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Zn-BTS complexes. .
Uptake was expressed as % dose/ g of tissue at 1 h post-injection of radiolabeled compounds into mice.

membranes and provide protection against NMDA the administration of these zinc compounds [35].
receptor-mediated glutamate neurotoxicity, would seem The protective effect of Zn-ATSM: on the neurotoxic-
to be a therapeutic drug for the prevention of ischemic ity of glutamate was examined in cultured retinal neurons
neuronal damage. and compared with that of Zn** because the retina is rich

Our previous studies demonstrated that bis(thiosemi- in glutamatergic neurons [36]. Glutamate treatment
carbazone) (BTS) derivatives formed stable chelates with markedly reduced cell viability and the addition of Zn®"
divalent cations like copper and zinc ions, and that cer- markedly reversed this tendency. Zn-ATSM. provided
tain BTS complexes of Cu®* were readily distributed in protection against this neurotoxicity and the effect was
cerebral tissues because of greater membrane permeabil- similar to that of Zn*, whereas the ligand, ATSM:, did
ity [30-34]. Thus, we synthesized several Zn-BTS not affect cell viability (Fig 10) {37].
chelates and assessed their biodistribution, especially Furthermore, we examined the effects in vivo of sys-
their uptake into the brain. It was found that the uptake temically administered Zn-ATSM: on ischemic neuronal
basically increased along with the lipophilicity of the injury using the rodent model. Compared with the con-
compound and, among the zinc complexes tested, the 2,3 trol group, the infarct volume in the Zn-ATSM:-treated
-butanedione bis(N-dimethylthiosemicarbazonato) zinc groups 30min before the onset of occlusion and immedi-
complex (Zn-ATSM.) displayed the highest cerebral ately after reperfusion, was significantly reduced. Fur-
level, 2.7-fold that of Zn™ at 1 h post-injection (Fig. 9) thermore, no morphological or physiological alterations
[31]. No adverse effect on behavior was observed after were observed after the injection of Zn-ATSM:. Thus, Zn

Control_*
GlutnM b
ZnCl; 10uM + Glu 1mM }ax
Zn-ATSM2 10 pM + Glu 1mM — h+
ATSM210 uM + Glu 1mM H
ATSM2 10 uM =

0 10 20 30 40 50 60 70 80 90 100
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Fig. 10  The effects of Zn-ATSM,, Zn> on glutamate-induced retinal neurotoxicity.
Neurotoxicity was induced by 1 mM glutamate (Glu). *P < 0.05 vs. Group treated with glutamate (Student’s t-test).
Values are the mean + SEM. (n=5).
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-ATSM: with good ability to permeate the blood-brain
barrier, had protective effects on the brain when systemi-

cally administered early in a model of temporary focal

ischemia.
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Temporal Change in Human Nicotinic
Acetylcholine Receptor After Smoking Cessation:
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Nicotinic acetylcholine receptors (NAChRs) are of great interest
because they are implicated in various brain functions. They
also are thought to play an important role in nicotine addiction
of smokers. Chronic (—)-nicotine, a nAChR agonist, treatment
in mice and rats elicits a dose-dependent increase in nAChRs
in the brain. Upregulation of nAChRs in postmortem human
brains of smokers has also been reported. However, changes
in NAChRs after cigarette smoking cessation in humans are
poorly understood. The aim of this study was to detect the dy-
namic changes of NnAChRs after smoking and smoking cessation
in the brains of living subjects. Methods: We performed 5-123)-
iodo-A-85380 ('23i-51A) SPECT on nonsmokers and smokers
{(n = 16) who had quit smoking for 4 h, 10 d, and 21 d and calcu-
lated and compared distribution volumes (Vf) of 123-5/A. Re-
sults: The binding potential of nAChRs (Vt of 123I-5|A) in the
brains of smokers decreased by 33.5% * 10.5% after 4 h of
smoking cessation, increased by 25.7% * 9.2% after 10 d of
smoking cessation, and decreased to the level of nonsmokers af-
ter 21 d of smoking cessation. Conclusion: Because the upregu-
lation of the nAChRs of the smokers after chronic exposure of the
nicotine was downregulated to the nonsmokers’ level by around
21 d after smoking cessation, the upregulation is a temporary ef-
fect. The decrease in nicotinic receptors to nonsmoker levels
may be the breaking point during the nicotine withdrawal period.
Key Words: 23|-51A; SPECT; nicotinic acetylcholine receptors;
human brain; smoking withdrawal; quantitative measurement
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N icotinic acetylcholine receptors (nAChRs) are a family
of ligand-gated ion channels that regulate neurotransmission
in the central and peripheral nervous systems. These
receptors are of great interest because they are implicated
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in various brain functions, including cognition and memory
(1,2) and in nicotine-induced neuroprotective (3) and anal-
gesic effects (4). In addition, these receptors are thought to
play an important role in nicotine addiction (5).

Chronic treatment with agonists for most neurotransmitter
receptor systems results in a decrease in receptor number.
However, it has been demonstrated that chronic treatment of
mice (6) and rats (7) with (—)-nicotine, an nAChR agonist,
elicits a dose-dependent increase in nAChRs. This upregu-
lation is not permanent, returning to control levels within
7-10 d in mice (6) and 15-20 d in rats (8,9) after cessation
of (—)-nicotine treatment. Previous efforts to demonstrate
nAChR upregulation in the human brain have also been
reported primarily in in vitro binding assays (/0, /1). Kassiou
et al. reported the upregulation of nAChRs with chronic (—)-
nicotine treatment in the brain of a live baboon (/2). More
recently, Staley et al. described the upregulation of nAChRs
in human brains after early abstinence of tobacco smoking
using 5-'2I-iodo-A-85380 ('2’I-5IA) and SPECT images
(13). However, changes in nAChRs in humans after cessation
of smoking are poorly understood. Breese et al. studied the
levels of *H-nicotine binding in humans postmortem for
changes in nicotinic receptor levels and reported that the
nAChR levels in smokers who had stopped smoking at least 2
mo before their death were similar to those in nonsmokers
(14); the effects of shorter-term smoking cessation are
unknown.

1231-51A is a nAChR imaging probe that has extremely
high selectivity and specificity for the ad4B2 subunit of
nAChRs in rodent (inhibition constant = 0.37 nM) (/5) and
primate brain in vivo (/6), with relatively low acute toxicity
(effective dose equivalent = 30 nSv/MBq) (/7,18). More-
over, we have developed the methodology for the quanti-
fication of nAChRs in human brain using '23I-5IA and
SPECT (19).

The aim of the present study was to detect the dynamic
changes of nAChRs in living human brain after smoking and
smoking cessation. We performed '23I-5IA SPECT on non-
smokers and smokers who had quit smoking for4 h, 10d, and
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21 d and compared the distribution volumes (V1) of 123[-5IA
of each group and with nonsmokers. To our knowledge, this is
the first in vivo imaging study of nAChR upregulation and
recovery in response to short-term smoking cessation in
living subjects.

MATERIALS AND METHODS

Volunteers

Six male nonsmokers (23 + 6 y) and 10 healthy male smokers
(28 £ 4 y) were included in this study. Five smokers in the 4-h
group were also included in either the 10-d or the 21-d group. In
total, 21 '23[-5]A SPECT studies were acquired (Table 1). None of
the subjects had a history of neurologic or psychiatric illness or
the use of psychotropic or sleep-inducing drugs. The nonsmokers
had no history of smoking tobacco.

For the smoking withdrawal studies, the smokers were divided in
3 groups: 5 subjects (age, 28 = 4 y) for 4-h withdrawal, 5 subjects
(age, 27 * 6y) for 10-d withdrawal, and 5 subjects (age, 28 * 3y)
for 21 d of smoking withdrawal. The 4 groups were age-matched.

