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Induction of apoptotic T98G cells in vitro by overexpression of HCOLIAI. Mock cells (Mock) and HCOLI Al -transfected cells
(HCOLIAI-I and HCOLIAI-Hl) were assayed for apoptosis using the in situ TUNEL method. (a) The photomicrographs of
Apoptotic cells. Magnification, x 200. (b) The percentage of apoptotic cells represents the mean + SD (n = 5, duplicate experi-

ment). *, P < 0.001, when tested against the Mock.

tumorigenesis, migration, proliferation, apoptosis, and
morphogenesis, which are distinct from those of original
intact molecules [2-11,32-36]. Endostatin, which is an
NC1 fragment of type XVIII collagen, has been extensively
studied in the angiogenesis field [4,37,38]. It has been
reported that endostatin inhibits tumor cell invasion, as
well as HCOL1A1 peptides, which were presented here.
Endostatin inhibits tumor cell invasion by blocking the
activation of latent matrix metalloprotease-2, -9, and -13
[39-41]. However, in this study, there was no difference in
the level of activated MMP-2 and MMP-9 between
HCOL1A1-transfected cells and Mock cells by gelatin
zymography analysis (data not shown). This finding sug-
gests that the HCOL1A1 peptide may have a unique func-
tion as a suppressor of tumor cell invasion that is distinct
from that of NC1 fragments of basement membrane col-
lagens. It was demonstrated that endostatin suppresses

cell proliferation in vitro and inhibits the growth of pri-
mary tumors and metastases by induction of apoptosis
[42-44]. Similarly, the expression of HCOL1A1 peptides
caused inhibition of tumor cell growth in vitro and com-
plete regression of tumors in nude mice. Moreover,
HCOL1A1 peptides induced apoptosis in glioma cells.
Thus, HCOL1AL1 peptides, as well as endostatin and other
NC1 fragments of collagens, should also have a potential
for anti-tumorigenesis. Interestingly, type I collagen is a
fibrillar collagen, whereas fragments of collagens, which
have so far been reported to inhibit tumor progression,
are derived from basement membrane collagens. The
HCOLI1A1 peptides, which are derived from fibrillar col-
lagen, may be novel inhibitors of tumor growth and inva-
sion. In this report, the mechanism for the suppression of
malignancy of T98G glioma is not evident, but it should
become clear with further study.
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Recently, significant technical advances in the treatment
of gliomas have emerged, and gene therapy, in particular,
is noted as a potent therapeutic strategy. The major
approaches of gene therapy to glioma are based on apop-
tosis-related gene therapy [45], antiangiogenesis therapy
[46,47], and immunotherapy [48,49]. Several ECM com-
ponents and their fragments, such as decorin [20,30,31]
and endostatin [46,50-54] are being tried as potential tar-
gets for glioma gene therapy. The HCOL1A1 gene may
also be a good candidate as gene medicine for a novel
therapy against glioma.

Conclusion

In summary, the tumor growth and invasion of malignant
human gliomas were markedly suppressed by the intro-
duction of HCOL1A1. The suppression of a malignant
phenotype of glioma cells by HCOL1A1 provides the
basis of a novel therapeutic approach.

Materials and methods

Cell culture

The human glioma T98G cells were derived from glioblas-
toma and obtained from the American Type Culture Col-
lection. Cells were maintained and passaged in a
minimum essential medium (MEM) supplemented with
10% fetal bovine serum (FBS), 1% nonessential amino
acids, and 1 mM sodium pyruvate at 37°C.

HCOLIAI expression plasmid

An al chain of the human type I procollagen expression
vector, pCXN2/HCOL1A1, was constructed as follows.
The cDNA of HCOL1A1 was cloned from a human heart
cDNA library, and a partial cDNA fragment was synthe-
sized by RT-PCR using mRNA of a normal human skin
fibroblast. cDNA encoding the full-length HCOL1A1 gene
was assembled from these fragments. The full-length
HOCL1A1 cDNA was cloned into the downstream of the
CAG promoter of a pCXN2 expression vector containing
the neomycin resistance gene.

Cell transfection

Cells were transfected with pCXN2/HCOL1A1 or pCXN2
without an insert, as a Mock, by using LipofectAMINE
2000 (Invitrogen Corporation, CA} according to the man-
ufacturer's protocol. Cells were selected in a medium con-
taining 0.8 mg/ml of G418. G418-resistant colonies were
cloned and expanded.

Immunocytochemical staining

T98G cells (1 x 105) were grown for 2 to 4 days on 6-cm
culture dishes and fixed with cold methanol at -20°C for
5 min. The cells were permeated with 0.02% Triton X-100
in PBS for 15 min and pretreated with 3% H,O, in meth-
anol for 15 min to quench endogenous peroxidase activ-
ity. The cells were blocked with Block Ace (Dainippon
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Pharmaceutical Co., Ltd., Osaka, Japan) overnight at 4°C
and incubated with polyclonal anti-a1(I) collagen anti-
body (L-19) (1:60) (Santa Cruz Biotechnology, Inc., CA)
at 37°C for 1 h. Bound primary antibodies were labeled
with biotinylated IgG antibodies (1:500) (Santa Cruz Bio-
technology, Inc., CA) at 37°C for 15 min and incubated
with streptavidin-peroxidase at 37°C for 20 min.
HCOL1A1 peptides were visualized with diaminobenzi-
dine, and nuclei were counterstained with hematoxylin.

In vitro growth assay

Individual clones were seeded in 96-well plates at a den-
sity of 5 x 102 cells per well in 100 pl of a culture medium.
At each time point, the cells were assayed for proliferation
with TetraColor One, a cell-proliferation assay reagent
(Seikagaku Co., Tokyo, Japan), according to the recom-
mended method; they were then measured for absorb-
ency at the well at 450 nm with a reference wavelength at
650 nm.

In vitro invasion and motility assay

In vitro invasion assays were performed using a Matrigel
invasion chamber (8-um pore size, Becton Dickinson,
Bedford, MA). A suspension of 2.5 x 10%cells in 0.5 ml of
a serum free medium, Cosmedium 001, was added to the
Matrigel chamber. The chambers were incubated at 37°C
for 24 h in a 95% air/5% CO, incubator. The cells on the
lower surface of the membrane were stained with Diff-
Quik stain (Kokusaisiyaku, Kobe, Japan). The invadin
cells were photographed under a microscope at x 100
magnification and counted in five fields of four mem-
branes.

A cell motility assay was performed in a similar manner
except that the 8-um pore size PET membrane was not
coated with Matrigel.

Tumor invasion into a matrigel wafer

The reconstituted basement membrane wafers were made
by adding 1 ml of Growth Factor Reduced Matrigel {Bec-
ton Dickinson, MA) to a well of a 24-well plate and gelled
at 37°C for 30 min. 1 x 105 cells were plated onto the sur-
face of each wafer. On days 3 and 7 after plating, Matrigel
wafers and adherent cells were fixed with 4% paraformal-
dehyde in PBS for 1 h. The wafers were then dehydrated
through a graded ethanol series and embedded in paraf-
fin. Sections were cut and stained with hematoxylin and
eosin.

In vivo tumor formation

T98G cells (4.3 x 106) were implanted subcutaneously in
100 pl of a 1:1 mixture of a culture medium and Growth
Factor Reduced Matrigel in the forelegs of the nude mice
according to the method described by Rubenstein et al.
[55] and Teicher et al. [56]. The tumor volume was meas-
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ured with a caliper and calculated using the formula
width? x length x 0.5. Animal experiments in the present
study were performed in compliance with the guidelines
of the Institute for Laboratory Animal Research, National
Cancer Center Research Institute.

Apoptosis assay

In the normal growth medium, 1.8 x 105 cells were seeded
onto 6-cm culture dishes. After 24 h, the cells were rinsed
and cultured in a serum-free medium, Cosmedium 001,
which contained no protein except insulin and transferrin
and was supplemented with sodium ascorbate (50 pg/ml)
to avoid the effects of several ECM proteins carried by the
serum. Five days later, the cells were assayed for apoptosis
by the TUNEL method with the In Situ Cell Death Detec-
tion Kit, POD (Roche, Switzerland) according to the man-
ufacturer's instructions. Apoptotic cells were identified by
diaminobenzidine staining, and nuclei were counter-
stained with hematoxylin. The number of apoptotic cells
was counted in five microscopic fields.

