, p = 0.045), addition of adjuvant chemotherapy (41.2% vs. only endocrine therapy 77.5%, p = 0.01), and high pretreatment Ki-67 index (41.4% vs. low Ki-67 index 87.1%, p = 0.03; Fig. 2) were significantly associated with poor 5-year RFS. Initial T category, histological grade, clinical response, typé of endocrine therapy, presence of reduction in Ki-67 values, and lymphovascular invasion was not associated with survival. The median follow-up time for the neo TAM group was 65.8 months. In this group, patients with pathological non-response (28.0%, vs. response group 88.2%, p=0.006; Fig. 3), axillary node positivity (59.9% vs. node-negative 100%), addition of adjuvant chemotherapy (43.2%, vs. only endocrine therapy 77.8%, p=0.03), and high residual Ki-67 index (44.0%, vs. low Ki-67 index 100%, p=0.01) were significantly associated with poor 5-year RFS. Figure 1 Relapse-free survival curves following neoadjuvant endocrine therapy stratified into a pathological response group (—) and a non-response group (---). A statistically significant difference was observed between the groups (p=0.002). Figure 2 Relapse-free survival curves following neoadjuvant endocrine therapy stratified into a low pretreatment Ki-67 index group (—) and a high Ki-67 index group (---). A statistically significant difference was observed between the groups (p = 0.03). Figure 3 Relapse-free survival curves following neoadjuvant endocrine therapy using tamoxifen stratified into a pathological response group (—) and a non-response group (---). A statistically significant difference was observed between the groups (p=0.006). The median follow-up time for the neo ANZ group was 30.0 months. The pathological response group achieved statistically better 3-year RFS than the non-response group (93.3% vs. 0%, p < 0.0001). Multivariate regression analyses using a logistic regression model were conducted to identify independent prognostic factors for RFS (Table 3). These analyses indicated that pathological response (p=0.007) was significantly related to RFS. #### Discussion Although the sample sizes in this study are small, the pathological response group showed significantly more favorable outcomes than the non-pathological response group following NAET. This result is supported by all of the analyses conducted in this study and suggests that the pathological therapeutic response may be a prognostic factor for Table 3 Multivariate analysis for RFS after NAET. | | | Hazard ratio (95%CI) | p-value | |-----------------------|-----------------------|----------------------|---------| | Pathological response | Non-response/response | 6.3 (1.6–23.8) | 0.0067 | | Pretreatment Ki-67 | Low/high | 0.26 (0.055–1.17) | 0.079 | | Residual Ki-67 | Low/high | 0.65 (0.14–2.98) | 0.58 | RFS: relapse-free survival; CI: confidence interval. long-term outcome following NAET. The response necessary for a favorable prognosis seems to differ between neoadjuvant chemotherapy and NAET. In the neoadjuvant cytotoxic chemotherapy setting, where response (pCR or not) is a clinically significant predictor of outcome¹², long-term outcome following treatment with cytostatic agents can be predicted based on the achievement of minimal