All subjects gave written informed consent to participate in this
study in compliance with the regulations of the Joint Commitiee
on Clinical Investigation of the Kyoto University Hospital.

Radiolabeling

Radiolabeling of the '?31-51A followed the methods we reported
previously (/9). To a sodium '*l-iodide solution (1,110 MBq)
(Nihon Medi-Physics), 100 pg of (§)-5-(tri-n-butylstannyl)-3-([1--
butoxycarbonyl-2(S)-azetidinylJmethoxy)pyridine, 1.5% acetic acid,
3 mol/L HC], and 5% H»O, solution were added, and the mixture
was stirred at 75°C for 15 min. Concentrated HCI was then added,
and the resulting solution was stirred for another 10 min at 75°C.
The mixture was made basic with NaOH and extracted with ethyl
acetate, and the organic layer was evaporated. The residue was
purified by reverse-phase high-performance liquid chromatogra-
phy ({HPLC] Cosmosil 5C18-AR-300, 10 x 250 mm; Nacalai
Tesque; 10 mmol/L ammonium acetate/methanol/triethylamine =
752:750:2; 1.5 mL/min; retention time for 5IA was 40 min). After
evaporation of the HPLC eluent, the residue was dissolved in 0.9%
saline and filtered through a 0.2-pm filter into a sterile vial. Radio-
chemical purity was >98%, and radiochemical yields were ~42%.
The specific activity determined from the ultraviolet absorbance at
254 nm was >169 GBg/pmol (the detection limit for this method).

SPECT

All subjects underwent a set of 5 SPECT dynamic scans (a 120-
min scan, followed by 4 sets of 20-min scans). All SPECT dynamic
scans were acquired with a triple-head rotating y-camera system

TABLE 1
Study Groups

Smokers: period of smoking cessation

(PRISM 3000; Picker International) equipped with low-energy,
high-resolution, fanbeam collimators. Data acquisition and image
reconstruction were performed as in our previous study (/9). The
data acquisition was alternately performed over 120 min after
intravenous injection of 'Z3I-5IA, followed by 4 sets of 20-min
scans (at 3, 4, 5, and 6 h after the injection). SPECT images were
reconstructed using a filtered backprojection algorithm with a ramp
filter. Attenuation correction was performed using ellipses outer line
approximation and Chang’s method (coefficient of 0.06/cm), which
assumes that the attenuation process is homogeneous throughout
the brain and can be described by an exponential function. Scatter
correction was not applied.

A dose of ~150 MBq of '?3[-5IA was administered intrave-
nously over a period of I min at a constant rate with an infusion
pump, and the SPECT scan was started at the same time as the
injection. Arterial blood sampling and metabolite correction
were also performed to estimate the arterial input function of
the '23]-51A for each volunteer by the same method as that used in
our earlier study (/9).

Arterial Input Function

Twenty-five arterial blood samples were obtained at the same
time points as described previously (/9). From each sample, 100 pL
of plasma were removed and the radioactivity was measured in an
automatic well-type y-counter (Cobra 2; Packard Instruments).
Sixteen samples were analyzed by thin-layer chromatography
(TLC) (10% ammonium acetate and methanol [1:1], LK6DF Silica
Gel, 60 A: Whatman) for metabolite determination (R¢ = 0.55 for
1231.5IA) (79). The measured unmetabolized fractions were fitted
with a dual exponential curve, and the input function was calculated
as all plasma sample counts were corrected for metabolites using
the fitted curve.

Data Analysis

Reconstructed SPECT images were automatically coregistered
using a coregistration algorism of statistical parametric mapping,
SPM99 (Welcome Department of Cognitive Neurology, London,
U.K.), to minimize positional error caused by head movement
during the scans. Multiple circular regions of interest (ROls) (21
pixels per circle) were manually drawn in each brain region (basal
ganglia, thalamus, brain stem, cerebellum, frontal, parietal, tem-
poral, and occipital cortices) on both sides. ROI data were further
decay-corrected. SPECT data were calibrated to the well counter
used to measure the injected activity. Time-activity curves were
generated from the ROIs and the dynamic image datasets.

Kinetic analysis of the '*3I-5IA was performed using a 2-
compartment model including K, and &; rate constants and a curve-
fitting method following our previous study (/9). V¢ values of the
123151 A were calculated and used as a quantitative index correlated
with the regional binding potential of the nAChRs. The Vr values
were further evaluated in terms of interval change after the smoking
withdrawal.

Statistical Analysis

All data are expressed as the mean = SD. The Vt values obtained
from the different regions in the brain were analyzed by l-way
ANOVA with the Bonferroni protected least significant difference
test. The interval changes of the '23I-51A Vt were analyzed between
the 3 phases after the smoking withdrawal using the Tukey— Kramer
multiple comparison test. All tests were 2-sided, and probability

Nonsmokers 4 h 10d 21d

Subject 1 Subject 7 Subject 7 Subject 9

Subject 2 Subject 8 Subject 8 Subject 10

Subject 3 Subject 9 Subject 12 Subject 11

Subject 4 Subject 10 Subject 13 Subject 15

Subject 5 Subject 11 Subject 14 Subject 16

Subject 6 values of P < 0.05 were considered significant.
1830  THe JournaL ofF NUCLEAR MEDICINE * Vol. 48 ¢ No. 11 ¢ November 2007
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RESULTS

As in our previous study (/9), the characteristics of the
arterial input functions for all volunteers (nonsmokers and
smokers) were similar. The peak plasma activity occurred
between 70 and 80 s after injection in all subjects and de-
creased rapidly to 6.5% —9.0% of the peak level in 10 min.
Analysis of the unmetabolized compound by TLC demon-
strated a high parent fraction of '23[-51A in the plasma
(87.7% * 6.3%) in the first minute. '>3[-5IA was rapidly
metabolized, and the unchanged fraction represented
50.9% = 8.8% and 32.4% * 12.6% of total plasma activity
at 20 and 60 min, respectively.

Figure 1 shows the representative standardized time—activity
curve of '231-51A in the frontal cortex. The concentrations of
radioactivity were slightly higher in the nonsmokers and in
the 4-h smoking-cessation group followed by the 10-d and
21-d smoking-cessation groups. The peaks of radioactivity
occurred ~50 min after injection of 23I-5IA for nonsmokers
and for the 4-h and 21-d smoking-cessation groups, whereas
it was at ~70 min for the 10-d smoking-cessation group. A
differential dissociation of '23[-51A from the binding sites
was noted in the brain. The 4-h smoking-cessation group
showed a faster dissociation compared with that of the
nonsmokers. However, the 10-d and 21-d smoking-cessation
groups showed a slower dissociation than that of the non-
smokers (more pronounced in the 21-d group). These find-
ings reflected a temporal change of the nAChRs in the human
brain.

Packs per day and pack years of cigarette smoking before
cessation were similar for the different groups of smokers
(Table 2). Only 2 subjects (subjects 7 and 11) had detectable
amounts of nicotine in their plasma after 4-h smoking
cessation (Table 2).

To validate the Vr values of the nonsmokers as a baseline
group, we compared (¢ test) our current data (nonsmokers)
with our published data (/9). No significant difference was
observed between these groups. Similar findings were also
seen for K, and k,. Therefore, we used the V¢ values from
nonsmokers as a reference for further comparisons with
groups of smokers at several smoking-cessation intervals.
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FIGURE 1. Representative standardized time—activity curves

of 128I-5]A in frontal cortex from a nonsmoker and smokers.