Statistical analysis

The results are given as means + SD. Student's t-test was
performed for statistical evaluation, with P < 0.05 consid-
ered significant.

Abbreviations
ECM, extracellular matrix; HCOL1A1, human collagen
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Application of Atelocollagen-mediated siRNA Delivery for RNAi Therapies
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RNAI has rapidly become a powerful tool for drug target discovery and validation in an in vifro culture system and,
consequently, interest is rapidly growing for extension of its application to in vivo systems, such as animal disease
models and human therapeutics. Novel treatments and drug discovery in pre-clinical studies based on RNAI are current-
ly targeting a wide range of diseases, including viral infections and cancers by the local administration of synthetic small
interfering RNA (siRNA) that target local lesions. Recently, specific methods for the systemic administration of siRNAs
have been reported to treat non-human primates or a cancer metastasis model. In vivo siRNA-delivery technology is a
key hurdle to the successful therapeutic application of RNAI. This article reviews the non-viral delivery system of
atelocollagen for siRNA, which could be useful for functional screening of the genes in vitro and in vivo, and will pro-
vide a foundation for further development of RNAi therapeutics.

Key words——RNAI; siRNA; atelocollagen; delivery

1. FL®HIC
RNA F# (RNAD) 13, ¥ THDOMh o EE
HBBETY T L35 (post-transcriptional gene
silencing; PTGS) $»% Wik, 71 AFZRUEBETF
¥ L 23 2% (viral-induced gene silencing; VIGS)
EVSHREFHNMND L L TRER I, RNAI R
BETHDOTRHEINEZDIX, 198FEDZETH
M, HDOWT, ¥7571va, aPan
NI/ ERRATZETHREIN, ISITHAEIIBL
TH RNAI G TN/ RNALR, EPEDEE
DRFRITKERA NI b E2E X2 EFEKFIZ, NA
FTEROFEEL TRVWIZEHEZNTHLAR Z &1,
2006 E D ) —NIWVEFABEEOZKTHRAIN
T3, FIFIZBWVWTIE, RNAI AR FRENH
KL 2MNBBIY—ILELT, HEEENDRE
EOREDHIHEHETNWS, Hix, ERIIBLTI,
EIINAE I -HREFBAGBIEE (T104-0045
HEHR P REEM 5-1-1), WS SHNA A 1L
S AEFR (T115-0051 6K g 2-13-10)
*e-mail: tochiya@ncc.go.jp
BT, AERBHDE 126 RS CRIT AL S2 TR
ZLEBDDOEFLRKERLZHDTH 3.

siRNA (small interfering RNA) DBIEEADFFFE
BIZ&D, MindEEEEE OBBRNERKEBRERREIC
HDED, BRE, NAZHEDELEZEZEDEBRA
DEANBRFEINTVS, HFE, siRNA DL
BiZkoThd, EEEHIIBUIZHRIR, VGmBER
AETIVTORIMBBEEINTED,? BERIGA AN
DOHEREE > TNn5,

ABHTE, bhbh R LEZ7TF0oa5—4
JIZE B SiRNA B AR ZDOIZ, 75035 —
TFoENNI AT I3 a T LARE5HES
FEMNERRBOEDDOL- I 2B FiE, BEAD
A BHIRFEI NS EEAD sIRNA FUNY — KBk
IZDWTHERT 5.

2. RNAIi

RNAi &3 2 &% RNA (dsRNA) IZX->THl &
EZ ISR EGTRENHORRTH
5. £NIZEA XN/ dsRNA 1Z, RNase 111 7
7 2 Y—IZJBT 5 Dicer IETNHBEFEICLD, 3
R 2 HEDEH 2R D 21 3HHE D dsRNA T
% siRNA (short interfering RNA) {270t w
> 3EN%. siRNAZRNA- X7 L7 —VPHEEHK
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Td 5 RISC (RNA induced silencing complex) 2
FoT2EXxEMNEEZBEINZDBIZT O FEX
EHOWMOAENT, 207 F &2 ABICHENR
EC%) %D RNA 2 BRMIZHRT 5.

RNAi 2, UTOEAICELY, BFRIIEKRL, &
BEELLTOERALLIIHENEZ> T3,
siRNA 12, 1) ENBEEFICHTIEVRRELE
D, 2) UAJIKWMDAEN | H$ RNA ZFEL
BTTIRAL, Bkl TENEGT2RET S
», BHEOECHNWI K HBE THRETHIFREZE
©, 3) BECENBERTORBEZHFALE S
SiRNA OF A >0, MERY 7 FCLERE
T, #HICTHHBIZTAS. 2O RNAIIZEITL
THEATWEONEAUKBREE L L THFEZNRTY
7 oF R AEETHS. Lrl, BIWERA%E L@\
HREOHEIEEZRTEE LOKRENESNT, B
BN RZBIZEM o ML WL, RNAL E2
1, TOMHOEN NG, ToFEAEREIK
xR, EREZBOLTEBMNTHIEEBZLSNTNS,
—HT, TOHKROEENRNORIL, AHZXA
EREMETERLLBEAT, BELLRIEAZ2EB
ZTEMRVWED, BRIGAIBEREINRD SN
5DBPETH 5.

RNAI EENREALI NS ETCREIN-BED
1 Did, siRNADFUNY—KFETHS. siRNA
DFVUNY) —IZDOWTIE, $fEEL X)L THEEI
ZLDRAANBEINTVS, flRITT X ORBHIR
M5 & SiRNA Z4ED 10%HDARD PBS &
BTHEBOERMTEATANT, ROY1F+Iv D
ABAET, B OFHED siRNA D& A TR
hilto®BENHS. LhlL, ZOLDREHKD
BAFAY X ZEE LU HERIE M BEREIG
TE5DDTRRARWN, £, DAINVARIZ—IT
siRNA 28l HA AT, ENEEICES L siRNA %
REXELHEDRERINTVWSA, /7, BEKEG
FATIRER RIS TR, URY — L84
b siRNA RIZHAREBEATE D, ERFEIIBTS
BRI E, FLERERBESNTWVWSEY, 7257t
CAEEOFTUYNY —-THEEICR o, BERIICD
WTIRAZTHS. bhbhid, EAERDH
S5THLETHENS siRNA OF Y NY — %M
L, 75035—% 2 IiC& % siRNA H A HifT DB
REEDTWHWS. LT, 7503545 12L5

SiRNA FUNY —OFHEEBEIIDODNWTERT
3.

3. 7F¥Aas-—-4>

750135 —4 > (Atelocollagen, &EHF) i3,
JVEEOIMIS - ERRETEINAMATT
JZ7NTHD. 25— T}, N-, C fmiKH
KaA5— > OFEHREMITHZ270RTF R
Y5, 7yoas—-52ik, £E0FOXRTSFER
2, RS ABIZLOBELEZFTHS. L
NoT, 7570a5—4 3, RBEEENED TE
<, BB EENBOINAFAITUTINTES. £
hwx, EFERSIBTHEAINTEEE,,
DDS OEM E L TORAMADED SN TS,

4. 77OAT-HICEB siRNA TR0 —
750354 X AEBEARERI, B85
ZEoTHIHTRREEINAZVLUR, F5AIER
DNA, 75 /)94 NARIF—, 7oFvAF
IR LAF R, siRNAREM, 75FO0a5—
FURBAREKETSZET, EREREUEER
BATELZENMBEINTND, 412
EBPFEITBNT, 770355 EEH,
SiRNA R EOKRIZAEHZ2H UL LY, 770D
A= LEBOmEIR BBEINIRBSLES
KEERT S 7rOa5—-5 2 LEBOBEESHED
R, FZ7570a5-7Y208EICL>THRE
Eh, 750552080 EREEDIT, K
FRNSEERIIELLTE. 9 7F0a5—-52 &
Ego#ESHEORRIE, FTUNY—DOHFRITKEL
B8, FSUN)—MRITEUT, @YRBRIE
9% bhbhid, BEEFIN)—-ORO7FO
A5 RE%R2, BEMRIIBHL TS 80ug/
ml, E&KIZBITZR/FRE T 5000 ug/ml, 25
BEHETIZS00ug/m IZHREL THD, BRFRERE
HTws,
7Truas—yrLBEEHILL R, XL
7—FiLL 3 0@ ERN, HRKRCHEBENICHELS
XEXhD 30 7F0as5—4eEgoars
Vw2 AR T RY b2 RI2& 0, MRAIZERD
RAEhLEHEINTVLS, siRNA T, RNase iz
EOoTHRENTLUED 28, WHIZHRBRERFER
RO TREZEDONN, FTUN) —DRE % RE
T2 RERRAMTHS, 750255 &
BHEEEZHRL T3 siRNA 13, mFRUEEH
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BANTEECREINSZENHSMN B> TH
DOFTFOAT—-F O RFRXILT—ED
SiRNA NOEfME2 7097 LT3 EEZISNT
W5, :

