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Figure 2. Dendritic Raft Targeting and
Multimeric Complex Formation of CL3
in Cortical Neurons
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inhibitor of squalene synthase that efficiently depletes
membrane cholesterol (Figure 2B, lower panel). These
results indicated that CL3 was a genuine component of
dendritic lipid rafts and that raft insertion was likely
regulated by CL3 prenylation and palmitoylation.

Does CL3 actually share some of the properties known
for dendritic raft signaling molecules? A number of raft
proteins were previously reported to homo-oligomerize
into a multimeric protein complex via lipidification (Zacha-
rias et al., 2002; Huang and El-Husseini, 2005). Indeed,
HA-tagged WT CL3 coimmunoprecipitated with GFP-CL3
(Figure 2C) in cortical neurons. Furthermore, a significant
fluorescence energy transfer (FRET) was detected
between coexpressed CFP-CL3 and YFP-CL3 in live
hippocampal neurons, indicative of their genuine molecu-
lar proximity in a complex (Figure S2A). Interestingly, Lyn,
a well known raft-enriched molecule, colocalized with CL3
in live-untreated, but not in detergent-treated, neurons
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sucrose; 5-12, 35% sucrose; 13, 50% sucrose.
(B) A sizable portion of total GFP-CL3 fluores-
cence was recovered after detergent treat-
ment as detergent-resistant GFP-CL3, which
was localized in a punctate manner in 2 DIV
cortical neurons along the dendrites as well
as at the perinuclear region. Dendrites were
unambiguously identified as processes of
limited length (much shorter than the axon
exceeding 100 um). Line scans of pixel fluores-
cence, carried out within a chosen field of
a 15 pm dendritic segment (in insets 1 and 2)
by horizontally tracking the clusters of GFP-
CL3, illustrate the spotty presence of raft-
inserted CL3 along the dendrites (right panels).
Treatment with 100 uM zaragozic acid
abolished the dendritic detergent-resistant
patches and flattened the line scan profile.
Scale bar, 10 um.

(C) CL3 forms a multimeric complex in cortical
neurons. Wild-type CL3 tagged with either HA-
tag (HA-CL3) or GFP (GFP-CL3) were coex-
pressed in cortical neurons by nucleofection
and coimmunoprecipitated using an anti-GFP
antibody. In, input; IP, immunoprecipitates.

(Figure S2B). In contrast, the distribution of GIuR1, a
dendritic protein that is targeted to lipid rafts by palmitoy-
lation (Suzuki et al., 2001; Hering et al. 2003; Hayashi et al.
2005), partially overlapped with CL3 even in detergent-
treated neurons (Figure S2C).

CL3 Promotes Dendritogenesis in Cortical Neurons

From previous studies (Takemoto-Kimura et al., 2003;
Wayman et al., 2004), it has been speculated that the
CaMKK-CaMKI pathway might play a role in the control
of neuronal morphology during development. In situ
hybridization of embryonic day 17.5 (E17.5) tissues
revealed a strong expression of CL3 transcript in the fore-
brain (Figures 3A and 3B) and in particular in the cortical
plate of the cerebral cortex (Figures 3C and 3D). To test
whether CL3 was involved in neuronal morphogenesis
during this period, either GFP or GFP-CL3 cDNAs were
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electroporated into cortical neurons immediately upon
dissociation, and the morphology of the neurons was
examined 48 hr later, a time point when the majority of
neurons under our culture conditions developed well-
discernable dendrites and one axon. In control GFP-
expressing neurons, little GFP fluorescence overlapped
with a Golgi membrane marker, GM130 (Figures 3E and
3F, arrow). In GFP-CL3-overexpressing cortical neurons,
however, GFP fluorescence colocalized with GM130 (Fig-
ures 3G and 3H, arrow) and also showed discrete enrich-
ment within several dendritic processes (Figures 3G and
3H, arrowhead). Compared to GFP-expressing control
neurons (Figure 3l), GFP-CL3-overexpressing neurons
appeared to exhibit unaltered axonal extension and
branching, while in contrast, increased dendritic growth
was found at and in the very vicinity of the soma
(Figure 3L). In keeping with this finding, coexpression of
mCherry-actin with GFP-CL3 (Figures 3M and 3N), but
not with GFP (Figures 3J and 3K), revealed an augmenta-
tion of actin-enriched tips at the growing ends (Figures 3M
and 3N, arrows) of the nascent processes extending out
from the soma, consistent with activation of an actin
cytoskeletal remodeling process. To quantify the morpho-
logical changes associated with CL3 overexpression,
morphometric analyses were performed on the dendrites
of GFP-CL3-expressing cortical neurons in a blind fash-
ion. We found that total dendritic length, and in particular
the length of the longest dendrite, was most strikingly
increased by CL3 overexpression, while the change in
branch-tip number remained small and not significant
(Figure 30). CL3-dependent promotion of dendritic
growth was detected equally over the whole range of
length of primary dendrites (Figure 3P), suggesting that
the CL3 effect was unlikely to be restricted to just a
subgroup of dendrites, but rather promoted a key com-
mon step in early dendritic formation. This CL3-induced
effect was not seen with a kinase-inactive K52A mutant
(data not shown). Together, these sets of evidence
suggested the possibility that CL3 may be involved in
early stages of dendritogenesis in developing cortical
neurons.