Table 3 describes the V¢ values of different groups of
volunteers (nonsmokers and smokers). There was a signifi-
cant difference among those groups (ANOVA; P < 0.001).
Individualized comparisons between 2 groups of volunteers
were also performed. After 4 h of smoking cessation, the Vt
values in all brain regions decreased significantly compared
with those of the nonsmoker group (P < 0.05, except for
frontal, parietal, and occipital cortices). On the other hand,
after 10 d of smoking cessation, the Vt values were signif-
icantly higher than those of nonsmokers (P < 0.05, except for
basal ganglia and thalamus). Then, after 21 d of smoking
cessation, the V¢ values decreased significantly compared

TABLE 2
Characteristics of Volunteers and Plasma Concentration of Nicotine and Cotinine

Plasma concentration (ng/mL)

Group Age (y = SD) Packs/d Pack years Nicotine Cotinine
Nonsmokers 24+ 6 — — ND ND
Smokers

4-h withdrawal 28 + 0.8 + 03 6.1 + 43 7.6, 8.9 282 + 189
10-d withdrawal 27 + 6 0.8 £ 0.2 6.3 + 3.9 ND ND
21-d withdrawal 28+3 0.8 =03 6.3 45 ND ND

*Results from only 2 subjects (3 other subjects had nondetectable values).
Packs/d = number of packs smoked per day; Pack years = number of packs per day while smoking multiplied by number of years
smoked; ND = not detected (detection limits for nicotine and cotinine were 5.0 and 100 ng/mL, respectively).

Values are expressed in mean * SD.

TemporRAL CHANGE OF NACHR v SMOKERS * Mamede et al.
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TABLE 3
1235|A V, Estimates for 2-Compartment, 2-Parameter Model for Various Brain Regions from Nonsmokers and Smokers
After Withdrawal of Cigarette Smoking

Subject Frontal Parietal Temporal Occipital BG Thalamus BS Cerebellum
Nonsmokers
1 143 13.2 13.2 11.2 15.8 30.1 229 15.6
2 20.3 18.9 19.7 16.2 242 43.2 35.5 20.5
3 141 13.0 13.8 11.2 16.0 28.4 22.3 14.9
4 14.4 14.4 14.6 11.7 172 311 25.3 18.4
5 11.3 10.7 10.7 9.5 12.9 19.3 17.7 14.4
6 13.2 12.2 122 111 13.5 20.9 18.7 13.7
Mean 14.6 13.7 14.0 11.8 16.6 28.8 23.7 16.3
SD 3.0 2.8 3.1 2.3 4.0 8.6 6.4 2.7
Smokers
4-h withdrawal
7 6.1 6.3 6.4 59 6.5 7.0 7.0 5.9
8 12.6 13.0 12.2 114 12.8 16.1 14.0 113
9 149 14.0 137 125 15.0 213 19.4 14.4
10 8.7 8.4 8.6 7.6 10.0 13.5 12.2 8.8
1 10.2 10.4 10.2 9.0 11.2 129 12.3 10.0
Mean 105 104 10.2 9.3 111 141 13.0 10.1
SD 3.4 3.2 2.9 27 3.2 5.2 4.4 3.1
10-d withdrawal
7 19.7 19.3 19.2 175 21.0 3141 29.4 20.9
8 19.1 18.7 17.4 16.4 19.4 28.7 1 25.3 20.7
12 18.0 176 17.4 16.1 20.2 289 30.3 224
13 16.1 16.2 16.4 15.2 18.7 289 29.3 20.8
14 19.2 18.1 17.8 15.8 215 36.5 32.8 239
Mean 18.4 18.0 17.6 16.2 20.2 30.8 29.4 21.7
SD 14 1.2 1.0 0.9 1.2 33 27 1.4
21-d withdrawal
9 153 14.6 14.6 12.2 17.6 28.4 23.6 19.7
10 14.4 143 13.8 12.1 17.5 31.3 24.9 17.2
11 17.0 16.6 15.9 13.6 18.5 27.0 26.1 20.1
14 141 14.0 13.6 12.8 155 216 21.0 15.7
15 14.4 14.1 13.6 12.2 15.7 27.0 22.7 15.7
Mean 15.1 14.7 143 12.6 17.0 27.0 23.7 17.7
SD 12 11 1.0 0.6 1.3 3.5 2.0 21

BG = basal ganglia; BS = brain stem.

Reported as mean for V; estimates from 2-compartment model. Values for V; are in mL/g.

with those of the 10-d group (P < 0.01, except for thalamus),
returning to the level in nonsmokers (Vz values did not show
any significant difference compared with those in the non-
smokers). Figure 2 shows the percentage of reduction and
increment in each group of smokers in comparison with the
nonsmoker group. In the Tukey—Kramer multiple compar-
ison test, the interval changes of the '23I-51A Vr between the 3
phases after the smoking cessation were significantly differ-
ent (P < 0.001).

The rate constant K, had some fluctuations among the
different groups of volunteers (nonsmokers and smokers);
however, these differences were not statistically significant
(ANOVA; not significant) (Fig. 3A). On the other hand, the
values of the rate constant k, were significantly different
among the groups of volunteers (ANOVA; P < 0.01) (Fig.
3B). This difference was due basically to the increase of k,
in the group with 4 h of smoking cessation.
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DISCUSSION

The present study described the effect of nicotine intake in
tobacco smokers and smoking cessation on the high-affinity
nicotinic receptors in humans using '23I-5IA SPECT. To our
knowledge, this is the first in vivo imaging of nAChR up-
regulation and recovery in response to short-term smoking
cessation in living smokers.

Previous animal studies have shown that chronic nicotine
treatment induces an increase in high-affinity nicotinic recep-
tor binding (6-9), and human postmortem studies have found a
similar increase in *H-nicotine binding to high-affinity recep-
tors in the postmortem cortex, cerebellum, and hippocampus
of smokers compared with that in nonsmokers (/0—1/2).

The mechanism by which the chronic exposure of nicotine
evokes an increase in the density of the binding sites is not
fully understood. Marks et al. reported that the increase in
nicotinic receptor numbers in rodents is not caused by an
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FIGURE 2. Percentage of reduction and increment of Vt of
1231-51A in smokers after smoking cessation compared with non-
smokers. Eight brain regions are frontal, parietal, temporal,
occipital, basal ganglia, thalamus, brain stem, and cerebellum
from the left, respectively.

increase in messenger RNA levels (20). The lack of an effect
on nicotinic receptor transcription in mice suggests that
nicotine-induced increases in nicotinic receptor levels are
most likely related to a decrease in receptor turnover (217).
The increase in nicotinic receptor number and the decreased
rate of receptor turnover may be related to nicotinic receptor
channel desensitization, which appears to reflect the confor-
mational state of the receptor channel (2/,22). Once the
nicotinic receptor channels are desensitized and rendered
inactive, additional receptors would be recruited to maintain
the nicotinic response of the neuron, which results in an
overall increase in nicotine binding, possibly due to a con-
version of low-affinity receptors to a conformation with a
high affinity for agonists (23).

In this study, the '23I-5IA Vr measured at 4 h after smoking
cessation was significantly lower than that in nonsmokers.
The mean value of the calculated Vr of the smokers was
~33.5% = 10.5% lower than that of nonsmokers and was
more pronounced in the thalamus (51%) and brain stem
(45%). In this group of volunteers, the plasma nicotine level
4 h after smoking cessation was detectable in only 2 subjects
and was below the detection limit in the other subjects.
Nicotine is highly lipophilic and demonstrated high levels of
nonspecific uptake in brain (24,25). Rowell and Li have
reported that levels of nicotine in the brain were ~3-fold
higher than those in the plasma (7), which explains the lack of
plasma nicotine measurements in 3 subjects in this group of
volunteers. Because of high levels of nonspecific uptake of
nicotine in the brain, nicotine or its metabolites may accu-
mulate in nonspecific compartments in the brain (i.e., white
matter) and then diffuse slowly into areas with higher levels
of nAChRs, maintaining high levels of occupancy of the
nAChRs. In addition, Brody et al. have shown saturation of
the nicotinic receptors in human brain for up to 4 h in smokers
(26). Thus, we would expect some level of nicotine or
metabolites in the brain that would compete with '2’I-5IA
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and impair imaging of the upregulation of nAChRs. Also, we
believe that some level of nicotine in the brain resulted in a
high level of occupancy of the receptors, which reduced
specific tracer uptake (27). Because of competitive binding
between the radioligand and nicotine in the brain, imaging of
upregulation of nAChRs in vivo requires sufficient time for
nicotine clearance (>4-h smoking cessation).