5. 77Aa5-45 UL F RT3
T7LA4

t b LR, BETRBEMTCLD, KB
b, RERERABEMBARICET R AIBE
LFRBBERNRD SN, SIEICBWTD, #Ei
FOREZMBL NIV THERTET77 >0 a3t
FIIVADEEENMEL TVBDREIETHR
vy, RNAI iZ & % Loss of function O F ki,
Ty ariy ) ITADEDOBMNIEY —))
TH5. bhbhid, RNAIIZK DB ETHEERIT
KU SRNAEEDA Y -7, 7503
FG—=TF NI AT a T LA EFERL
T 4B 7FEFOa5—-452 )V b5 2A7
VT al7lbAER, 7rRas-5 Ui
BB AR E, BEHRADNA ZN—Tv b+ S5
AT a A LEVATLTHS.

Wk, BZFHAR HohUDHMgEEEL T
BE, FIRBEREBLETFEAREORSYMZHAE

HHLEMT S, HE2VRTAINARY F—2(EH .

LBBRIEZZETITONTEE Lnrl, ZRE
DBRETEZHEATION, BARBKBREFHEET
5, FITHREINEDON, UN—-AMI2ATx
22aiEIK S RAT I arT LA ER
THsd. UN—RAbF2A7x0arid, Hoh
CHHAFRLDIREOEREEZEKR LT LA{ELT
BE, FIRHARAREL T, MRENICEDAEZYE
558THD. b532RT7x203ar7L1R,
2000 FiChbhbhOMET N —T & MIT ©
Sabatini 5 2 DDJ )L —THRRERL TLK, W EE
DI N—TNERD AT LEERLTNS,
75rRaA5—F VT RT20arT L
A1, 75Oa5 45 LSiIRNADI T Ly
AMINFTI N T - b NI —F 107
INTHY, IiCMisE2EE BET5L, Ml
FIZSIRNAN RS ATz aradhd, 5
NUHT7FOAT—-S U LEREDOEREEDITT
Lyl 2%, 96 RR2BERBEDYNF IS
L—bhDHETIVIZT LM{EL THBUHE, ZRED
siRNA 2SR CRBICNS A 722332 F

5ZEMTED, I5IT, BEKRTHE HEORE
EEOEBHEREEMEH U THEREERIT TS
ZET, N R —T v FRRBE TR A A
&5 (Fig. 1). .

5 TORGTRERN T, REBNICEVAE
EINEEZREOBLTFET I RX—AREKL, #
FENHBEEZFOPHOBERTFIERK L LT,
FOBEEEBITTHIEVWD L ENTTbITER L
ML, ZOAFETRIREINBh>EMABHOE
EFIZDONT, BEEZRATLZERZTERN. %
7o, MG EhBBEZFOBLRTIHEDNLKDA
ATLES> TR, MOBEFORFDHBEESCTE

\ ’ Pre-coating of
Atelocollagen/siRNA complex

BN

\,4/-;;"'
_@@J Addition of the cells

l Reverse transfection l

Gene silencing
a

,

Pre-coating Mutti-well plate

Gene silencing

Multi-channel analysis
with d cell analy

Fig. 1. Atelocoilagen Based-cell Transfection Array

a: Principle -of atelocollagen-based RNAi cell transfection array.
Atelocollagen and siRNA complexes are pre<coated on a cell culture plate.
The cells are added to the plate and then cells uptake the siRNAs by reverse
transfection. Finally, RNAi-mediated gene silencing is induced in the cells. b:
High-throughput Screening of Gene Function. The siRNA/atelocollagen
complexes are arrayed and pre-coated on multi-well plates. The cells are plat-
ed into the siRNA /atelocollagen-complex pre-coated plates. After that, the
effects of the downregulation of genes are evaluated with automated cell
analyzer. Many genes function can be identified in a short time by atelocol-
lagen-based cell transfection array.
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BEFE2EIEDHZIZERZTERN., RID, RBER
MICEVAEINAEZREDEBERFINTIIDON
T, BRNRBETRERTETIIENLETDH
5. 75035452tV 52 RAT7203ary
L1113, RN BEEFRERITEVREEIDIEN
BRIYATATHD, 7570aA5—452ENV 72X
Tz ar7 L1 CRIINEEFERBRETFIION
T, KRELDRHTS, 75035521k
HEADSIRNA FYNY—TRIEL, FHRRRF
BERERDEBIBDOERETHIIENTES. 77
025 —% 2 siRNA AR EBME L7z, invitro,
in vivo DENIZ, RS TENERRT D0
WMALBIETHBHENVZS (Fig. 2).

6. E£EADSRNA FYN) ——B/FkS5—

F5rO0as—4 B AHE LTS SRNA DR
PR 5%, BRATY AL T, BEICEE
sSiRNA £ 750354 0ESGEzRETSZ
ET, BEROMETN—-THRERBZERZETNVS
(Table 1), bhbhiz, YT AOETIZBEL &
AT —TORERIIBHELAESICHL, Y7o
75 2BV TSIRNA 285 LR, BRE
EFDORBENE 22D, RNAIHRZHELEL. 0
k7=, siRNA 2750355 LEBICEEH
{£kTBZ LT, siRNABMTHREGLAEFGLD D,
RNAI 1R REFHEL, LD BEWEBHEENTEHDRE
R ZEERHELA X512, B#ESE, X—Fw
I ADKE FICBHEL 7= & MBS AMRRICH L T,
VEGF {233 % siRNA & 75702355 2 DOEE
kRS L, BEOMMLEECHRHTEZS &%
WELAEOFOEBFEELT, 77RaIs—4s&
DOESEDOERIZELD, HRAOEDABZIENE
F5LEHIT, siRNAD¥EFHNERZNSZ L
MRENTNS,

7. &E&ADSIRNA FYNR) ——2FH/E5—

75FOas—5 B AEEELT S siRNA D2
BRE0HEMEL, BEOBEBET I TENMDS
nNTwas. 2bhbhid, b bEEBEBIAMEE,
X—RFITADOELERIBHEL TEEBET IV EE
L, BBRFEICE->TSRNA L 75035 —
T UOBEHEN, BESODEEFOEBEALTUN
Y—XhahzRatl /- siRNA B 5 T E
HBELETEDONTHZRIT OXUTTHSOIIH
L, siRNA & 75035 -5 0EEEHEDORET
13, 0%LA LOMFINE 2B D, ZORRZ, &

[ Disoase
|
Gene groups
[
[Raverse genstics = siRNA |

Atelocollagen-based
cell transfection array

Multi-p ter assay of cellut

)
Validated target

In vivo delivery of therapeutic / )

sIRNA by Atelocollagen DDS ”' £

RNAi drugs

Animal disease model

Fig. 2. The Strategy for the Target Validation of Druggable
Genes by an Atelocollagen-based siRNA Delivery In vitro
and In vivo

The Based on information about gene groups (several hundred in a
pool) that possess altered expression levels (increased) in diseases as detect-
ed by microarray analyses of clinical samples, we synthesize siRNAs against
genes. These siRNA molecules are screened using an atelocollagen-based cell
transfection array on target culture cells (a cell line), and then identified the
siRNAs that induce the desired activities, such as apoptosis, cell prolifera-
tion, or infiltration. Next, we use atelocollagen DDS to deliver these candi-
date siRNAs into animals that serve as models of diseases. Finally, drug ac-
tions are examined to identify the druggable molecules that can be clinically
applied to humans.