A Required Role of CL3 in Dendritogenesis

but Not in Axonogenesis

To critically test this possibility, we next examined the
neuronal morphology in neurons where CL3 expression
was strongly attenuated by RNA interference, using a short
hairpin-type pSUPER vector that also coexpressed a PGK
promoter-driven EGFP or mRFP1 gene cassette for
morphological tracing. The knockdown efficiency and
specificity of the shCL3 vector was prominent enough
such that even an overexpressed GFP-CL3 became
barely detectable 48 hr after transfection, while the control
mRFP1 expression level remained unchanged (Figure 4A).
This shCL3 vector was introduced into embryonic cortical
neurons by electroporation, and formation of dendrites
and axons was studied 48 hr later. While the cortical
neurons showed 5-6 dendritic processes in control
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experiments, shCL3-treated neurons revealed a notable
impairment in the number and total length of MAP2-
positive dendrites (Figure 4B, arrows). In striking contrast,
formation of Tau-1-positive axons was largely spared
(Figure 4B, arrowheads). Quantitative morphometric
analyses on dendritic or axonal arborizations confirmed
that the impairment in shCL3-transfected neurons was
actually confined to a selective decline in total dendritic
length and in total tip number and did not affect either
axonal outgrowth or branching (Figures 4C and 4D). The
reduction in dendritic growth was observed throughout
the whole range of dendrite length (Figure S3). The striking
specificity in dendritic phenotype was also sustained even
in shCL3-transfected neurons that were plated following
an extensive period (48 hr) of suspension culture that
allowed them to maximize the effect of knockdown prior
to plating (Figure S4). Knockdown of either CaMKlla or
CaMKIV revealed no phenotype, at least during the very
early dendritogenic period that we examined (Figure S5).
Taken together, knockdown of CL3 did not interfere with
the process of axon specification or axonogenesis, but
rather suppressed a subsequent process that was
required for dendritogenesis. We next asked whether
CL3’s kinase activation was a genuine requirement. The
abnormality in dendritogenesis could be rescued by addi-
tional expression of an shCL3-resistant WT (kinase-active)
CL3, but not by that of an shCL3-resistant K52A (kinase-
inactive) CL3, demonstrating the absolute necessity of
CL3 kinase activity during dendritogenesis (Figure 4E).
Consistently, early dendritogenesis, but not axonogene-
sis, was also impaired in cultured cortical neurons
obtained from CL3 null mice (Figure 4F).

In 9 DIV hippocampal neurons, CL3 knockdown dimin-
ished total dendritic length and primary dendrite number
(Figure S6) and induced an altered Golgi morphology
(Figure S7), which was somewhat reminiscent of Golgi
vesiculation associated with impaired dendritic polarity
(Horton et al., 2005).

A Required Role for CL3 in BDNF-Stimulated
Dendritic Growth

We then asked what calcium mobilization might contrib-
ute to CL3-dependent stimulation of dendrite develop-
ment. Brain-derived neurotrophic factor (BDNF) was
previously shown to strongly promote dendrite growth
and trigger an intracellular calcium rise (e.g., Huang and
Reichardt, 2003, for a review). Consistent with published
literature, bath application of BDNF induced a slow but
clear increase in intracellular Ca®* concentration in the
cultured cortical neurons used in our study (Figures S5A-
5C). Latencies of onset and oscillatory amplitudes/
frequencies varied from neuron to neuron (Figures 5B
and 5C). Continuous treatment of cortical neurons with
BDNF significantly promoted dendritic growth (Figure 5D,
p < 0.05, ANOVA with post hoc Tukey-Kramer test). In
the presence of a global blocker of CaM kinase
activation, KN-93, both constitutive and BDNF-stimulated
components of dendritic growth were strongly inhibited