After 10 d of smoking cessation, the Vr of 123]-5]A was
significantly higher than that in nonsmokers, with a 25.7% *
9.2% increase among brain regions. The result of the in-
creased Vr of the '2’I-51A was in agreement with the up-
regulation of the nAChRs in the brains of smokers reported in
postmortem human studies (/0-12) and in animal studies (6—
9). Staley et al. have described similar findings in human
brain (/3). The authors noted that after 6.8 = 1.9 d of tobacco
abstinence, the uptake of '23[-5IA increased significantly
throughout the cerebral cortex (26%~36%) in smokers (/ 3).
After 10 d of smoking cessation, nicotine and cotinine were
not detected in the plasma. Thus, blood nicotine levels were
negligible in the '2*I-51A SPECT scans of smokers as well as
nonsmokers.

After 21 d of smoking cessation, the V¢ of 23]-5]IA was
significantly lower compared with that after 10 d of smok-
ing cessation and was not significantly different from that
in the nonsmokers. Breese et al. showed that smokers who
had quit at least 2 mo before death had nicotinic receptor
binding levels similar to those in nonsmokers (/4). In the
present study, the interval of 21 d was thought to be the
recovery time during which upregulated nAChRs return to
the level of the nonsmoker. This suggests that nicotine-
induced upregulation of receptor number is a temporary
effect, similar to that found in rodents (28,29).

The upregulation of the nAChRs was similar in almost all
brain regions, except the thalamus and basal ganglia, which
showed a slightly different pattern. In thalamus and basal
ganglia, after 10 d of smoking cessation the Vz was higher
than that of the nonsmokers, as in the other regions, but was
not significantly different. Staley et al. have shown similar
findings (/3). In addition, it has been reported in a study of
mice that nicotine-induced increases in nicotinic receptor
numbers do not increase to the same degree in all brain re-
gions (30). Moreover, the nicotinic receptor is more abundant
in the thalamus, with greater receptor heterogeneity, than in
other brain regions (/9). However, the characteristics of the
acute response of neuronal nAChRs to nicotine depend on
their subunit composition (3/,32). Nicotinic receptor subtypes
are affected differentially by chronic exposure to nicotine,
both in cell models (33~35) and in vivo (35). Multiple factors
are thought to be responsible for these differences.

This study should be interpreted in the context of several
limitations. (a) The number of subjects evaluated was
small, which reduced the statistical accuracy. (b) The study
design used did not allow us to deal with a within-subject
analysis of the whole group, as the variables were analyzed
independently. (¢) The smokers varied in their rate and
depth of inhalation of smoke, and these interindividual
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differences could have affected our measurements. (d) The
detection limit of the plasma nicotine measurements was
not enough to evaluate all blood samples. Thus, we were
not able to correlate the plasma nicotine/cotinine levels
with Vz. () We have not coregistered SPECT images with
MRI, which would have been the most appropriate method
for placement of ROIs. (f) We have not evaluated the
smoker’s behavior during the smoking-cessation period. We
believe that the nicotine binding and desensitization of the
nAChRs in the brain alleviate the cigarette craving and that
craving will be the worst during the first 10 d of cessation
due to the upregulation of nAChRs. The craving process
should minimize after 21 d, as we observe similar levels of
occupancy as nonsmokers at that time. However, we cannot
exclude the possibility of other nAChR subtypes being
involved in the process of tobacco dependence.

CONCLUSION

We have described the in vivo imaging of nAChR up-
regulation and recovery in response to short-term smoking

1834

cessation in smokers using '**[-5IA SPECT. Our results
clearly suggest that tobacco smoking is associated with an
upregulation of nicotine binding sites in the brain. The up-
regulation of the nAChRs of the smokers after chronic
exposure to nicotine was downregulated to the level in non-
smokers after ~21 d of smoking cessation. Thus, the upreg-
ulation of receptor numbers is a temporary effect. Nicotine
dependence and difficulty in smoking cessation are also
interesting with regard to the findings of the '23I-5IA SPECT
study. The decrease in nicotinic receptors to nonsmoker
levels may be the breaking point during the nicotine with-
drawal period.
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Abstract

We quantified in vivo brain nicotinic acetylcholine receptor (nAChR) distributions in patients with Parkinson’s disease (PD) and
evaluated correlations between nAChR distributions and clinical variables of the patients, especially dopaminergic medications. Ten patients
with PD without dementia underwent 5-'**l-iodo-3-(2(S)-azetidinylmethoxy)pyridine ('#1-51A) single photon emission computed
tomography (SPECT) and the data were compared with those of 10 age-matched healthy volunteers. Correlation analyses between B
5IA distribution volumes (DVs) in each brain region and clinical variables of the patients were also performed. The PD group showed a
statistically significant decrease (20~25%) in the brainstem and frontal cortex as compared with the control group. Although age, duration of
disease, daily dose of levodopa, duration of PD medication use, and scores on the motor section of Unified Parkinson’s Disease Rating Scale
were not significantly correlated with DV values in any brain regions, high daily doses of dopamine agonist showed a significant negative
correlation with DVs in the cerebellum, and temporal, parietal and occipital cortices. These findings suggest that patients with PD without
dementia can show reductions especially in the brainstem and frontal cortex. They also suggest that dopamine agonists can have a negative
influence on the distribution of nAChRs. '
© 2007 Elsevier B.V. All rights reserved.

Keywords: Parkinson’s disease; Single photon emission computed tomography; 5-1231-iodo-3-(2(S)-azetidinylmethoxy)pyridine; Nicotinic acetylcholine
receptors: Distribution volume; Dopamine agonist

1. Introduction acetylcholine receptors (nAChRs) in the post-mortem brains
_ of both demented and non-demented patients with PD [2,3].
Parkinson’s disease (PD) is a movement disorder nAChRs are a family of ligand-gated ion channels
characterized by a progressive decline in nigrostriatal composed of multiple & (a;—a7) and B (5>—[34) subunits
dopaminergic function. Although the primary deficit seems and the majority of high affinity nAChRs in the brain
a loss of substantia nigra dopaminergic neurons, other comprise the auB, subtype [1]. Most brain nAChRs are
neurotransmitter systems are also affected, including the presynaptic and their most important function is to modulate
nicotinic cholinergic system [1]. Extensive evidence now the release of various neurotransmitters such as dopamine,
indicates that there are significant declines in nicotinic acetylcholine, gamma-aminobutyric acid (GABA), and

glutamate [4,5]. nAChRs are implicated in memory,

attention, and reward [1]. Furthermore, numerous studies

* Corresponding author. Tel.: +81 75 751 3695; fax: +81 75 751 3202. have shown that nicotinic receptors located on presynaptic
E-mail address: fukuyama@kuhp kyoto-u.ac.jp (H. Fukuyama). dopaminergic terminals [6] modulate the striatal release of

0022-510X/$ - see front matter © 2007 Elsevier B.V. All rights reserved.
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dopamine, which is essential for the control of movement
and posture [5].