Table 1. In vivo Delivery of siRNAs by Atelocollagen

Implanted site

Therapeutic model (Cell lines) (Target organs) Route Target genes References
Prostate cancer (PC-3) s.C. it VEGF 16
Germ-cell tumor (NECS8) Testis it FGF-4 10
Prostate cancer (PC-3M-Luc) Bone metastasis i EZH2, pli0a 2
Prostate cancer (PC-3) s.C. it midkine 17
Cervical cancer s.c. it HPVI18 (E6 & E7) 18
Head and neck squamous cell carcinoma (SAS) s.C. it EGFR 19

s.c.: subcutaneous, i.v.: intravenous, i.t.: intratumoral.
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EBREY -4y hELEZEHEDOTUNY -
b, 75— UNERAVRETHDIEERRL
TV, ¥/, BMBRADEREICES5d 52D
DiEEF, EZH2 & pl10a iZxt3 % siRNA D7 5
Oas—~ Ik&BFIUNY -, BEBHEEBON
MEREICHNHTLAIEbHRLE 51T, 77
Oas—~IcE 5 siRNADFTUNY -, 12
=T Oy —O1F R EDHERRIG
PEEET, TORSEISREINE.

8. 77O0a5—4HLsiRNAFYNY - RTF
YNOE

EEADOEBTUNY —ICBTSF—HR1 2 bO
I DIFONICEEBAIANDEZEZ DB LT, EH
ETHRBMIIOIB R EXETINTHSD. TT
O35—45DDSIZLSSiRNADELHKRET
13, EOBEBETINITARZBNT, BEBES
AL & R, EHOMOBESED saran 15 )N
V—XNBZENERINSD T, EEOEY
2RI RE5ET5E, BEETHS siRNA DOF)
B3, Z<OBBIIAGTIH/RELRD, BEHHED
Hi--ResEnElIRcE£>5THS5. 7503
S5—4DDSIKLHLHHEREEDE FADIEH
WL TR ELBADREKERENDDHENVZD.
—HT, ERATTAANOTFOIAT—5F
siRNA O£ B 5 T3, R U OES B
@ siRNA OFEEIZ, EXEBFBEERLT, B
EF LT 22ETH o= ZOEHEAD siRNA O
BEE DEWIT 1986 FICHIHASICE > TRVWHE
7= EPR %% (Enhanced Permeation and Reten-
tion effect) IZX > T—MHAT D Z ENFHEN D
LN/ian. P EPRZIBE &I, MAMKBICHIHE
MEREFAB/OMBICH T, MEFHROME
HNEL, PEEFEERTEVRD, Y1 OB
REBEHSTFACEYRLIDZIBARRIIEE - B
FE5. a5k, BAMBTRY O ABCLEES
FIEEMORIPEBNATE THELEAOND
B, BT LAWMINAMBNICHE LB 15%)
RoOZETHD. EBE Troas—srEHAVE
SIRNA FUNY —R X 2BEHEFREONMHZE
i, EHERBIDOBAMBTREIN ENERS
NTW3a, ZOEPRYIBORERRICLD, BENA
KMNT BT 1 o FHERKESELLE.
Wk, NMAMBNOEROY —7 v T4 T OB

PR, IR THAMBICEHRMIIEEAL TNV
PR & OHGRICEZFIALEREZNADHITHER S
VEIETETITFA T vT« 2 TODREBIC
HEIWTITbRTER. L, ENETENAR
E B OFFE A b R OO FEHREAEICF
#3510, ENFMICEYNEREDOHLS—ERE
UECEBETERVWEWSEEANS . EPRPF)
BEMBALRE, NAMRICHPOEYNEZRDAETE
BRI TI—F T4 73, COMEETERY
ZFEHMDERZMAB LR, TFOoas—s
DDS & EPR IR OBFREHRE TSI £ITIX, tA
BERADIRRICATT, KEREKRERFDEEXS
ns.

9. &HYIC

A TIE, 75035 —4 2k B siRNAZA
itin, 7roas—4SreV 52 AT7x0v 3
CTUVARKBFRPFENRERICIGHEIND Z
L, EEADOSIRNATFUNY —-RERATHHI &
2R, Libl, 7570375 —%5 2 & siRNA#
EHEOHBANDIRDAZBRER RNAI RO K
BB ICET A0 FLRIVTORE, £EIBIT5
ElftomtbizE, BEELBELRINTVS, X
7=, siRNA S A TRNAIGIE L LT, BgBZHh
TW5 DA miccoRNA (miRNA) T#H 5. miRNA
BERL RNV TY ONRVBORBEEHBAL THRD &
Xh, b Tid 500 @ LA LD miRNA AAFREE H
TW%. miRNA ORBREDN, NAREDERIC
B535Z EMASMERS>TER. 2O mRNA
LTS, Th5BHEATIRBOBASCHRBEN
DROAELT, 750354 ICEBFINY—
DISANRAEDMA D AN, bhibhig, Zhso
BEABRL, 7035 RELBEETUN
U—3, BAPRLEZEHDOEVDDS ELT, E
EABTERMEEINE ZEE2HEL TS,

i AERERE, BEMNAtCY W%
NAEBHER, & KBFAERKBEOLFEF
FEizkD.
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Abstract Oxidized LDL (oxLDL) has been shown to
activate the sphingomyelinase pathway producing cera-
mide in vascular smooth muscle cells. Therefore ceramide,
which is a biologically active lipid causing apoptosis in a
variety of cells, may be involved in the apoptotic action of
oxLDL. In this study, we examined whether cholesterol
enriched diets affected ceramide metabolism and oxidation
product of LDL, represented by degradation of apolipo-
protein B-100 (apoB) in apoE-deficient (apoE™") mice.
ApoE™" and wild type mice were fed a standard (AIN-76)
diet or 1% cholesterol-enriched diet for 8 weeks. Tissue
ceramide levels were analyzed using electrospray tandem
mass spectrometry (LC-MS/MS). Ceramide levels in the
plasma and the liver of apoE™" mice were intrinsically
higher than those of the wild type. In apoE™" mice, dietary
cholesterol significantly increased several ceramides and
degradation products of apoB in plasma compared to those
fed the control diet. Dietary cholesterol did not affect tissue
ceramide levels in the wild type mice. Based on these re-
sults, plasma ceramides possibly correlate with the increase
in LDL oxidation and are a risk factor for atherosclerosis.
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Abbreviations

ApoB apolipoprotein B-100

ApoE"' apoE deficient

IMT Intima-media thickness of the carotid artery

LDL Low-density lipoprotein

oxLDL oxidized LDL

SDS-PAGE Sodium dodecy! sulfate polyacrylamide gel
electrophoresis

SM Sphingomyelin

SMase Sphingomyelinase

SPT Serine palmitoyl-CoA transferase

TG Triglyceride

Introduction

Ceramide has been implicated in regulating cell-cycle ar-
rest, apoptosis, and cell senescence [1-3] and is reported to
serve as an intracellular second messenger [4]. Therefore,
ceramide has attracted much attention as a new lipid
mediator. Ceramide consists of a fatty acid of C16-C26
chain length bound to the amino group of sphingosine.
Ceramide is generated by sphingomyelin (SM) hydrolysis
by sphingomyelinase (SMase) or by de novo synthesis
starting from serine-palmitoyl transferase (SPT) [5]). A
significant positive correlation was observed between
plasma levels of SM and the severity of coronary heart
disease [6], and plasma SM levels increased in human
familial hyperlipidemias [7). Recent studies have demon-
strated correlations between sphingomyelin and athero-
genic risk factors of plasma in humans [8] and inhibitions
of de novo SM and ceramide biosynthesis reduced ath-
erosclerotic lesion in apoE-deficient (apoE™") mice [9, 10].
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We recently showed that ceramide concentrations in
human plasma had a significantly positive correlation with
lipid markers that associated with atherosclerosis [11].
Plasma ceramide concentration increased drastically at a
high level of LDL cholesterol (more than 170 mg/dL).
Therefore, an increase in ceramide may be a risk factor for
atherosclerosis, like LDL cholesterol.