pathological change. Using chemotherapy, total killing of cancer cells is necessary to improve prognosis; therefore, physicians should pursue regimens that will reach the highest pCR rates possible. On the other hand, only a few patients have been reported to achieve pCR following NAET3. This is one reason for hesitation in using endocrine agents in a neoadjuvant setting. However, with endocrine therapy, minimal pathological changes may have the same power to improve prognosis. In this study, low Ki-67 index before NAET in all cases and low residual Ki-67 index in the neo TAM group were significant favorable prognostic factors. Ki-67 has been reported to carry modest prognostic significance and the residual (after treatment) level of Ki-67 may be a better predictor of response and/or absolute long-term outcome than the proportional reduction in Ki-67 because it is more likely to relate to the growth rate of the persistent disease¹³. The results of this study are concordant with these results. The results of the IMPACT trial
supported the hypothesis that a reduction of Ki-67 in NAET might be predictive of long-term outcome, but this was not demonstrated in this study. As Urruticoechea has réported that a change in Ki-67 score of at least 32-50% between two determinations using core needle biopsies is required to consider the difference statistically different for an individual patient and attributable to treatment effects¹³, the problem with the reproducibility of Ki-67 measurements must be overcome. Patients who underwent additional adjuvant chemotherapy showed a statistically significant reduction in RFS compared with those who underwent only endocrine therapy. Selection bias must be considered, as most of the patients with positive lymph nodes were treated with chemotherapy. However, whether or not the chemotherapy was efficacious remains controversial because hormone-sensitive breast cancer is less responsive to chemotherapy^{14,15}. Further investigations are required to determine the best treatment plan for such cases. Neoadjuvant chemotherapy has now been established as one of the standard treatments for operable breast cancer. On the other hand, there is less evidence on NAET than on neoadjuvant chemotherapy, including long-term outcome. In this situation, NAET should be used to treat selected patients who will obtain great benefit from endocrine therapy and will not respond to chemotherapy and/or do not need chemotherapy. Without a doubt, hormone receptor status is the first eligibility criterion. Many studies on neoadjuvant chemotherapy have confirmed that hormone-sensitive tumors show worse responses to chemotherapy than hormone-resistant tumors^{14,15}. However, not all hormone-sensitive tumors respond to endocrine therapy, underscoring the need for additional predictive tests. Gene analysis can be used as a second eligibility criterion. A multigene assay (Oncotype DX) TM succeeded in predicting that approximately half of the women with node-negative, hormone receptor-positive breast cancer who were treated with local therapy and tamoxifen have an excellent prognosis, with more than 90% having 10-year relapse-free survival; these patients are unlikely to benefit