Recently, 5-iodo-3-(2(S)-azetidinylmethoxy) pyridine
(5IA). a derivative of A-85380 iodinated at the 5-position of
the pyridine ring, was reported to be a promising ligand for
imaging nAChRs because of its high uptake in the mammalian
brain, a distribution consistent with the known density of
nAChRs, a high-affinity nAChR ligand with high subtype
selectivity for ayf3, [7]. It has been predicted that SIA labeled
with 121 ( 1B31.51A) injected at the usual clinical dose would
have no pharmacological effect and that the absorbed dose of
radiation appeared acceptable for clinical SPECT imaging[8].
Furthermore, the regional distribution of radioactivity in the
image of healthy human brain using '**I-5IA was associated
with the known nAChR distribution [9,10]. Recently, Fujita et
al. first reported a pilot study of in vivo nAChR imaging using
1231-51A in PD and showed widespread significant decrease
of distribution in both cortical and subcortical regions[11].

In the present study, we quantified in vivo brain nAChR
distributions in PD patients using '**I-5IA SPECT. We also
evaluated correlations between nAChR distributions and
clinical variables of PD patients, especially dopaminergic
medications, because animal studies suggest that the
dopaminergic system can exert a negative modulatory
influence on nAChR expression [12].

2. Methods
2.1. Subjects
Ten patients with PD (five men and five women; mean

age+£S.D., 66.9+7.0 years) were enrolled in this study.
Diagnosis was made by movement disorder subspecialists

53

based on the UK Brain Bank criteria [13]. None of the
subjects had a history of smoking or cholinergic medica-
tions, which could have a strong influence on nAChR
distributions. Demented patients defined by DSM-IV criteria
[14] and a Mini-Mental State Examination (MMSE) score
[15] of 25 or less were excluded. Patients with hallucination
episodes were also excluded. MRI showed no brain
morphological abnormalities in all patients. Clinical assess-
ment of each PD patient was performed with the motor
section of the Unified Parkinson’s Disease Rating Scale
(UPDRS), [16] Hoehn and Yahr scale [17] and MMSE
scores (Table 1). Two types of dopamine agonists were used
in the patients, and the doses were calculated relative to
bromocriptine according to the formula: bromocriptine
10 mg=pergolide 550 pg=cabergoline 2 mg [18]. All
patients underwent clinical assessments and SPECT at least
12 h after they took their last anti-parkinsonian medications.
123[.51A SPECT data were compared between patients and
10 healthy volunteers without any history of smoking,
cholinergic medications, or neurologic or psychiatric illness
(seven men and three women; age, 65.8+10.2 years). There
was no significant difference in age (p=0.78 by two-tailed
Student’s t-test) or gender (»p=0.65 by Pearson’s chi-square
test) between the two groups. All subjects gave written
informed consent based on the study protocol approved by the
Ethics Committee of Kyoto University School of Medicine.

2.2. Radiochemistry

SIA and 5-(tri-n-butylstannyl)-3-(1-tert-butoxycarbonyl-
2(8)-azetidinylmethoxy)pyridine, the stannyl precursor of
'231.51A, was synthesized according to a previous report [7].
No carrier-added sodium '*I-iodine was supplied by Nihon

Table |

Clinical features in patients with Parkinson’s disease

No. Age Sex Disease duration H-Y  UPDRS MMSE Daily Daily Drug duration  PD medications (mg

(years) (years) scale Il levodopa  agonist*  (vears)
(mg) (mg)

I 77 M 1.0 2.0 17 28 100 0 0.7 Levodopa/DCI 100

2 57 M 8.2 5.0 40 26 600 15.0 7.6 Levodopa/DCI 600, cabergoline 3,
amantadine 125, droxidopa 600

3 74 F 1.8 2.0 14 27 300 1.3 0.3 Levodopa/DCI 300, cabergoline 0.25,
pergolide 0.2

4 69 F 0.5 2.5 15 29 0 0 0.0 Amantadine 100

5 55 F 6.8 4.0 21 30 400 42.7 6.4 Levodopa/DCI 400, cabergoline 4,
pergolide 1.25

6 67 F 2.9 1.0 B 29 100 20.0 1.9 Levodopa/DCI 100, cabergoline 4,
amantadine 50

72 M 7.2 20 12 30 300 13.6 4.6 Levodopa/DCI 300, pergolide 0.73,

amantadine 150

8 66 M 4.4 2.0 6 29 400 20.0 23 Levodopa/DCI 400, cabergoline 4

9 63 F 1.1 1.0 7 29 200 13.6 1.0 Levodopa/DCl 200, pergolide 0.75

10 69 M 33 20 19 30 200 1.8 28 Levodopa/DCI 200, pergolide 0.1

Mean 669 3.7 2.4 16.2 28.7 260 12.8 28

S.D. 7.0 2.8 1.2 9.6 1.3 178 13.3 2.6

DCl=dopa-decarboxylase inhibitor: H-Y =Hoehn and Yahr; MMSE=Mini-Mental State Examination: PD= Parkinson's disease: UPDRS [1=the motor section

of the Unified Parkinson's Disease Rating Scale.

* The dosages of two types of dopamine agonists (pergolide, cabergoline) were calculated relative to bromocriptine.
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| SPECT acquisition
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Fig. I. Simple methodological diagram demonstrating the steps involved in
SPECT acquisition and analysis.

Medi-Physics Co. Ltd. (Nishinomiya, Japan). Radiolabeling
was also performed according to previous reports [7,8,10].
Radiochemical purity was >98% and the specific activity
determined from the ultraviolet absorbance at 254 nm
was > 169 GBg/pmol.

2.3. SPECT acquisition

All SPECT dynamic scans were acquired with a triple-
head rotating ~y-camera system (PRISM 3000; Picker
International, Inc.) equipped with low-energy, high resolu-
tion, fanbeam collimators. This system provides a spatial
resolution of 8.0-mm full width at half maximum (FWHM)
at the center of the field of view with a sensitivity of 135 cps/
MBgq. '*’I-5IA was administered intravenously to subjects,

over a period of 1 min at a constant rate with an infusion
pump. There is no significant difference in the dose of &
5IA between the two groups, as shown by two-tailed
Student’s r-test (175+13.8 MBq in the PD group and 183+
32.5 MBq in the control group; p=0.49). The scan was
started simultaneously with the injection. Data acquisition
was performed in 64x64 matrices in a continuous rotation
mode with 40 steps for 120° and 1.5 s per step, which
translates to a 1 min for 1 SPECT dataset. All subjects
underwent a 90-min scan after intravenous injection of '*I-
5IA, followed by three sets of 20-min scan (at 2, 3, and 4 h
after the injection) (Fig. 1). All SPECT images were filtered
with a Butterworth filter (cutoff frequency, 0.25; order, 4),
and reconstructed using a filtered backprojection algorithm
with a ramp filter. Attenuation correction was performed
using ellipses outer line approximation and Chang’s method
(coefficient of 0.06/cm) adjusted for each slice. The same
ellipse size was kept for the different scans of each subject.
Scatter correction was not applied.

An arterial input function was obtained for each subject.
Twenty-four arterial blood samples were drawn, initially
every 10 s during the first two min, followed by every 15 s
during the next minute, and then subsequently at 5, 7, 10, 20,
30, 45, 60 and 90 min. Additionally, three venous blood
samples were obtained at 2, 3, and 4 h after injection because
we previously confirmed that venous blood sampling was a
simple and acceptable choice for input function at several
time points, including 2, 3, and 4 h after injection [10].
Fourteen samples (1, 2, 3, 5, 7, 10, 20, 30, 45, 60, 90, 120,
180, and 240 min) were analyzed for metabolite determina-
tion. Metabolite correction was performed using the same
method as the previously reported [10].