Oxidative modification of LDL is an important factor in
the development of atherosclerosis [12]). Although LDL is
composed of lipids, protein, and sugar chains, studies on the
oxidation of LDL have mainly focused on lipid peroxida-
tion [13]. The protein part of LDL, apolipoprotein B-100
(apoB), is also reactive to radical oxidation and it undergoes
fragmentation and conjugation [14, 15]. Among the plasma
proteins, apoB is unusually reactive to radical reactions
compared to albumin and transferrin and even comparable
to vitamin E, a typical radical scavenger [14]. Thus, both
fragmented and conjugated apoB proteins are present in
normal human serum and these oxidation reaction products
of LDL tend to increase with age [15]). In addition, we
reported that B-ox, namely the sum of fragmented and
conjugated apoB proteins determined by an immunoblot
assay, showed a significant positive correlation with IMT
(intima-media thickness of the carotid artery) and LDL
cholesterol, and a negative correlation with HDL choles-
terol, and vitamin C [15]. These reports suggest that B-ox is
a reliable mechanism-based indicator of atherosclerosis.

Proteolytic degradation of apoB has been shown to cause
aggregation and fusion of LDL [16]. Aggregated LDL in
atherosclerotic lesions is proposed as representing a central
process in atherosclerosis [17] and is enriched with ceramide
[18]. Furthermore, LDL treated with SMase induces foam
cell formation in vitro [18, 19]. Based on these reports, a
correlation between ceramide and oxLDL is suggested.

Dietary cholesterol raises LDL cholesterol levels and a
very high intake of cholesterol causes atherosclerosis. The
activity of SPT, which catalyzes the first step in ceramide
synthesis, is augmented in the aorta of rabbits fed high
cholesterol diets [20]. Treatment of mice with myriocin, a
specific inhibitor of SPT, lowered plasma cholesterol levels
of ceramide in a dose-dependent manner. Therefore, high
cholesterol diets may affect ceramide synthesis. The
apoE"' mice exhibit high levels of plasma cholesterol as a
result of impaired clearance of cholesterol-enriched lipo-
proteins [21]. Therefore, apoE"" mice are more sensitive to
dietary cholesterol. In the present study, we examine the
effect of high cholesterol diets on the ceramide levels in
plasma, liver, and adipose tissues of apoE™" mice in
comparison with wild-type mice. We also demonstrate that
dietary cholesterol results in enhancement of oxidation of
apoB, namely degradation of apoB, in apoE™" mice.
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Experimental Procedures
Materials

All solvents were purchased from Wako Pure Chemicals
Co. (Osaka, Japan). All other reagents were obtained from
Funakoshi Co. (Tokyo, Japan). A commercially available
diagnostic kit for cholesterol and triglyceride (TG) were
purchased from Wako Pure Chem. Co. (Osaka, Japan).
Silica gel 60 TLC plates were purchased from Merck
(Darmstadt, Germany). A Vectastain ABC-PO (goat I1gG)
kit was purchased from Vector Lab. Inc. (Burlingame,
CA, USA). Anti-human lipoprotein B goat IgG was pur-
chased from Sigma Chem. Co. (St. Louis, MO, USA).
Polyvinylidene difluoride (PVDF) membrane filters were
purchased from Millipore (Tokyo, Japan). Electrophoresis
reagents were purchased from Nacalai Tesque Inc. (Kyoto,
Japan).

Animals and Diets

This study was approved by the Animal Care Committee of
Nara Women’s University. Eight-week-old male apoE™"
mice on C57BL/6J background mice were purchased from
Jackson Laboratories (Bar Harbor, Me., USA). Eight-
week-old male C57BL/6] mice were also obtained from
Japan SLC Co. (Hamamatsu, Shizuoka, Japan). The ani-
mals were housed in a room at 24 + 2 °C, with a 12/12 h
light—dark cycle. A standard diet was formulated according
to the AIN-76 formula. The control group was fed a stan-
dard diet, and the cholesterol group was fed a standard diet
supplemented with 1% cholesterol. Mice were randomized
into the two groups. Mice were fed these experimental
diets ad libitum for 8 weeks. All mice were starved for 6 h
before killing.

Analytical Method

Mice were anesthetized with Nembutal, and blood samples
were collected by right-ventricle puncture using a syringe
containing sodium heparin as an anticoagulant. After per-
fusion, the liver and adipose tissues were dissected out.
Blood was centrifuged to separate the plasma.

Plasma cholesterol and TG were measured using a
commercially available diagnostic kit. Liver cholesterol
concentration was analyzed by gas-liquid chromatography
(GC-2014, Shimadzu, Kyoto, Japan) using Sa-cholestane
as an internal standard [22]. Liver TG was analyzed as
described by Fletcher et al. [23). Vitamin C was measured
according to a specific and sensitive method involving
chemical derivatization and HPLC [24].
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Ceramide Analysis

Lipid of each tissue was extracted according to the method
of Folch et al. [25). Lipid in the liver and the adipose
tissues was dissolved in chloroform to perform silica gel 60
TLC (Merck, Darmstadt, Germany). TLC separation was
performed as previously described [26].

Quantitative measurement of ceramide species was
made using a triple-quadrupole mass spectrometer (Finni-
gan MAT TSQ 7000). ESI-MS/MS was performed as
previously described [11, 26). HPLC was conducted with a
p-Bondasphere column (5 uC18 100A Waters). Elution
was performed at a flow rate of 0.2 ml/min with a mixture
of S mM ammonium formate, methanol, and tetrahydro-
furan at a volume ratio of 1:2:7. The mobile phase stream
was connected to the ionspray interface of an ESI-MS/MS
system. Standards and cellular ceramide extracts were
stored at —20°C. Mass analysis was performed in the po-
sitive mode in a heated capillary tube at 250 °C with an
electrospray potential of 4.5 kV, a sheath gas pressure of
70 psi, and a collision gas pressure of 1.6-2.0 mtorr. Under
optimized conditions, monitoring ions were ceramide
molecular species (M+H)* for the product ion at m/z 264 of
the sphingoid base. Standards and samples were injected
with 5 pl of 5 pmol C8:0-ceramide as an internal standard
for ESI-MS/MS. The quantity of each ceramide was cali-
brated from each ceramide/C8:0-ceramide ratio, assuming
that the calibration curve of ceramides bearing C16-24
acyl chains was similar to that of C16:0-ceramide as pre-
viously described [!1, 26]. Each sample was analyzed in
duplicate.

Western Blot Analysis

For electrophoresis, the sample was applied to 4% sodium
dodecyl sulfate polyacrylamide gel electrophoresis (SDS-
PAGE), and immunoblot analysis was performed, both as
described previously {14, 15]. Proteins separated on the gel
were electrophoretically transferred to PVDF membrane

filters and immunoblotting analyses of apoB were per-
formed as previously described [14, 15].

Anti-mouse apoB antiserum was prepared by immu-
nizing mouse LDL to a rabbit. Chemiluminescence was
analyzed with ATTO Densitograph Software Library (CS
Analyzer Ver2.0).

Statistical Analysis

The data were expressed as mean + SE. Differences between
group means were considered significant at P < 0.05 using
Fisher’s protected least significant difference test (PLSD).

Results

Effect of Dietary Cholesterol on Body Weight
and Lipids

The body weight of the apoE™" control group was higher
than those of the other groups (Table 1). Liver weight of
apoE™" mice was higher than that of the wild type control
group. The weight of total white adipose tissue of the
apoE™" control group was higher than those of the wild
control group and the apoE™" cholesterol group. No dif-
ferences were observed in daily food consumption among
these four groups (data not shown).

Plasma cholesterol of apoE'/' mice fed a control diet
was about 6.7 times higher than that of the wild type mice
fed a control diet (Table 2). In the cholesterol group,
plasma cholesterol of the apoE™" mice was also about six
times higher than that of the wild type mice. However, the
liver cholesterol in the apoE™~ mice was not different from
that of the wild type mice. Cholesterol levels of plasma and
the liver in both the wild type and the apoE"/' mice fed
cholesterol were higher than those in mice fed a diet
without cholesterol. No difference was observed among all
groups in plasma TG. However, the liver TG of the wild
type control group was lower than that of the other groups.