from chemotherapy^{16,17}. A more favorable response and longterm outcome without severe adverse events may be achieved with only hormone therapy using gene expression profiles to select patients who are good candidates for NAET. This study suggests that pathological response is a favorable prognostic factor following NAET. We await validation of these results in large studies such as the IMPACT trial or Letrozole P024 to establish the surrogate markers that predict the risk of recurrence. #### References Smith IE, Dowsett M, Ebbs SR, et al. Neoadjuvant treatment of postmenopausal breast cancer with anastrozole, - tamoxifen, or both in combination: the Immediate Preoperative Anastrozole, Tamoxifen, or Combined with Tamoxifen (IMPACT) multicenter double-blind randomized trial. *J. Clin Oncol* 2005;23(22):5108–16. - Ellis MJ, Coop A, Singh B, et al. Letrozole is more effective neoadjuvant endocrine therapy than tamoxifen for ErbB-1and/or ErbB-2-positive, estrogen receptor-positive primary breast cancer: evidence from a phase III randomized trial. J Clin Oncol 2001;19(18):3808-16. - Semiglazov VF, Semiglazov VV, Ivanov VG, et al. Neoadjuvant endocrine therapy: exemestane(E) vs tamoxifen (T) in postmenopausal ER+ breast cancer patients. Breast Cancer Res Treat 2003;82(Suppl 1):S22. - Cataliotti L, Buzdar A, Noguchi S, et al. Comparison of anastrozole versus tamoxifen as preoperative therapy in postmenopausal women with hormone receptor-positive breast cancer: the pre-operative "Arimidex" compared to Tamoxifen (PROACT) trial. Cancer 2006;106(6):2095–103. - Dixon JM. Role of endocrine therapy in the neoadjuvant surgical setting. Ann Surg Oncol 2004;11(1 Suppl):185–23S. - Ellis MJ. Neoadjuvant endocrine therapy for breast cancer: more questions than answers. J Clin Oncol 2005;23(22): 4842-4. - Dowsett M, Smith IE, Ebbs SR, et al. Short-term changes in Ki-67 during neoadjuvant treatment of primary breast cancer with anastrozole or tamoxifen alone or combined correlate with recurrence-free survival. Clin Cancer Res 2005;11:951s-8s. - Tao Y, Klause A, Vickers A, et al. Clinical and biomarker endpoint analysis in neoadjuvant endocrine therapy trials. J Steroid Biochem Mol Biol 2005;95:91-5. - Therasse P, Arbuck SG, Eisenhauer EA, et al. New guidelines to evaluate the response to treatment in solid tumors. J Natl Cancer Inst 2000;92(3):205–16. - Johnston SR, Boeddinghaus IM, Riddler S, et al. Idoxifene antagonizes estradiol-dependent MCF-7 breast cancer xenograft growth through sustained induction of apoptosis. Cancer Res 1999;59(15):3646-51. - Japanese Breast Cancer Society. General rules for clinical and pathological recording of breast cancer 2005. Histopathological criteria for assessment of therapeutic response in breast cancer. Breast Cancer 2005;12 Suppl:s12. - Fisher B, Bryant J, Wolmark N, Mamounas E, Brown A. Effect of preoperative chemotherapy on the outcome of women with operable breast cancer. J Clin Oncol 1998;16:2672–85. - Urruticoechea A, Smith IE, Dowsett M. Proliferation marker Ki-67 in early breast cancer. J Clin Oncol 2005;23(28): 7212–20. - Kaufmann M, von Minckwitz G, Rody A. Preoperative (neoadjuvant) systemic treatment of breast cancer. Breast 2005;14(6):576-81. - Chang J, Powles TJ, Allred DC, et al. Biologic markers as predictors of clinical outcome from systemic therapy for primary operable breast cancer. J Clin Oncol 1999;17(10): 3058-63. - Paik S, Shak S, Tang G, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 2004;351(27):2817–26. - Paik S, Tang G, Shak S, et al. Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J Clin Oncol 2006;24(23): 3726-34. Available online at www.sciencedirect.com # Intracystic papillary carcinoma (ICPC) の診断と臨床的特徴 —自験例14例からの検討— 赤木智徳*¹ 木下貴之*¹ 枝園忠彦*¹ 北條 隆*¹ 明石定子*¹ Clinical and Pathological Features of Intracystic Papillary Carcinoma (ICPC) of The Breast: Akagi T*1, Kinoshita T*1, Shien T*1, Hojo T*1 and Akashi S*1 (*1Breast surgery division, National cancer center hospital) Background: Intracystic papillary carcinoma (ICPC) of the breast is rare and preoperative diagnosis is difficult. Materials and Methods: This study investigated the clinical and pathological features of ICPC. Fourteen ICPC were included in this study. We reviewed their clinicopathological findings and treatments. Results: In 9 cases, diagnoses of ICPC were obtained using fine needle aspiration and core needle biopsy. In 5 cases, a diagnosis could not be obtained preoperatively. MRI in addition to sonography helped to establish the differential diagnosis from benign tumor and maintain disease free surgical margins. Conclusion: Preoperative diagnosis of ICPC is difficult and excisoinal biopsy was necessary unless fine needle aspiration and core needle biopsy can obtain the diagnosis. MRI is available to diagnose the invasiveness of this disease. Key words: Intracystic papillary carcinoma, Preoperative diagnosis Jpn J Breast Cancer 22 (4): 280~285, 2007 #### はじめに Intracystic papillary carcinoma (ICPC) は乳癌全体の約2%弱"とまれな疾患である。現在の乳癌取扱い規約では非浸潤性乳管癌ductal carcinoma in situ (DCIS) に含まれ、線維性の壁に囲まれた内腔へ乳頭状に突出し発育する乳癌で、通常周囲間質に高度の浸潤を伴わないとされる"。しかし、組織学的に嚢胞壁外や乳管内での高度の進展を示す例。か、同時性肝転移例がなどの報告もある。また良性嚢胞腫瘍との鑑別が困難である。今回われわれは、ICPCの14例を経験したので臨床病理学的検討とともに若干の文献的考察を加えて報告する。 #### 1. 対象と方法 2000年10月から2006年12月まで当科で経験した 原発性乳癌は約2,700症例,そのうちICPCと診断 されたのは14例0.51%であった。この14例におい て臨床病理学的特徴,予後を検討し,さらに免疫 組織染色によりホルモンレセプター,HER2,p53 を評価した。 #### 2. 結果 #### 1) 臨床的特徵(表1) 年齢は中央値72.5歳(36~82歳)で、14人のうち 1人が男性、女性13人のうち 3 例が閉経前、10 例は閉経後であった。主訴は全例乳房腫瘤で、自己発見が13例、検診発見が1例で、腫瘍径の中央値は25.5mm(11~220mm)であった。占拠部位はA領域に7例、B領域に1例、C領域に2例、D ^{*1}国立がんセンター中央病院乳腺外科 表 1 Intracystic papillary carcinomaの臨床的特徴および診断 | 症例 | 年齡·性 | 病悩期間 (月) | 部位 | US
最大径
(資胎mm) | US
最大径
(充実内腫瘤mm) | US
充実腫
瘤形状 | MMG
腫瘤陰影 | MMG
石灰化 | WI IZI | FNA | CNB | 衛前病理診断 | |------|--------|----------|----|---------------------|------------------------|------------------|-------------|------------|--------|----------|---------------|--------| | 1 | 84 • F | . 2 . | 右A | 22 | 5 | 不整型 | 辺縁不整 | なし | 1 | | / . | なし | | . 2 | 83 • F | 2 | 左D | 11 - | 6 | 整型 | 辺縁平滑 | なし | / . | class 5 | / | DC | | 3 | 75 • F | 3 | 右A | 22 | 7 | 不整型 | 辺縁不整 | A | / | class 3 | + | なし | | 4 | 60 • F | 4 | 右B | 36 | 10 | 整型 | 辺縁平滑 | なし | / | class 2 | + | なし | | 5 | 43 • F | 3 . | 左A | 15 | 3 | 整型 | 辺縁平滑 | なし | / | / | + | なし | | 6 | 36 • F | 9 | 左C | 34 | 17 | 不整型 | はっきりせず | なし | / | / | .1 | ICPC | | 7 | 57 • F | 4 | 左E | 10 | 4 | 整型 | 辺縁平滑 | なし | / | class 5. | / . | DC | | 8 | 70 • M | 6 | 左E | 50 | 15 | 不整型 | 辺縁不整 | なし | ./ | / . | + | ICPC | | 9 | 75 • F | 2 | 右A | 28 | 20 | 整型 | 辺縁平滑 | Α | / | class 5 | / | DC | | . 