2.4. Image analysis by automated volume of interest

All SPECT images of each subject were coregistered to
cach other using Statistical Parametric Mapping (SPM)
version 2 (Wellcome Department of Cognitive Neurology,
UCL, London, UK) implemented in Matlab 6.5 (Math

Fig. 2. SPECT images of a healthy volunteer which show radioactivity collected 0 to 40 min after injection of 1331.5-j0do-3-(2(S)-azetidinylmethoxy) pyridine,
and the volumes of interest (VOIs). VOIs were placed in the thalamus, striatum, brainstem, cerebellum, and the frontal, temporal, parietal, and occipital cortices.
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Works, Natick, Mass., USA). The '*’I-5IA images during
the first 40 min were added to create images with good
delineation of cerebral cortices [9]. The manually traced
template image during the first 40 min was created using
high-resolution 3D T1-weighted magnetic resonance (MR)
images in three healthy volunteers. Using SPM, the MR
images were coregistered to each SPECT image during the
first 40 min, and both MR and SPECT images were spatially
normalized to a standard anatomic orientation (Montreal
Neurological Institute [MNI] space) by obtaining parameters
from MR images. Then, the template SPECT image during
the first 40 min was generated by averaging these three
normalized images. Volumes of interest (VOIs) were placed
on the template MR image overlying the thalamus, striatum,
brainstem, cerebellum, and frontal, temporal, parietal, and

Journal of the Neurological Sciences 256 (2007) 52-60) 55

occipital cortices. The standard VOIs were transformed to
individual images by SPM using the 'Invert deformations’
function (Fig. 2). Since these individual VOIs are automat-
ically defined, the operator induced bias in defining VOIs
manually can be avoided.

A two-compartment model was applied to calculate
distribution volumes (DVs) in each VOI according to
previous reports [10]. Non-linear least-squares analysis
was performed on the VOI generated time-activity data
using PMOD 2.61. The model configuration was imple-
mented to account for the contribution from activity in the
cerebral blood volume. Cerebral blood volume was assumed
to be 5% of brain volume [9,10]. The accuracy of DV was
evaluated by a percentage of the rate constants (coefficient of
variation, %COV) in each brain region [9].

Parkinson’s Disease

DV (ml/g)
50 © Healthy Volunteer
. ® Parkinson’s Disease
40 —
*
30t 3
%
.l
20 - o =
20 A 2% = a Sa 1 )
.. X k -': s —9— ;-? .& < -',F < q;"_
. o, . > : W —— #_
10 - * ~ o o T
Thalamus Striatum Brainstem  Cerebellum  Frontal Temporal Parietal Occipital
( B ) Cortex Cortex Cortex Cortex
Fig. 3. (A) Averaged '**I-5IA distribution volume (DV) images of the control group (upper) and the Parkinson’s disease (PD) group (lower) after spatial

normalization by Statistical Parametric Mapping (SPM). Visual inspection of these images revealed lower DVs in the PD group compared with the control group.
(B) Scatter diagrams showing '**I-5IA distribution volumes in each volume of interest in healthy volunteers and PD patients. * p<0.05 after Bonferroni

correction for multiple comparisons (n=8).
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Fig. 4. Statistical parametric maps of significant "3L.SIA distribution
volume decrease in the Parkinson’s disease group as compared with the
control group, superimposed on a surface-rendered MRI template.

2.5. Image analysis by Statistical Parametric Mapping

The method of analysis using SPM, allowing exploratory
voxel by voxel group comparisons throughout the entire
brain volume without requiring an a priori hypothesis, was
also used in this study. The voxel-by-voxel DV images were
calculated using graphical methods of analysis [19]. The
voxel-by-voxel images of the delivery of the radioligand (K )
were also calculated using PMOD [20]. Using SPM, 1231514
DV images during the first 40 min were coregistered to each
of the DV images, and both images were spatially normalized
to the MNI space by obtaining parameters from images
during the first 40 min. The template DV image was
generated by averaging the normalized images and smoothed
with an isotropic Gaussian kernel. Each DV image was
transformed into the template DV image and smoothed by
three-dimensional convolution with an isotropic Gaussian
kernel (FWHM =10 mm). The normalized DV images were
compared by voxel-by-voxel contrasts using ¢ statistics
between the two groups [21]. As DV values are quantitative,
all SPM analyses were performed without global normaliza-
tion. The K, images were also compared by the same way as
the DV images.

Correlation analyses between the voxel-by-voxel DV
images and clinical variables of interest in PD patients were
also performed for each voxel using the general linear
approach [21].
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Brain regions (approximate Brodmann areas) were esti-
mated based on the methods of Talairach and Tournoux, [22
after adjustment (www.mrc-cbu.cam.ac.uk/Imaging/mnispace.
html) for differences between MNI and Talairach coordinates.
SPM maps thresholded at Z>3.09 (p<0.001) were obtained
and only those at p<0.05, cluster-level corrected for multiple
comparisons, were considered significant.

2.6. Statistical analysis

The '*I-5IA DV values of each automated VOI were
analyzed using oneway analysis of variance (ANOVA) and
post hoc Bonferroni correction for the PD group and the control
group. Differences were considered significant atp<0.05.

Differences in '**I-5IA DV values of each automated VOI
between the PD group and the control group were analysed
using two-tailed Student’s r-test with Bonferroni correction for
multiple comparisons. Because of the multiple comparisons in
eight brain areas, differences between the groups were
considered significant at a level of p<0.00625 (=0.05/8).

3. Results
3.1. Image analysis by automated volume of interest

In all brain regions, DVs were well identified with %COV
values of 0.87% to 2.2%. The highest DVs were found in the

Table 2

Brain regions of significant '231.51A distribution volume decrease in the
Parkinson’s disease group as compared with the control group in Statistical
Parametric Mapping (SPM) analyses

Cluster-level Region (BA) Coordinate Z

: score
Talairach space

Corrected P & % ¥ z

<0.001 28854 R Medial Frontal Gyrus 6 49 1 3.83
(8, 10)
R Middle Frontal Gyrus 51 15 34 378
(9)
R Inferior Frontal Gyrus 32 27 8 374
(45, 47)
Anterior Cingulate Gyrus 0 23 28 372
(32)
L Uncus (38) 14 = 33 385
R Superior Temporal 46 8 1 354
Gyrus (22)
R Orbital Gyrus (1) 20 38 24 354
L Medial Frontal Gyrus (8) —8 45 36 349
R Pons 12 17 -23 345
L Superior Frontal Gyrus 16 49 21 339
(11
L Midbrain 2 35 =5 837
L Middle Frontal Gyrus 18 44 22 337
(1
L Orbital Gyrus (47) 16 34 24 335
L Inferior Frontal Gyrus 22 26 20 331

(11, 47)

Each of the regions had a local peak Z score within the clusters.
BA =Brodmann area; k=number of activated voxels; L=left; R=rght.
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thalamus (ANOVA, p<0.001) in both groups (Fig. 3).
Subsequently, the brainstem, cerebellum, and striatum were
assembled in a group of moderate DVs in both groups. No
significant differences were observed between them. DVs of
the brainstem were significantly higher than those of any
cortical regions in the control group, whereas DVs of the
brainstem were significantly higher than those of the
temporal, parietal, and occipital cortices in the PD group.
The cortical regions were arranged in a group of low DV
values in both groups and no significant differences were
observed between them.

In the PD group, there was a reduction of DV by 15% to
25% in each region compared with the control group. The
PD group showed a tendency for DV reduction in the
thalamus, striatum, cerebellum, and the temporal, parietal
and occipital cortices and a significant decrease in the
brainstem and the frontal cortex compared with the control
group.