Table 1 Effect of dietary cholesterol on weights of body, liver, and white adipose tissue (WAT) of wild type and apoE™" mice

Wild control Wild cholesterol ApoE™" control ApoE™" cholesterol
Body weight (g) 323109° 338+ 13" 381 +13° 35.1+1.0°
Liver weight (g) 1.30 + 0.09° 1.67 £ 0.12* 1.84  0.11% 1.84 £ 0.18™
Epididymal WAT weight (g) 0.68 +0.11° 1.12 + 0.15° 1.33 £0.13° 0.76 £ 0.11°
Perirenal WAT weight (g) 0.39 + 0.07° 047 £ 0.07™ 0.68 + 0.08° 0.38 + 0.08°
Mesenteric WAT weight (g) 0.38 + 0.06° 0.50 + 0.08% 0.63 = 0.06™ 0.33 + 0.05°
Total WAT weight (g) 1.49 £ 0.21° 2.08 + 0.30™ 2.64 + 0.27™ 1.44 £ 0.22°

The values were mean + SE for eight C57BL/6J and ten apoE "~ mice. Differences between group means were considered significant at P < 0.05
using Fisher’s protected least significant difference test (PLSD). Values with different superscript letters show significant difference at P < 0.05
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Table 2 Effect of dietary cholesterol on plasma and liver lipids of wild type and apoE " "mice

Wild control Wild cholesterol ApoE™" control ApoE™" cholesterol
Plasma cholesterol (mg/dL) 774 £ 12.7* 140 £ 11° 517 + 46° 873 + 64°
Plasma triacylglycerol (mg/dL) 30419 286 + 2.0 424163 46.6 + 134
Liver cholesterol (mg/g) 336 £+ 0.44° 143 £ 19° 5.76 + 0.48° 152 14°
Liver triacylglycerol (mg/g) 442 + 8.8 115 + 30° 179 + 25° 119 £ 21°

The values were mean + SE for eight C57BL/6J and ten apoE ™~ mice. Differences between group means were considered significant at P < 0.05
using Fisher’s protected least significant difference test (PLSD). Values with different superscript letters show significant difference at P < 0.05

Effect of Dietary Cholesterol on Ceramide

Table 3 shows the distribution of ceramide species in
plasma. A major ceramide in plasma was C24:0 in both
wild type and apoE™ mice. The plasma level of total
ceramide of the apoE™ mice fed a control diet was about
six times higher than that of the wild type mice fed a
control diet. In the cholesterol group, the plasma level of
total ceramide in the apoE~~ mice was also about 5.1 times
higher than that of the wild type mice. In apoE™" mice, the
plasma level of total ceramide of the cholesterol group
tended to be higher than that of the control group
(p = 0.08), while C16:0, C24:1, and C24:2 of the choles-
terol group were significantly higher than those of the
control group. In the wild type mice, dietary cholesterol did
not affect plasma levels of ceramide.

Table 4 shows the distribution of ceramide species in
the liver. The major ceramide of the liver was also C24:0 in
the wild type and the apoE™" mice. In the liver, the total
ceramide of the apoE™" mice fed a control diet was about
1.5 times higher than that of the wild type mice fed a
control diet. In the cholesterol group, the total ceramide of
apoE™" mice was not different from that of the wild type
mice. Thus, the difference in total ceramide level between

Table 3 Effect of dietary cholesterol on ceramide concentration
(nmol/mi) in the plasma

wild type and apoE'/' mice in the liver was less than that in
plasma. In addition, dietary cholesterol did not affect
ceramide levels of the liver in either the wild type or the
apoE~"" mice.

Table 5 shows the distribution of ceramide species in
the mesenteric white adipose tissue. Major ceramides of
white adipose tissue were C24:0, C16:0, and C24:1. The
ratio of C16:0 and C18:0 in adipose tissues was higher than
that in plasma and the liver. In the wild type mice and the
apoE™" mice fed cholesterol, the content of C16:0 of the
adipose tissue was similar to that of C24:0. In the adipose
tissue, the total ceramide of the wild type was not different
from that of the apoE™" mice. In addition, dietary choles-
terol did not affect ceramides of the adipose tissue in either
wild type or apoE™" mice.

Effect of Dietary Cholesterol on Cross-Linked
and Fragmented apoB

The band, which was larger than the band of apoB
(512 kDa) was assumed to be a cross-linking product as
previously reported [15] and the band, which was smaller
than the band of apoB was assumed to be a fragmented
product. However, neither cross-linking nor fragmentation

Table 4 Effect of dietary cholesterol on ceramide concentration
(nmol/g tissue) in the liver

wild wild ApoE™" ApoE™- wild wild ApoE™"~ ApoE™"~

control cholesterol control cholesterol control cholesterol control cholesterol
C16:0 075+0.3* 120+0.18° 411+032° 5711042° Cl6:0 196+3.0° 223:26® 285+24> 275:32°
Ci18:0 007 +001* 0101002 075+011° 08520.1"° C18:0 252+05 216+029" 390033 4361093
C22:0 305+083° 4.12+080"° 255+38> 2451+33° C22:0 384x4.1° 47.1%51° 806+63° 500+49°
C24:0 6161154 904+146° 343+28> 415146° C24:0 7501 10.1° 88965 996x+74> 977+87"
C24:1 3361077 4701098 153+14> 2021222° C24:1 503:82 618%55 63.1%59 716 £ 6.3
C24:2 0141003* 0221004 203+038" 5012067 C242 4.62+084" 557058 580+074° 9.59+1.12°
Total 134+33* 19.1+33" 806+68° 978+110° Total 190+ 19" 28+ 17 2811 19° 261 £ 23"

The values were mean + SE for eight C57BL/6J and ten apoE™~
mice. Differences between group means were considered significant
at P < 0.05 using Fisher’s protected least significant difference test
(PLSD). Values with different superscript letters show significant
difference at P < 0.05

f Springer AQCS &

The values were mean + SE for eight CS7BL/6J and ten apoE™
mice. Differences between group means were considered significant
at P < 0.05 using Fisher’s protected least significant difference test
(PLSD). Values with different superscript letters show significant
difference at P < 0.05
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Table § Effect of dietary cholesterol on ceramide concentration a npoE"; la?oE" ]
(omol/g tissue) in the mesenteric white adipose tissues - ¥ “-l
wild Wwild ApoE™" ApoE™- v '
control cholesterol control cholesterol S2kDa —» Sonay S - o oo apoB-100
" - . B-
Cl6:0 514147 527150 438+100 55993 L b «
Cl18:0 169x35. 19752 108 + 1.8 199+ 44 S . >
C22:0 21.1x29 173 £ 32 154 +28 169 +29 - :
C24:0 630x104 533111 496=+I1l1 565117 250kDa — W apoB-48
C24:1 538x90 476 £92 40.1 + 84 496+ 9.8 : * medits G
C242 840+141 768+169 609105 102+22 b2 c 3
Total 215 £ 30 198 + 45 15934 20938 1 25 I
The values were mean + SE for eight C57BL/6J and ten apoE™" = 08 o 2
mice. Differences between group means were considered significant g o » o L5
at P < 0.05 using Fisher’s protected least significant difference test 0.4 1
(PLSD). Values with different superscript letters show significant 0.2 0s
difference at P < 0.05 0 0
apoE™ apoE™ apoE* apoE*
control cholesterol control cholesterol

of apoB-48 (250 kDa) were detected (Fig. 1a). Western
blot analysis of plasma revealed that apoB-100 with
molecular weight of 512 kDa in the apoE™" cholesterol
group was lower than that in the apoE"' control group
(Fig. la, b). Though cross-linking of apoB-100 was not
detected in apoE~" mice, fragmentation of apoB-100 in the
apoE ™~ cholesterol group was 2.5 times higher than that in
the apoE ™" control group (Fig. Ic). In the wild type mice,
neither cross-linked nor fragmented apoB proteins were
discernible (data not shown).

The amount of the aortic area covered with plaques was
significantly greater in the apoE“” mice fed cholesterol
compared to the apoE"" mice fed a control diet, as is well
established (data not shown).

Effect of Dietary Cholesterol on Vitamin C

In plasma, vitamin C of apoE™" mice was higher than that
of wild type mice (Table 6). Vitamin C of both wild type
and the apoE™" mice fed a cholesterol diet was higher than
for mice fed a control diet.