Neuron 54, 755-770, June 7, 2007 ©2007 Elsevier Inc. 759
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Figure 3. Expression of CL3 in the Developing Cortex and Regulation of Dendritic Morphogenesis in Cultured Cortical Neurons
(A-D) In situ hybridization of mouse embryonic (E17.5) tissue using an antisense (AS) riboprobe revealed an intense signal of CL3 transcript in the
developing forebrain. The boxed area of a macroscopic image in (A) is shown at higher magnification (C): (left) hybridized DIG signal only; (right)
full-color image (DIG signal in blue-violet + nuclear counterstaining in red). The control sense probe detected little signal (B and D). Asterisk, pia mater;
MZ, marginal zone; CP, cortical plate.

(E-H) Membrane localization of CL3 in embryonic cortical cultures. GFP-CL3 distribution detected by anti-GFP immunostaining (G and H)
showed colocalization with a Golgi marker, GM130 ([G and H], arrows). GFP-CL3 signals were also enriched within tips of fine dendritic processes
([G and H], arrowheads). Note that the GFP signals in control neurons were separated from the red GM130 immunofluorescence (E and F). Single
representative confocal sections are shown.

(I-N) Overexpression of GFP-CL3 facilitated formation of actin-rich thin processes from dendrites and soma. Low-magnification image showed GFP-
CL3 signals were distributed both in the nascent dendrites and in the axon ([L], arrow and arrowhead, respectively). In GFP-CL3-expressing neurons,
a larger number of thin processes reminiscent of fine dendrites and/or filopodia were present at dendrites and soma ([L and M], arrows), as compared
with GFP-expressing neurons (| and J), but not at the axon ([L], arrowheads). These numerous processes contained abundant amounts of B-actin, as
shown by enrichment of mCherry-actin (arrows in [N]).
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Figure 4. CL3 Loss-of-Function in
Embryonic Cortical Neurons Elicits
a Specific Impairment in Dendrite
Morphogenesis

(A) Efficient downregulation of exogenous
GFP-CL3 was achieved by a CL3-targeted
shRNA vector (pSUPER-shCL3), but not by
a control vector (DSUPER-shNega), in embry-
onic cortical neurons. The mRFP1 expression,
which was driven by a dual promoter in
a pSUPER + mRFP1 vector cassette, remained
unchanged.

(B) A representative confocal image of an shCL3/
GFP-expressing neuron (pSUPER-shCL3)
showing impaired dendritogenesis. In this ex-
ample, an shCL3-expressiong neuron had
only a single remaining dendrite (an arrow in
the inset), while an shNega-transfected neuron
carried 5-6 dendrites (arrows in the inset). On
the other hand, no change in axonal morphol-
ogy was detected (arrowheads). Tau-1 and
MAP2 were used to identify axons and den-
drites, respectively.

(C) Monochrome diagrams of representative
shNega- or shCL3-expressing neurons. The

longest process (axon) was unchanged, while
the morphology of shorter dendrites near the
cell soma was much simplified in shCL3-

transfected neurons.
f 3 (D) Quantification of morphometric parameters
& ép in CL3-knockdown neurons. To quantify, the
Axon total length and the dendritic branch tip number
e were calculated over the dendritic or the axonal

; arborizations for all branches exceeding 7 umin
length. In shCL3-expressing neurons, both
parameters were significantly reduced in the

dendrites. On the other hand, neither axonal

length nor axonal branch tip number were sig-

nificantly altered. Number of neurons: shNega,

ns. n=78;shCL3,n=53. ***p <0.001; n.s., not sig-
T nificant (p > 0.05) (t test).

(E) Reguirement for CL3 kinase activity to
rescue shCL3-mediated impairment in dendri-
togenesis. Introduction of an shCL3-resistant

silent mutant of wild-type GFP-CL3 (WT,..)

o successfully rescued the dendritic phenotype

& \;‘5*_ elicited by shCL3 on both morphometric
¢ parameters. The shCL3-resistant kinase-
inactive GFP-CL3 (K52A..) was unable to

rescue the shCL3 phenotype. Number of neurons: shNega, n = 37; shCL3 + mock, n = 35; shCL3 + WT,g, n = 41; shCL3 + K52A5, n = 33. "'p <
0.01; **p < 0.001; n.s., not significant (p > 0.05) (ANOVA with post hoc Tukey-Kramer test).

(F) Dendritogenesis, but not axonogenesis, is specifically impaired in cultured cortical neurons from CL3-KO mice. WT, n = 20; CL3-KO, n = 20.