3.2. Image analysis by Statistical Parametric Mapping

The PD group showed neither significantly increased
nor decreased K, in any region compared with the control
group. The statistical parametric maps of DV decrease in
the PD group compared with the control group are shown in

Fig. 4 and Table 2. The PD group showed significantly
reduced DV in the frontal areas including the superior,
middle and inferior frontal gyri, the anterior cingulate
gyrus, the medial frontal gyrus and the orbital gyrus; in the
temporal areas including the superior temporal gyrus and
the uncus; and in the brainstem areas including the midbrain
and pons. No regions revealed significantly higher DV
values in the PD group than in the control group. These
results were generally consistent with the automated VOI
analyses.

3.3. Correlations between DVs and clinical variables of PD
patients

Age, duration of disease, daily dose of levodopa, duration
of PD medication, and the scores of the motor section of
UPDRS were not significantly correlated with the voxel-by-
voxel DV images. In contrast, the daily dose of dopamine
agonist showed a significant negative correlation with DV
in the cerebellar areas including the cerebellar hemisphere; in
the temporal areas including the superior, middle and inferior
temporal gyri, the fusiform gyrus and the parahippocampal
gyrus; in the parietal areas including the supramarginal gyrus,
the inferior parietal lobule and the postcentral gyrus; and in
the occipital areas including the superior, middle and inferior

Fig. 5. (A) Statistical parametric maps of significantly negative correlation between the 1231.51A distribution volume (DV) images and daily dose of dopamine
agonist in patients with Parkinson’s disease (PD), superimposed on a surface-rendered MRI template. (B) Statistical parametric maps of significantly negative

" 23
correlation between the '°

Parametric Mapping (SPM) analyses.

I-5IA DV images and daily dose of dopamine agonist in PD patients after age was inserted as a ‘nuisance’ variable on Statistical

<108 =
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Table 3

(A) Brain regions of significantly negative correlations between the voxel-
by-voxel 1231.5[A distribution volume (DV) images and daily dose of
dopamine agonist in patients with Parkinson’s disease (PD) in Statistical
Parametric Mapping (SPM) analyses

Cluster-level Region (BA) Coordinate Z
Talairach space score

Corrected P & x y z

<0.001 47408 R Cerebellar Hemisphere 42 -52 -38 4.15

L Cerebellar Hemisphere  ~26 —74 -38 3.92
R Middle Temporal Gyrus 65 —-33 -2 391

(21
L Lingual Gyrus (19) -16 -43 -1 3.89
R Superior Temporal Gyrus 59  —-57 27 3.84
(39
L Middle Occipital Gyrus —38 —-87 -1 3.80
L Superior Occipital Gyrus —46 -78 30 3.77
(19)
L Fusiform Gyrus (37) -49 -57 —-16 3.76

L Supramarginal Gyrus (40) —53 —-57 34 3.73
L Inferior Temporal Gyrus —57 =55 -7 3.69

(37)
R Inferior Temporal Gyrus 53  —-53 —12 3.64
(20
L Middle Temporal Gyrus —63 —26 —12 3.63
21)
R Postcentral Gyrus (5) 6 -41 68 3.58
L Postcentral Gyrus (5) -2 -41 67 355
R Inferior Occipital Gyrus 34 -78 -1 3.51
(19)
R Parahippocampal Gyrus 32 —-28 —24 3.48
(36)
L Inferior Parietal Lobule —46 -39 41 347
(40)
R Inferior Parietal Lobule 51 —-27 46  3.40
(30)

(B) Brain regions of significantly negative correlations between the voxel-
by-voxel '*I-51A DV images and daily dose of dopamine agonist in PD
patients in SPM analyses after age was inserted as a ‘nuisance’ variable on
SPM analyses

Cluster-leve! Region (BA) Coordinate VA
Talairach space score

Corrected P k& X y z

<0.001 5177 L Inferior Parietal Lobule —44 -38 46 3.89
(40)
R Precuneus (7) 10 -59 55 3.77
L Postcentral Gyrus (3) ~16 -38 61 3.58
L Cingulate Gyrus (31) -4 —41 33 348
R Postcentral Gyrus (5) 6 -43 63 3.10

0.010 2056 L Cerebellar Hemisphere  —28 =75 —33 3.80

0.012 1927 R Postcentral Gyrus (1, 3) 61 -25 38 3.78
R Supramarginal Gyrus (40) 53 -49 34 3.6l
R Superior Temporal Gyrus 67 —48 19 3.21
22)

0.009 2151 R Cerebellar Hemisphere 40 —-56 -38 3.57

Each of the regions had a local peak Z score within the clusters.
BA =Brodmann area; &= number of activated voxels; L=left; R=right.

occipital gyri, the lingual gyrus (Fig. SA and Table 3A). No
regions showed a significant positive correlation between the
daily dose of dopamine agonist and the DVs.
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Correlation analyses betweenthe voxel-by-voxel DV images
and the daily doses of dopamine agonist were also done by SPM
with age as a ‘nuisance’ variable (Fig. 5B and Table 3B) because
a loss of nicotine binding has been seen during aging in normal
human subjects[23] and age could have a confounding effecton
the distribution of nAChRs. There was a significant negative
correlation between the daily dose of dopamine agonist and DV
in the parietal areas including the inferior parietal lobule, the
precuneus, the postcentral gyrus, the posterior cingulate gyrus
and the supramarginal gyrus; in the cerebellar areas including
the cerebellar hemisphere; and in the temporal areas including
the superior temporal gyrus. No regions revealed significantly
positive correlations betwen the daily dose of dopamine
agonist and DV.

4. Discussion

Automated VOI analyses revealed that '*’I-5IA DV in all
brain regions tended to be lower in the PD group compared with
the age-matched control group. The result is generally consistent
with previous post-mortem 1251.5IA studies of nAChR
distribution in PD [2] and a study of nAChR distribution in
living PD patients [11}. Furthermore, the PD group showed a
significant decrease of 123[.5IA DV in the brainstem and frontal
cortex compared with the control group. Although the decreases
seem to be greater than those in the previous study[11], they
may be caused by the differences of SPECT procedures,
intervals of arterial sampling obtained for the first 2 min and
plasma analysis. The effect of artiparkinsonian medication may
result the discrepancies because the patients stopped anti-
parkinsonian medication 12 h before SPECT in this study, while
they continued it during SPECT[11]. The discrepancies of the
brainstem may be due to the definition of the VOI in the
brainstem. The VOI was placed not only in the pons but also in
the midbrain in this study, while they placed the VOI only in the
pons [11]. Tt is also possible that brain atrophy can partially
influence '*’I-5IA DV because a recent volumetric MRI
analysis showed that reduced volume in PD patients without
dementia, in the frontal lobe [24]. Another limitation of this
study is the small number of subjects and a low statistical power
might cause no significant differences in the striatum or
thalamus which were closely linked to the basal ganglia circuits.
Although the previous post-mortem I51.5]A study showed a
more decrease in the striatum [2], the decrease did not reach
statistical signiticance in this study as well as in the previous
study [11]. Explanation for the discrepancy may be different
disease severity. Their study was a post-mortem study and the
mean age in the PD group of the study was about 10 years older
than that of this study [2], which suggested that disease severity
was greater in their study. Low spatial resolution of SPECT
might also confound the results. Further studies combined with
volumetric MRI analysis or partal volume correction in larger
subjects are needed to confirm these possibility. Cholinergic
neurons can be found in the tegmental pedunculopontine (PPN)
and laterodorsal nuclei (LDN) wth important projections to the
substantia nigra pars compacta {SNc), thalamus, striatum and
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prefrontal cortex[1,25] and the PPN-LDN cholinergic system is
affected in PD [25]. In PD patients, a decrease in high-affinity
nAChRs density by 70% in the SN¢ and 40% to 50% in the
LDN was reported [26]. Dysfunction in the PPN-LDN
cholinergic system could explan the significant decrease of
'23[.5IA DV in the brainstem of PD patients.