Discussion

Sphingolipids such as ceramide and sphingosine-1-phos-
phate are bioactive lipid mediators [27]. The importance of
sphingolipids as mediators in cardiovascular pathophysi-
ology has recently been reported [28]. In addition, it was
shown that SPT activity was higher in apoE—/_ mice com-
pared with C57BL/6J mice [9]. In this study, it was shown
that the total ceramide level in plasma and the liver of the
apoE™ control group was higher than that of the wild
control group. Therefore, decreasing ceramide levels in
plasma and the liver may be beneficial for prevention of
atherogenesis.

Fig. 1 ApoB and fragmented apoB-100 proteins in plasma of apoE™"
mice fed a standard diet and supplemented with 1% cholesterol.
Plasma was loaded on 4% SDS-PAGE gel and Western blot analysis
was performed (a). Densitometry of apoB (b) and fragmented apoB
(c) in plasma of apoE"' mice. The values were means + SE for 4-5
apoE "~ mice and asterisks indicated significant differences from the
corresponding the apoE"' control group

Table 6 Effect of dietary cholesterol on plasma Vitamin C concen-
tration (nmol/mL) of wild type and apoE~" mice

wild wild ApoE™~  ApoE™"
control cholesterol control cholesterol
Vitamin C  69.6+ 85 963 +35> 1156 146%5°

The values were mean + SE for five C57BL/6] and six apoE™" mice.
Differences between group means were considered significant at
P < 0.05 using Fisher’s protected least significant difference test
(PLSD). Values with different superscript letters show significant
differences at P< 0.05

In the present study, we investigated the effects of
dietary cholesterol on ceramide and oxidative products of
apoB in apoE”" mice, of which the plasma and aorta
responded sufficiently to cholesterol-enriched diets. Our
recent study demonstrated that the correlation coefficient
between plasma cholesterol and total ceramide in human
subjects was particularly high among lipid markers asso-
ciated with atherosclerosis [11]. Treatment with myriocin,
which is a potent and specific SPT inhibitor and is known
to have an immunosuppressive activity [29], significantly
lowered plasma cholesterol levels of apoE™" mice in a
dose-dependent manner [30]. In this study, we demon-
strated that a cholesterol-enriched diet did not affect
ceramide levels of the tissues in the wild type mice.
However, in apoE"' mice, the plasma levels of several
ceramides in the cholesterol group were significantly
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higher than those in the control group and the plasma
level of total ceramides in the cholesterol group also
tended to be higher than for mice fed a control diet. This
result indicated a correlation between increased choles-
terol intake and the elevation of the plasma levels of
ceramide.

In the liver, the total ceramides of apoE™" mice were
higher than those of the wild control group. However, the
difference of ceramides levels between the wild type and
the apoE™" mice in the liver was not so large as that in
plasma. In plasma, the difference of total ceramides be-
tween the wild type and the apoE™" mice coincided with
the change of cholesterol. Furthermore, the cholesterol-
enriched diet did not cause a significant increase in liver
ceramide levels. Therefore, a relationship between cho-
lesterol accumulation and ceramide metabolism change in
the liver was not supported.

It is well known that a fat-enriched diet is an important
factor in the development of atherosclerosis. Overnutrition
leads to hypertrophy of adipocytes, and high-fat diets
promote obesity [31]. The islet obese fa/fa Zucker diabetic
fatty rats exhibit an increase in de novo synthesis of [BH]-
ceramide from [3H]-palmitate [32]. Based on these reports,
a correlation between ceramide and deposition of visceral
fat is suggested. In this study, although the weight of total
white adipose tissues in the apoE™" control group was
higher than in the other groups, ceramide levels in the
white adipose tissue of the apoE™" control group were not
higher than those of other groups. Therefore, it is suggested
that fat accumulation in the white adipose tissue did not
increase ceramide content.

Oxidative modification of LDL and its recognition by
macrophages have been suggested as being an initial event
of atherosclerosis [17]. In this study, we analyzed the
oxidation profile of apoB, namely the sum of fragmented
and conjugated apoB proteins determined by an immuno-
blot assay. We reported that these oxidation products of
apoB-100, termed B-ox are a reliable indicator of athero-
sclerosis [15]. In human plasma, the conjugated apoB-100
was higher than the fragmented apoB-100. However,
conjugated apoB-100 was not detected clearly in apoE"'
mice. In addition, in plasma of apoE™" mice it was reported
that the major apoB is apoB-48 and the minor apoB is
apoB-100 [33]. In this study, conjugated and fragmented
apoB-48 were not detected in apoE™" mice. It is necessary
to examine the difference of apoB-100 oxidation between
human and mice and the difference of oxidation between
apoB-100 and apoB-48.

Our previous studies demonstrated that the reactivity of
apoB toward radicals is extremely high and even compa-
rable to vitamin E [14]. Hence degraded apoB fragments
were present in normal human plasma and tended to in-
crease with aging [15]. In this study, the apoE™" choles-
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terol group, which demonstrated a significant increase in
the size of lesions as is well established [33], also exhibited
decreased apoB and increased fragmented apoB proteins
compared to the control group. These results demonstrated
that the cholesterol diet increased the development of
atherosclerotic lesions and promoted oxidation of apoB in
the apoE™" mice. We reported that cross-linked and frag-
mented apoB-100 is a reliable index of atherosclerosis and
oxidative stress [15]. Therefore, it is suggested that frag-
mentation of apoB is also a reliable indicator of athero-
sclerosis in apoE™" mice as well as humans.

OxLDL have been shown to induce apoptosis of culture
cells [34, 35]. Ceramides also have been shown to cause
apoptosis in a variety of cells. Apoptosis of endothelial
cells is widely implicated in the early stage of atheroscle-
rosis. It was reported that oxLDL was involved in the
formation of various sphingolipid mediators [36] and
activated the generation of ceramide in endothelial cells
[37]. Our results also demonstrated that apoE"‘ mice,
which showed increased size of lesions, exhibited higher
ceramide levels and fragmented apoB in plasma. Based on
these results, a correlation between increased oxLDL and
ceramide is suggested. However, oxLDL-induced activa-
tion of the SMase-ceramide pathway has not yet been fully
studied and is still controversial. Further studies are needed
to clarify the relationship between LDL oxidation and
ceramide metabolism.

Vitamin C is a potent water-soluble antioxidant that
scavenges reactive oxygen species [38, 39]. Sublethal
lipopolysaccharide, which is associated with oxidative
stress, temporarily increased liver vitamin C in the mouse
[40]. In addition, the deficiency of glutathione, which
plays various important roles in the protection against
oxidant stress [41], increased hepatic ascorbate synthesis
in mice [42]. These studies indicate that vitamin C syn-
thesis is enhanced by oxidative stress in mice. In this
study, plasma vitamin C in apoE”" mice was higher than
that in the wild type mice. It is suggested that apoE™"
mice at this young age increased vitamin C production
compared to the wild type mice to prevent increased
oxidative stress. In addition, plasma vitamin C in the wild
type and apoE™" mice fed a cholesterol diet was higher
than in those fed a control diet. The increase of B-ox in
the apoE™ mice fed a cholesterol diet suggested en-
hanced stress, which resulted in the elevation of plasma
vitamin C just like in the mice under enhanced oxidative
stress as described above [40, 42].