10 | 48 • F | 3 | 左A | 23 | 5 | 整型 | 辺縁平滑 | P | / | class 2 | + ' | なし | | 11 | 74 • F | . 8 | 左A | 14 | 14 | 整型 | / . | / | / . | . / | + (. | ICPC | | 12 | 82 • F | 24 | 右C | 200 | 30 | 整型 | / . | 1. | BCP | class 2 | + . | ICPC | | 13 | 81 • F | 2 | 右A | 170 | 52 | 不整型 | 辺緣不整 | なし | BCP | class 2 | + . | ICPC | | 14 | 71 • F | 2 . | 左E | 60 . | 21 | 不整型 | 辺縁平滑 | なし | BCP | | + | ICPC | * US:乳腺超音波検査、A:amorphous集簇、P:pleomrphic集簇、BCP:乳癌造影パターン FNA:Fine needle aspiration、CNB:Core needle biopsy、DC:ductal carcinoma。 表 2 与術・病理所見 | | | | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | | | |------|-------------|----------------|--------|---|-------------------|----------------|-----|----| | 症例 | 術式 | 秦 胞壁外漫潤 | 周囲DCIS | リンパ節転移 | 各種レセプター | p53 | G | NG | | 1 | Вр | なし | なし | 郭清なし | ER 2 PgR 2 HER 2+ | _ | 1 | 1 | | 2 | Вр | なし | なし | 郭清なし | ER 2 PgR 0 HER 2- | | . 1 | 1 | | · 3. | Bt+sampling | なし | なし | 0/2 | ER 2 PgR 2 HER 2- | + | 2 | 2 | | 4 | Ba | なし | なし | 郭清なし | ER 2
PgR 1 HER 2- | ·. — | 2 | 2 | | 5 | Bp+Ax | なし | なし | 0/11 | ER 2 PgR 2 HER 2- | - | 2 | 2 | | 6 | Bp+Ax | なし | あり | 0/22 | ER 2 PgR 2 HER 2- | | 1 | 1 | | . 7 | Bt+Ax | なし | なし | 0/20 | ER 2 PgR 2 HER 2+ | | 2 | 2 | | 8 | Вр | なし | なし | 郭清なし | ER 2 PgR 2 HER 2+ | 2+ | 2, | 2 | | 9 | Bt+Ax | なし | なし | 0/18 | ER 1 PgR 1 HER 2- | _ | 2 | 3 | | 10 | Ba+SLN | なし | なし | 0/4 | ER 1 PgR 2 HER 2- | - - | 1 | 1 | | 11 | Вр | あり | なし | 郭清なし | ER 2 PgR 2 HER 2- | · - | 1 | 1 | | 12 | Bt+SLN | なし | なし | 1/5 | ER 3 PgR 3 HER 2- | . - | 1 | 1 | | 13 | Bt+SLN | なし | あり | 0/5 | ER 3 PgR 3 HER 2- | - | 1 | 1 | | 14 | Bt+SLN | あり | あり | 0/3 | ER 3 PgR 2 HER 2- | _ | 1 | 1 | 領域に1 例で、E領域に3 例に存在した。病悩期間は中央値5.2カ月($2\sim24$ カ月)であった。 #### 2) 診断 超音波検査では1例は多房性の嚢胞であったが、他13例はすべて単房性の嚢胞であり、いずれの症例も内部に充実性成分を認めた。腫瘍径は中央値25.5mm(11~220mm)で、充実成分径は中央値12mm(3~52mm)であった。内部の充実成分の形状は整、不整とさまざまであった。 マンモグラフィー (MMG) は12例に施行, 7例が辺縁平滑で,4例は辺縁不整の腫瘤陰影として描出され, 1例はMMG上腫瘤陰影を認めなかった。 amorphousおよびpleomorphicな集簇する石灰化 を3例にみとめた。MRIは3例に施行,囊胞内容液はいずれも血性所見を呈した。ダイナミックスタディーでは3例(100%)ともに乳癌の造影パターンを示した。また嚢胞壁外進展を1例(症例14)に認めた。8例にFine needle aspiration施行,class5が3例,class3が1例,class2が4例であった。class5であった3例はいずれもductal carcinoma疑いという結果であった。Fine needle aspirationの細胞診陽性率は8例中3例(37.5%)であった。class3以下の5例にはCore needle biopsy 追加施行した。また5例はFine needle biopsy 追加施行した。また5例はFine needle biopsy施行せずに,はじめからCore needle biopsyを施行。計10例のCore needle biopsyを施行。計10例のCore needle biopsyを施行。計10例のCore needle biopsyを施行, 図1 超音波所見 後方エコーの増強を伴った50×43×26 mmの凝胞と、凝胞壁の 一部から内腔に突出する 21×18× 7 mm大の乳頭状腫瘍を認め 図3 MRI ダイナミックスタディーにて乳癌の造影パターンを示 した. 図2 マンモグラフィー所見 medio-lateral viewでE領域に辺縁平滑で、ほ ほ均一な腫瘤陰影を認めた. 石灰化は認めなかっ 図4 MRI T2W1において薬胞壁と考えられる低信号域の断裂 が認められ、MRI上、腫瘍の嚢胞壁外進展がみられた。 %) であり、残りの4例はCore needle biopsyで も確定できず切除生検にて乳癌の診断を得た。な ICPCの術前病理学的診断を得た症例は計 6 例 (60 お 1 例はFine needle aspirationおよびCore needle biopsyをともに施行せずに切除生検を行った。 図 5 病理組織所見 径 5 cm大の嚢胞内に 2 cm大の乳頭状隆起性病変を認め、嚢胞液は暗赤色であった。この隆起性病変は中等度の核異型、核分裂像を有する腫瘍細胞が乳頭状、cribriform patternを呈して増殖。 #### 3) 手術・病理 (表2) 5.例に腋窩郭清を伴う乳房切除術および乳房部分切除術を施行,4例は腋窩郭清を伴わない乳房部分切除術を施行した。さらに2004年以降の4例はセンチネルリンパ節生検を伴う乳房切除術および乳房部分切除術を施行した。