It is interesting that PD patients without dementia showed a
significant decrease of '**I-5IA DV in the frontal cortex. PD
patients show characteristic cognitive declines even in the early
stage, and they show particular impairment on neuropsycholo-
gic tests sensitive for frontal lobe function[27]. Basal forebrain
cholinergic pathways have impaired cholinergic innervations in
PD patients and the nucleus basalis of Meynert (nbM) diffusely
projects to the neocortex, particularly the frontal and parietal
cortices, and the amygdala [28]. Previous post-mortem studies
showed a decreased number of nAChRs in the frontal, temporal,
parietal and occipital cortices in both demented and non-
demented PD [3]. The dysfunction in the nbM cholinergic
system could also explain the significant decrease of'**I-5IA
DV in the frontal cortex in the PD group in this study. It is also
possible that the decrease in the' *I-5IA DV in the frontal cortex
is caused by dysfunction of cholinergic interneurons in the
frontal cortex. Further studies are needed to confirm this
possibility because no neuropsychologic tests sensitive for
frontal lobe function were used in this study.

' The VOI results in this study are supported by SPM
analyses which localized significant decreases in '**[-5[A DV
at the voxel level in spatially normalized datasets. In
accordance with the previous report [11], the PD group
showed neither significantly increased nor decreased K, in any
region compared with the control group, which suggested that
decreased DV in the PD group was not due to decreased local
perfusion. Additionally, by using SPM, we were able to
identify foci of decreased '*I-5TA DV in the orbitofrontal,
anterior cingulate and anterior temporal cortices. Dopaminer-
gic projections from the midbrain, especially the SN¢ and the
ventral tegmental area, to the orbitofrontal, anterior cingulate
and anterior temporal cortices form part of the mesocortico-
limbic dopaminergic system which is involved in motor,
cognitive and behavourial functions [29]. Not only nigros-
triatal but also mesocorticolimbic dopamine transporter
density, which corresponds with presynaptic dopaminergic
function, is decreased even in early PD [30]. Several studies in
PD patients have shown the importance of the interaction
between acetylcholine and dopamine neurotransmission[4]. In
the prefrontal cortex, oyf3- appears to play a major role in
nAChR-mediated 3 H-dopamine release [31]. Therefore,
decreased nAChRs in the orbitofrontal, anterior cingulate
and anterior temporal cortices could decrease dopamine release
to these regions and cause the mesocorticolimbic dysfunction.

Correlation analyses showed that age, duration of disease,
and scores on the motor section of the UPDRS were not
significantly correlated with DV values in any brain regions.
Because clinical ratings were measured 12 h after stopping
anti-parkinsonian medications, this period might be too short
to determine their clinical off status and to allow for adequate

correlation analyses, especially for those five patients who
received cabergoline with long half-life. Although previous
non-human primate studies showed that 2 weeks of levodopa
treatment reduced striatal nAChRs [12] and that longer
courses of levodopa treatment caused greater declines in '*°1-
5IA binding [32], the daily dose of levodopa and duration of
PD medication did not show significant correlations with DV
values in any brain regions. Because all patients stopped their
anti-parkinsonian medications at least 12 h before SPECT, it
might explain the difference. It is also possible that the small
number of patients or the narrow range of clinical variables in
our study might have weakened the statistical power.

High daily doses of dopamine agonist showed a significant
negative correlation with DVs in the cerebellum, and temporal,
parietal and occipital cortices. To our knowledge, our study
first showed the relationship between nAChR distribution and
dopamine agonists in PD. Because nAChR stimulation evokes
the release of dopamine, it is possible that feedback regulation
occurs and that the dopaminergic system can exert a negative
modulatory influence on striatal nAChR expression [12].
Evidence indicates that doparnine excites cholinergic neurons
mainly via D,-like receptors and inhibits acetylcholine release
via D, receptors [33,34]. The differences in acetylcholine
modulation in dopamine receptor subtypes might explain the
robust negative correlations between '*I-5IA DV values and
the daily dose of dopamine agonist (in contrast to levodopa).
Serotonergic mechanism affected by dopamine agonists may
also be important because the function of nAChR can be
modified by serotonergic agents [35]. However, the negative
correlation may not be conclusive because of the small number
of patients in this study. Another explanation could be that
these correlations simply reflect the fact that patients who
require more medication are more severely affected because a
12 h period might be too short to determine their clinical off
status. It could also in principle have a direct influence on 5IA
kinetics or metabolism and possibly produced an artifactitious
correlation between the daily dose of dopamine agonist,
especially cabergoline, and '*I-5TA DV values.

The ability of dopamine agonists to modulate nAChR
distributions in the cerebellun, and temporal, parietal and
occipital cortices is of particubr interest because dopamine
agonists could influence cognitive dysfunction more than
levodopa [36]. Additionally, by using SPM with age as a
‘nuisance’ variable, we were able to identify foci of decreased
'B1.5IA DV in the inferior parietal lobule, precuneus and
posterior cingulate cortex. These parietal regions were reported
to be decreased in regional cerebral blood flow in PD with
dementia [37] and might be associated with cognitive
dysfunction induced by dopamine agonists.
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ABSTRACT

Objectives: 18F-fluoro-2-deoxy-D-glucose (FDG) positron emission tomography (PET) has
been shown to be useful in diagnosis and staging of pancreatic cancer. However, the prognostic
value of FDG-PET remains controversial. The aim of this study was to evaluate relations between
the factors suggested to be related to the FDG accumulation in tumor tissue, such as glucose
transporter-1 (GLUT-1), hexokinase type-Il (HK-11}, proliferating cell nuclear antigen (PCNA), and
survival of pancreatic cancer patients. Methods: Histological specimen of pancreatic cancer
obtained from seventy-four consecutive patients were evaluated for the expression of GLUT-1,
HK-II, and PCNA by visual analysis of immunohistochemical staining of paraffin sections from
the tumor specimens using anti-GLUT-1, anti-HK-Il, and anti-PCNA antibody, respectively. The
percentages of cells strongly expressing GLUT-1, HK-1l and PCNA were scored on a 5-point scale
(1 = 0-20 percent, 2 = 20-40 percent, 3 = 4060 percent, 4 = 6080 percent, 5 = 80-100 percent).
After initial treatment, each patient was followed-up and survival time was recorded. Median
survival curves of the patients with different levels of GLUT-1, HK-II, and PCNA expression were
evaluated using the Kaplan-Meier method. Statistical significance of the differences in survival
was calculated with the log rank test. Results: Median survival of examined patients showed
no relation with the levels of GLUT-1 expression, while patients with low expression of HK-II
(HK-Il index < 3) had significantly shorter survival than those with higher expression of HK-I|
(HK-ll index > 3) (6.5 + 4.1 versus 12.9 - 22.4 months, respectively, p < 0.05). Median survival
of examined patients also showed significant relations with the levels of PCNA expression.
Patients with low expression of PCNA (PCNA index < 4) had significantly longer survival than
those with higher expression of PCNA (PCNA index > 4) (11.9 + 20.1 versus, 5.8 + 10.8 months,
respectively, p < 0.01): Conclusions: Our results showed that the expression of GLUT-1 had
no prognostic value in the examined patients with pancreatic cancer. On the other hand, high
levels of HK-ll expression and low levels of PCNA expression may aliow accurate identification
of the patient with longer survival who may benefit from intensive anticancer treatment.

INTRODUCTION

Pancreatic cancer remains a highly lethal disease in spite of
new developments in early diagnosis. improvements in surgi-

Keywords: Glucose transporter-1, Hexokinase-ll, Proliferating cell
nuclear antigen, Pancreatic cancer, Survival.
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