In conclusion, this study demonstrated that dietary
cholesterol increased ceramide levels and products of
oxidized LDL in plasma of the apoE~~ mice. In addition,
we propose that ceramides, the toxicities of which are
much higher than that of cholesterol, are a new risk factor
for atherosclerosis.
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Abstract

The availability of non-viral gene delivery systems is determined by their capacity and safety during gene introduction. In this study,
the safety issues of polyplex were analyzed from the standpoint of the biomolecular mechanisms. P[Asp(DET)], a newly developed
polymer, polyasparagine carrying the N-(2-aminoethyl)aminoethyl group as the side chain which was recently revealed to show good
transfection efficiency to primary cells, was compared to conventional linear poly(ethylenimine) (LPEI). After transfection toward a
bioluminescent cell line, P[Asp(DET)] maintained the expression level of stably expressing luciferase. In contrast, LPEI showed a
decrease in the luciferase expression, while the similar expression of exogenous reporter gene was obtained. Evaluation of the
housekeeping genes expression as well as the profiles of pPDNA uptake after transfection suggested the time-dependent toxicity of LPEI
that perturbs cellular homeostasis. Consistently, the induction of osteogenic differentiation by functional gene introduction was achieved
only by P[Asp(DET)], even though appreciable expression of the gene was achieved by LPEL It is crucial that this aspect of safety be
taken into account, especially when the gene introduction is applied to primary cells to regulate such cell function as differentiation. This
biomolecular analysis focusing on cellular homeostasis is beneficial for assessing the practicability of the gene delivery systems for clinical
application.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction trials using viral vectors have been halted due to

unprecedented toxicity, including the death of a patient

Gene therapies have attracted progressive attention for
the treatment of numerous intractable diseases, but the
lack of safe and efficient gene-delivery systems is an
obstacle to their clinical application. Viral vectors are
known to be highly potent gene delivery systems, yet may
also induce adverse side effects, including severe immuno-
logical and toxicological responses. In fact, recent clinical
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[1-4]). Therefore, non-viral gene carriers such as cationic
lipids and polymers are expected to be an alternative to
viral vectors directing therapeutic genes to target tissues.
The availability of gene carriers is largely determined by
their transfection efficiency and cytotoxicity. Although the
latter is generally evaluated through the viability assay of
cultured cells such as an MTT assay [5], an MTT assay
only reflects the non-specific outcome of cell death.
Synthetic carriers may induce side effects including
complement activation, carcinogenicity, teratogenicity
and immunogenicity, all of which are serious concerns
for clinical application [6]. Thus, the safety issues of non-
viral gene carriers, both on a cellular and systemic basis,
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are critical for their clinical development, requiring careful
analysis of the toxicity by exploring the biomolecular
mechanisms. In this regard, a pharmacogenomic analysis
of the global gene expression in the transfected cells is of
particular interest. This approach has recently been
advocated as polymer genomics or material genomics,
and several studies have been reported to have applied it
for the evaluation of non-viral gene carriers [7,8].

Recently, we developed a novel block catiomer-based
gene delivery system that showed excellent capacity for
in vitro transfection to primary cells [9]. This system is
composed of plasmid DNA (pDNA) and poly(ethylenegly-
col)-block-polyasparagine carrying the N-(2-aminoethyl)
aminoethyl group (CH,),NH(CH;),NH, as the side chain
(PEG-PAsp[DET]). Ethylene diamine units located at the
side chain are only half protonated under neutral pH and
are thus feasible candidates to perform the so-called proton
sponge effect, which has been believed to be the major
mechanism for the excellent transfection efficiency of some
polyamine derivatives having substantially lowered pKa
such as poly(ethylenimine) (PEI) [10-12]. As well as the
good transfection efficiency, the polyplex micelles from this
block catiomer showed minimal cytotoxicity toward var-
ious primary cells, achieving the successful in vivo gene
introduction to the vascular lesions [13] and the effective
induction of cell differentiation both in vitro and in vivo
through the effective expression of the genes encoding
transcriptional factors [14].

These results motivated us to perform an additional
toxicogenomic study of P[Asp(DET)] in order to ensure the
safety for future clinical application. Linear PEI (LPEI)
was used as a control, representing the common polycation
for the construction of polyplexes. Although P[Asp(DET)]
and LPEI both have a buffering capacity under an
endosomal pH, they showed a considerable difference in
the toxicological profiles which revealed the appreciably
lowered toxicity of the former compared to the latter. In
particular, the time-dependent change in the pharmaco-
genomical toxicity toward the targeted cells was evaluated
in detail, in regards to the capacity of inducing cell
differentiation through the transfection of functional genes
encoded in the encapsulated pDNA in the polyplex.

2. Materials and methods
2.1. Materials

pGL3-control pDNA encoding firefly luciferase (Promega, Madison,
WI, USA), pRL-CMYV pDNA encoding renilla luciferase (RL) (Promega),
and EGFP-C! pDNA encoding EGFP (Clontech, Palo Alto, CA, USA)
were amplified in the Escherichia coli strain DH 5a, which was isolated and
purified using a QIAGEN HiSpeed Plasmid Maxi Kit (Qiagen, Hilden,
Germany). pCMVS pDNA expressing HA-tagged mouse caALK6 and
pcDEF3 pDNA expressing Flag-tagged mouse Runx2 were generous gifts
from Dr. M. Kriippel (Mt. Sinai Hospital, Toronto, ON, Canada) and
Dr. K. Miyazono (University of Tokyo, Tokyo, Japan), respectively. The
concentration of DNA was determined by measuring the UV absorption
at 260 nm.

2.2. Cells

HuH-7 cells were obtained from the Riken Cell Bank (Tsukuba,
Japan). Bioluminescent cells (HuH-7-luc) stably expressing firefly lucifer-
ase were kindly provided by Mr. S. Matsumoto (University of Tokyo).
Dulbecco’s modified Eagle’s medium (DMEM) and fetal bovine serum
(FBS) were purchased from Sigma-Aldrich (St. Louis, MO, USA).

2.3. Polycations for the preparation of polyplex

LPEI (Exgen 500, M,, = 22 kDa) was purchased from MBI Fermentas
(Burlington, ON, Canada). Diethylenetriamine (DET) was purchased
from Tokyo Kasei Kogyo (Tokyo, Japan). All other chemicals were
purchased from Wako Pure Chemical Industries (Osaka, Japan).
P{Asp(DET)) was synthesized by the side-chain aminolysis reaction of
the poly (B-benzyl L-aspartate) (PBLA) as previously reported [9]. Briefly,
the PBLA was synthesized by the ring-opening polymerization of the
B-benzyl-L-aspartate N-carboxyanhydride (BLA-NCA) initiated by the
primary amine of n-butylamine in N,N-dimethylformamide (DMF)/
dichloromethane (1:10) at 40°C, followed by the acetylation of the
N-termina) amine with acetic anhydride. Gel permeation chromatography
(GPC) was performed to confirm a unimodal molecular weight distribu-
tion (My/M, 1.20) of PBLA by TOSHO HLC-8220 (columns: TSK-gel
G4000HHR + G3000HHR, eluent: DMF + 10mm LiCl, T = 40°C, detec-
tor: refractive index). The degree of polymerization of PBLA was
determined as 98 from the 'H NMR spectrum (JEOL EX300 spectro-
meter: JEOL, Tokyo, Japan). Then, the side-chain aminolysis reaction of
PBLA was performed by mixing the DMF solution of PBLA(50 mg/ml)
with a 50-fold excess of DET in DMF at 40 °C to obtain P[Asp(DET)].

2.4. Polyplex formation

Each polyplex sample with a pDNA concentration of 33 ug/mL was
prepared by simply mixing pDNA and polycation(LPEI or P{Asp(DET)])
at the indicated N/P ratio (=[total amines in polycation][DNA
phosphates]) in a 10mm Tris—-HCI (pH 7.4) buffer solution.

2.5. Dual luciferase measurement on HuH-7-luc celis transfected
with pRL-CMV pDNA

HuH-7-1uc cells were seeded on 96-well culture plates (3 x 10° cells/well)
and incubated overnight in 100 i DMEM supplemented with 10% FBS
and penicillin/streptomycin. After the culture medium was replaced with
fresh medium containing 10% FBS, 5.5 ul of the polyplexes composed of
P[Asp(DET)] or LPEI (final DNA concentration: 33 pg/ml) were applied
to each well. After 24h, the medium was changed to remove the
polyplexes, followed by further incubation for 24 or 48 h. The firefly and
RL activities were measured using a Dual-Luciferase Reporter Assay
System (Promega) according to the protocol provided by the manufac-
turer, using a GloMax™ 96 Microplate Luminometer (Promega).

2.6. Cell proliferation assay

HuH-7-luc cells (6 x 10° cells/well) were seeded in six-well plates and
cultured overnight. After the transfection as described above (polyplex
solution: 90 ul/well), the cells were washed with phosphate-buffered saline
(PBS), trypsinized, and scraped off. Then the cell number was counted by
a nucleo counter (Chemometec, Tokyo, JAPAN) following the protocol
provided by the manufacturer. The measurement was duplicated.

2.7. Lactate dehydrogenase (LDH) assay

The degree of membrane destabilization was examined by lactate
dehydrogenase (LDH) activity liberated from the cytoplasm. The cells
were plated on 96-well plates and incubated overnight in 100 pl of DMEM
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