嚢胞内容液の性状はいずれもきわめて淡い血性から濃い暗赤色を呈し、14例のうち2例(14.2%)に間質浸潤を認めた。また3例に嚢胞壁外にDCISを認め、1例に腋窩リンパ節転移を認めた。G1とG2がそれぞれ8例(57%)6例(43%)、NG1とNG2とNG3がそれぞれ8例(57%)5例(36%)1例(7%)であった。またホルモンレセプターはERが全例(100%)、PgRは13例が陽性(92.8%)で、HER2は3例(21.4%)、p53は2例(14.2%)が陽性であった。 #### 4) リンパ節転移症例 ICPC14例のうち1例に腋窩リンパ節転移を認めた。本症例は82歳女性,病悩期間が24カ月,腫瘍径が20cmであった。Core needle biopsyでICPCの診断を得,乳房切除術およびセンチネルリンパ節生検を施行,術中迅速病理診断にてセンチネルリンパ節転移はなかったが,永久標本にてリンパ節1個にmicrometastasisを認めた。ER,PgRはともに陽性,HER2,p53はいずれも発現していなかった。作成標本上,囊胞壁外への浸潤はみとめていない。 図6 病理組織所見 順瘍細胞の間質への浸潤が認められた。 #### 5) 補助療法・予後 13例にTAM投与, 温存術 8 例中 3 例に残存乳 房に対する術後照射を行った。男性症例の1 例の 他因死を除き,13例すべて再発の所見なく生存中 である、次に代表的な1 例(症例14)を提示する。 症 例:71歳,女性. 家族歴:特記事項なし、 既往歴:特記事項なし、 現病歴:2006年10月,左乳房腫瘤に気づき前医 受診し,当科紹介となる。 入院時血液検査所見:末梢血,生化学検査とも に正常範囲内で,腫瘍マーカー (CEA 0.9ng/ml, CA15-3 14U/ml, ST439<1.0)の上昇もみ られなかった。 入院時現症:左乳房E領域を中心にBD領域に 及ぶ60mm大のやや弾性硬の腫瘤を認めた。胸筋, 皮膚への固定は認めなかった。乳頭分泌なく,腋 窩リンパ節も触知しなかった。 超音波所見(図1):後方エコーの増強を伴った60×43×26mmの嚢胞と、嚢胞壁の一部から内腔に突出する21×18×7mm大の乳頭状腫瘍を認めた。 MMG所見(図2): E領域に辺縁平滑で、ほぼ均一な腫瘤陰影を認めた。石灰化は認めなかった。 MRI: ダイナミックスタディーにて乳癌の造影パターンを示した(図3). また, T2W1において変胞壁と考えられる低信号域の断裂が認められ, MRI上、腫瘍の嚢胞壁外進展がみられた(図4). 経 過:以上の所見より、2006年11月Core needle biopsy施行し、ICPCの診断を得て、乳房切除術+センチネルリンパ節生検を施行した。術中迅速病理診断にてセンチネルリンパ節に転移は認めなかった。 病理組織所見:径5cm大の嚢胞内に2cm大の乳頭状隆起性病変を認め、嚢胞液は暗赤色であった。この隆起性病変は中等度の核異型、核分裂像を有する腫瘍細胞が乳頭状、cribriform patternを呈して増殖(図5)、一部間質への浸潤が認められた(図6)、リンパ節転移は認めず(0/3)、G2、NG2および免疫組織学的検索にてER、PgRはともに陽性、HER2、p53はいずれも発現していなかった。 #### 3. 考察 ICPCは嚢胞内腔へ乳頭状に突出し発育する乳 癌で, 乳癌全体の約2%弱"といわれている. 一般 的にductal carcinoma in situの範疇で浸潤を伴 うことはほとんどなく,現在の乳癌取扱い規約に よれば、病巣が嚢胞内に限局し、非浸潤性嚢胞内 乳癌とすることが記載されている. しかし, 組織 学的にも嚢胞壁外への浸潤や乳管内で広く進展を 示す例®や、同時性肝転移例心などの報告もあり、 定義についてはいまだコンセンサスを得られてい ない。したがって今回われわれは,浸潤の有無を 問わず病理学的検索にて、ICPCと診断された14例 を検討した。通常の乳癌と比較すると, 平均年齢 65歳 (範囲34~92歳)"と高齢者に多いとされ、今 回の14例でも中央値72.5歳(36~82歳)であり通 常乳癌より高齢であった。また病悩期間も長いこ とも報告25されており、今回も中央値5カ月(1 ~24ヵ月) であった。腫瘍の性質として通常乳癌 より発育が緩徐で、潰瘍を形成せずにGradeが低 いため、放置されやすいと考えられる。良悪性の 鑑別として、嚢胞内乳頭腫と鑑別は困難である。 鑑別点としては嚢胞内乳頭腫の平均年齢は 40.7~47歳で低く、60歳以上の嚢胞内腫瘍では、 癌は81%に認めたという報告がある7,8.0)。また腫 瘍径は悪性であれば良性より大きい傾向にあるが、 良悪性鑑別において診断的価値は低い^{7,8)}と報告 されている。超音波検査は良悪性の鑑別検査とし てあげられるが、嚢胞内腫瘤部分の辺縁など良悪 性とも不整なものが多く鑑別にあまり有用でない といわれている8.0)。通常乳癌における良悪性の鑑 別としてMRIは有用であり、MRI所見が乳癌病理 組織像を反映するという報告もある10。 われわれ は症例12以降の3例においてMRIを施行しいず れもダイナミックスタディーにて悪性を示す造影 パターンを呈した。ICPCにおいても良悪性鑑別の ため画像診断の1つとしてMRIは重要であると 考えられる。またさらに、症例14においてMRIで 腫瘍の嚢胞壁外浸潤を認めたように,MRIは進展 度診断にも有用であり、嚢胞壁進展の評価にもき わめて有効である. 以上より, 少しでも悪性が疑 われる場合はFine needle aspirationを行い, さら にCore needle biopsyをエコーガイド下に充実性 部分を確実に穿刺することが必要である。しかし 本検討症例においてもそうであるが,囊胞内充実 成分への針生検は難しく,Fine needle aspiration およびCore needle biopsyにても診断の得られな い症例では積極的に切除生検を考慮するべきと思 われる。治療は原則として非浸潤性乳管癌(DCIS) 治療に沿って行うことが可能である。 しかし、嚢 胞壁外浸潤を示す例^{3)や},同時性肝転移例"などの 報告もあることを把握しておく必要がある。報告 によると浸潤癌はまれではなく,乳管内進展につ いても嚢胞壁より2cm以上超えて乳管内を進展 するものも報告されている⁶⁾. 今回の14例中 2 例 に漫潤部分を認め,さらに別の1例に作成標本に は浸潤部は認めなかったが、リンパ節転移を認め、 標本作成外に浸潤部分が存在したことが推察され た.このように切除範囲決定には,MRIによる進 展度評価を参考にし、広範な腫瘍進展を念頭にお いて断端陰性となることが重要である。術前化学 療法,術後化学療法の報告はなく,統一された指 針はないが, 第一選択治療は切除療法と考える. リンパ節転移に関しては0~25%と報告に幅があ るが、通常の乳癌より頻度は低いとされてい る8.8)。われわれは2004年以降よりセンチネルリン パ節生検を開始し、4例にセンチネルリンパ節生 検を伴う乳房切除、乳房部分切除術を施行した。 通常乳癌と同様,郭清省略には慎重であるべきで, センチネルリンパ節生検はよい適応と思われる。 今回14例すべてホルモン感受性を認め、乳房部分切除は8例に施行した。補助療法としては、明確な指針はないがDCIS治療にしたがって,症例を選びホルモン療法、残存乳房放射線照射などを考慮する必要があると思われる。 #### 4. 結 語 ICPCの14例につき臨床病理学的検討を加え報告した。良悪性の鑑別は困難であり、Fine needle aspiration、Core needle biopsyに加え切除生検が必要である。切除範囲決定には、MRIによる進展度評価を参考に、広範な腫瘍進展を念頭において断端陰性となることが重要である。また、腋窩リンパ節の評価は病変の大きさに関わらず必要であり、現在広く施行されているセンチネルリンパ節生検は腋窩リンパ節転移の少ないICPCによい適応と考えられる。 #### 文 献 WHO Classification Tumors of the Breast and Female Genital Organs - Czernobilsky B: Intracystic carcinoma of the female breast. Surg Gynecol Obstet 124: 93-98, 1967 - 3) 橋本幸直, 仁尾義則, 小池 誠, 他:褒胞内乳癌の 4 例, 外科 68:365-370, 2006 - Okita R, Ohsumi S, Takashima S, et al: Synchronous liver metastasese of intracystic papillary carcinoma with invasion of the breast. *Breast Cancer* 12: 327-330, 2005 - 5) McKittrick JE, Doane WA, Failing RM: Intracystic papillary carcinoma of the breast. Am Surg 35: 195-202, 1969 - 6) 山下晃徳, 吉本賢隆, 岩瀬拓士, 他:乳腺内乳癌の臨床 病理像, 日臨外医会誌 55:2726-2731, 1994 - 7) 林 剛, 西田正之, 佐藤一彦, 他: 乳腺嚢胞内腫瘍性 病変の検討, 日臨外医会誌 57:2355-2359, 1996 - 8) 稲吉 厚,小城左明,澤田俊彦,他:薒胞内乳腺腫瘍に 対する超音波診断および穿刺吸引細胞診の検討,日臨 外医会誌 60:893-897,1999 - 9) 才川義明, 小坂昭夫:麋胞内乳癌 8 例の検討. 日臨外医 会誌 52:2887-2890, 1991 - 10) Kusuma R, Takayama F, Tsuchiya S: MRI of the breast: comparison of MRI signals and histological characteristics of the same slices. Med Mol Morphol 38: 204-215, 2005 त्स क्लियं प्रशास The Contract of o Practice # 非神経温存前立腺広汎切除術における排尿機能 藤元博行 国立かんセンター中央病院泌尿器科 前立腺全摘除術における排尿機能については、とかく術後の尿失禁のみが強調される傾向がある。もちろんこれはこの手術における術後後遺症として重要であるが、単に尿禁制のみではなく、排尿困難のない適切な排尿も重要な因子であると考えている。つまり失禁はないが逆に排尿困難があるような症例が見受けられるが、めざすものは、このような点についてもより自然に近い形での機能回復が望ましいと考えている。 かねてから局所進行癌に対しても根 治を可能とする広汎前立腺切除術を開 発,施行してきた。この方法は確実な 切除を可能にすることを目的として開 発されたが,結果的に前立腺尖部の把 握を,より正確にすることが可能で, 確実な切除のみにとどまらず術後の排 尿機能についてむしろ良好な方向に作 用しているように思われる。 実際には確実な切除断端を確保しながら機能を温存するための尖部の位置 関係の把握が重要である。さらにどのような再建を行うかが次のポイントと 考えている。具体的に「私はこうして いる, ここにこだわっている」という 点を概説する。 ## 広汎前立腺全摘除術についてはすで にいくつかの成書に記載してきた^{1,2)}。 概要を解説する。 まず内骨盤筋膜を切開して直腸固有筋層が認められるまで肛門挙筋を剝離する。前立腺尖部付近では肛門挙筋が前立腺外側に付着していることが多々ある。このような場合にはこの段階有筋膜をよく観察する。このとき多数の血管が認められる場合、これは前のをよく観察する。これは前の神経血管束であり、このような場合にはさらに外側に剝離を進める。このはうな処理を行うことで最終的には固の脂肪を伴って確認される。 次に固有筋膜の縦切開を行う。展開された直腸のちょうど中心付近で血管の疎な場所を選んで切開を開始する。 脂肪織の切開を進めると、尾側より脂 肪織が持ち上がってくるような場面に出くわす。これは直腸からの流出静脈であり、この周囲を剝離して静脈を把持する。このことにより直腸筋層への「道しるべ」を得た状態となる。なぜならこの静脈は最終的には直腸筋層から分枝しているからである。この静脈を絹糸で保持することにより後の展開は容易となる。 静脈に沿って、より中枢に剝離を進めると直腸筋層が確認される。直腸筋層付近になると構造が急に粗なfasciaとなる。慣れてくると、このことにより直腸筋層が確認されたら、末梢に向かい剝離を進める。大切なことは直腸と平行に剝離を進めることである。ともすれば前立腺側に剝離をしがちである。因となる。一般的に生検などの影響が軽微な場合、容易に末梢に向かい剝離が可能である。 剝離を進めると、あるポイントから 容易に剝離ができなくなる。これは腱 中心に到達したことを意味する。 直腸 に向かう剝離はここまでとし、直腸を 外側に牽引しながら前立腺後面とを 外側に牽引しながら前立腺を右を がったとはしない。これはそもを が難しいことと、盲目的な処理は が難しいことと、盲目的な処理は が もの危険があるためである。 を るに左右を 質通することが可能 を るに が、直視下での処理が と り、あまり好まない。 直腸尿道筋は精嚢付近で前立腺に付 着しており、この部分をのぞいては筋 層を維持することで剝離が可能である。 付着部では電気メスで切開することで 初めて剝離が可能となる。 最後に最も中枢で直腸筋層の露出を 横方向に進める。これは前立腺を逆行 性に処理する際、直腸尿道筋、直腸筋 層、前立腺を剝離する際の重要なメル クマールとなる。直腸尿道筋と前立腺 との付着について模式的に図1に示し た。 ### 前立腺尖部の把握と こ。 DVGの処理が 前立腺尖部の形態はさまざまである。 前立腺尖部前面と後面のレベルがずれ ているような場合には前立腺尖部の把 握には相当な技術が必要である。特に 後面の前立腺が張り出したような場合, 前面のみの情報により処理を行うこと は,後面での切除断端陽性の危険があ る。またPSA eraの現在、前立腺尖部 前面が癌の好発部位であり、尖部をい かに的確に把握するかが、確実な切除 断端の確保のみならず尿道機能の確保、 勃起神経温存において何よりも重要で ある。 以前はまず陰茎背静脈(dorsal vein complex:DVC)をバンチング処理しながら前立腺尖部の把握を行っていたが,腱中心を利用し,前立腺後面の把握を行う広汎前立腺全摘除術においては側方から前立腺尖部を展開することで,より正確に尖部の把握が可能と考えている。実際には先に剝離した直腸筋層と前立腺の間にクーパーを挿入し,前立腺尖部を左右に振ってみると可動性の乏しい尿道との把握が容易となる。 この段階で前立腺尖部をよく観察すると尖部に肛門挙筋の一部, 恥骨尿道筋が前立腺尖部に付着している。 さらによく観察すると尿道には尿道を包み込むように輪状に肛門挙筋の成分が存 #### 図1 直腸尿道筋、 直腸筋層前面を走行し、末梢は腱中心、中枢側は精嚢基部付近に付着している。したがって図中の矢印の部位で処理することにより、はじめて完全に切除できる。 在することが確認される。前立腺尖部に付着する恥骨尿道筋をていねいに前立腺から剝離するが、癒着を認める場合には恥骨尿道筋を切開し前立腺に付着させる。これはこの筋肉を切開することは容易であり、この部位で被膜外浸潤がある危険性を考慮して、このような処理を行っている。パンチング鉗子を用いてDVCを仮の状態で把持し、位置関係の把握をさらに確実にする(図2)。 前立腺尿道移行部を認識し、尿道外側に付着する肛門挙筋を最小限剝離し、尿道後面とおぼしき部位で、尿道外周に沿うようにメッツェンバウムを滑り込ませ、lateral pelvic fasciaを一枚貫通させることで尿道後面に到達できる。左右同様に処理を行い尿道後面に鉗子を通し、血管テープで尿道後面を把持する。 この処理により尿道後面の切断で前立腺後面を不用意に取り残してしまう危険を回避することが可能であり、さらにはDVCの切断部位、あるいはそもそもDVCのバンチング部位のメルクマールが確立したことになり、より的確な処理を可能にすると考えている(図3)。以前の方法では順次DVCをバンチングし、DVCを切断しながら尿道前立腺移行部の把握を行っていたのであるが、どの部位を把持するかメルクマールがないこともあり、技術が必要であり、またいくぶん不正確であった。 DVCの処理ではバンチングは2針程 度運針するのみとなっている。これは 前述の尿道移行部の把握がすでに終了 しているため、必要以上に運針する必 要がなくなったからである。前立腺尿 道移行部の中枢と末梢それぞれ5mm程 度の部位に運針するのみである。その 後、前立腺を牽引してDVCの最も末梢 側にstay sutureをおき、出血に際して 順次、収束結紮を繰り返し、止血を得 るようにしている。最近では他の方法 においてもこのような処理が一般的で はと思われる。 前立腺尖部の位置関係を触診・視診あるいは前立腺を可動させて最終確認を行った後、DVCを切開する。DVCはまさに前立腺尿道移行部直上から切開を開始するようにする。以前はいわゆるavascular spaceに鉗子を貫通させていたが、尖部での不要な切除断端陽性となる危険性がありこの処理は行わず、DVCを可能な限り末梢で切断するようにしている。またバンチングされたDVCを手前から切開し尖部に至る処理は行っていない。これも尖部前面における不必要な切除断端陽性につながるためである。 #### 図2 側方アプローチにおける尖部の把握 処理された側方からのアプローチを利用し、尖部を把握する。 #### 図3 尿道後面を利用した尖部の把握 尿道後面を理解することで、前立腺尖部をより確実に把握する。
前立腺被膜と収束結紮されたDVCの深さに注意しながら処理を進める。DVCの切開の深さが被膜より深くなっている場合には当然、前立腺内に切り込んだことを意味する。DVCの切開では前立腺被膜の深さに到達する前に鋭的な切断に変更する。これは尿道筋層、あるいはその中に進展しているかもしれない前立腺組織の認識をより確実にするためである。 直視下で切断するDVCあるいはその 先に何が存在するか, 最大の注意を払 いながら切断を進める。広汎全摘除術 を行う場合にある程度の進行癌が予想 されるか、患者が神経温存を希望しな い場合に実施されるが、尖部では予想 外の癌の尿道側への進展があることも あり、尿道と前立腺との間を剝離する ことはせず、そのまま先ほどの把握し た尿道後面に向かい垂直に尿道を離断 している。尿道側方の切離ではときに lateral pelvic fasciaと尿道筋層間に進 展した前立腺組織を認めることがあり、 側方の切開も順次「そこに何があるか」 を、確認しながら進めることが肝要で あると考えている (図4)。 # 尿道への収合給 近年、尿道カテーテルを早期に抜去することにより尿禁制の早期回復が確認されている。これはカテーテルを長期に留置することにより、本来閉鎖している尿道が開口した状態におかれるため、周囲の炎症なども相まって尿道閉鎖に悪影響を及ぼすものと推定される。したがって尿道吻合におけるポイ ントとしては尿道括約筋のダメージを 最小限にし、かつ確実に尿道と膀胱を 吻合することが大切であると考えてい る。 吻合のリークは吻合部の無用な炎症の原因となり、決して尿道機能に有利には働かない。ただ吻合部のリークがなければよいというものでもなく、尿道と膀胱が口径差のなく適切に密着することが肝要と考えている。このようなポイントを考慮しながら吻合糸を尿道に運針することが必要である。 実際の吻合にあたたっては3-0 monocryl SH針10本で吻合している。10本もの吻合糸を使わなくても問題はないとの考えもあるが、前述の問題意識から尿道を大きく運針することはせず、比較的小さいbiteとpitchで運針するためこの程度の本数が必要なことと、尿道後面に対する吻合不全の問題を克服するため試行錯誤を繰り返しているうちに、結果的にこのような本数となったものである。 尿道の上半分を切開し尿道カテーテルが露出した段階で尿道前面への運針を開始する。尿道への運針ではすでに重要性が指摘されているようにまずlateral pelvic fasciaの認識は容易であるが、症例によっては肛門拳筋内に埋没したような状況となることがある。 ときにlateral pelvic fasciaではなく 肛門挙筋に運針しているようなことが あるが、直視下によく確認するととも にlateral pelvic fasciaを拾った後、少 し緊張をかけてみると、きっちり運針 されている場合には確実に運針されている緊張を感じる。次に尿道粘膜のみを拾うように運針し、針の先端を尿道カテーテルとの間に抜く(図5)。 この運針に際しては粘膜を拾うとき に運針の角度を変える必要がある。尿 道粘膜は非常に脆弱であり,運針した 後,針を抜くときにも十分注意をする。 尿道運針に関してはできるだけ無用な 抵抗を避けるため,著者は血管持針器 を使っている。 以前は尿道離断後に改めてブジーを 挿入し運針を行っていたが、 尿道が完 全に離断されると尿道断端が肛門挙筋 内に埋没してしまい、正確にlateral pelvic fasciaあるいは尿道粘膜を認識 することに困難があることと、特に尿 道後面の運針ではまったく不正確な部 位に運針していること、あるいは切断 され、埋没してしまった尿道後面への 運針が技術的に困難があるからである。 「そんなことをしなくても大丈夫である」 という意見もあるかと思われるが、目 標はこの手術を受けたすべての症例に 対して, 尿道カテーテルの早期抜去と ともに、確実な尿禁制とスムーズな尿 排出を可能とする方法の確立をめざし ているのである。 順次、角度を調整しながら1時、3時、4時に運針を行う。この段階で尿道を少し切り足し尿道が4時から8時のみを残した状態となった段階でカテーテルを把持し、これを切断する。切断された尿道カテーテル末梢側は抜去せず、尿道断端に位置させるようにする。このことにより尿道が管状構造を維持し、後の運針を正確にすることが