*p < 0.05; "*p < 0.01; n.s., not significant (p > 0.05) (t test). Scale bars, 50 um (A-C) and 20 um ([B], inset).

(Figure 5D). Because KN-93 suppressed dendritic growth
to a similar extent under either constitutive or BDNF-
stimulated conditions, this raised the possibility of a
common involvement of a KN-93-sensitive kinase (Fig-
ure 5D). To specifically test this idea, we employed RNAI

and measured the degree of suppression of dendritic
growth in the absence or presence of BDNF application
and found that indeed CL3 knockdown completely
phenocopied the effect of KN-93 on dendrites and oc-
cluded BDNF-stimulated dendritic growth (Figure SE).

(O) Facilitation of dendritic outgrowth by CL3 overexpression. Total length, branch tip number, and longest dendrite length are shown. Number of
neurons: GFP, n = 30; GFP-CL3, n = 30. ***p < 0.001; n.s., not significant (p > 0.05) (t test).

(P) Cumulative probability analysis shows a significant extension of primary dendrites in GFP-CL3-expressing neurons (*p < 0.01, Kolmogorov-
Smirnov test). Numbers of examined dendrites: GFP, n = 258 (from 50 neurons); GFP-CL3, n = 321 (from 50 neurons).

Scale bars, 300 um (A and B); 50 pm (C and D); 10 um (E-H); 20 pm (-N).
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Furthermore, dendritic growth was rescued by coexpress-
ing an shCL3-resistant wild-type, but not a membrane
anchoring-defective CL3 mutant (Figure 5F). Thus, signal-
ing via membrane-anchored CL3 may play a critical role in
BDNF-mediated cortical dendritogenesis during early
development.

A Lipid-Raft-Delineated CL3-STEF-Rac

Pathway Contributes to the Development

of Cortical Dendrites

What are the signaling components that underlie lipidified
CL3-mediated dendritic growth? Taking advantage of our
finding that CL3 overexpression was accompanied by
a sizable increase in the length of primary dendrites (Fig-
ures 30, 3P, and 6A), and in particular its longest dendrite
(Figure 30, right panel; Figure 6B), we next tested the pos-
sible contribution of small GTPases downstream of CL3.
Coexpression of a dominant-negative Rac abolished the
effect of CL3 overexpression (Figures 6A and 6B), and
this effect was seen throughout the observed range of
primary dendrite length (Figure 6C), supporting the idea
that Rac mediated CL3-stimulated dendritic growth. Con-
sistently, we found that CL3 knockdown downregulated
Rac activity (Figure 6D). Furthermore, overexpression of
a dominant interfering fragment (PHNTSS) of STEF, a spe-
cific RacGEF previously implicated in cortical migration
and neurite outgrowth (Kawauchi et al., 2003; Matsuo
et al., 2002), also potently repressed the CL3 effect (Fig-
ures 6A and 6B); however, this effect was less pronounced
in dendrites with shorter lengths (<20 pm) (Figure 6C). Both
STEF and Rac were detected in the Triton X-100-insoluble
low-density membrane fractions enriched for flotillin-1 but
devoid of transferrin receptors (Figure 6E), consistent with
the presence of a raft-delineated CL3-STEF-Rac pathway.
In keeping with this, sustained Rac activity significantly at-
tenuated the impairment in dendrite development ob-
served in CL3-diminished neurons (Figures 6F and 6G).

If raft localization of CL3 was critical for CL3-dependent
dendritogenesis, a raft depletion by pharmacological
manipulation or a removal of CL3 from rafts by mutation
of its palmitoylation sites should significantly perturb
dendrite formation and growth. To test this, we pretreated
cortical neurons with either mevastatin, an HMG-CoA
reductase inhibitor, to deplete membrane cholesterol,
and/or with fumonisin B4, an inhibitor of sphingolipid
synthesis. Treatment with either mevastatin or, to a lesser
extent, with fumonisin B, reduced dendritogenesis (Fig-
ures 7A and 7B). A combination of both had no further
additive effect (Figures 7A and 7B). As mevastatin was
expected to interfere not only with cholesterol synthesis
alone but also with protein prenylation, we also examined
the effect of zaragozic acid, an inhibitor of squalene syn-
thase, which would disrupt cholesterol synthesis while
sparing mevalonate production. Zaragozic acid treatment
diminished dendrite formation to a degree similar to the
effect seen with mevastatin; a combination of both did
not produce a further incremental effect (Figures 7A and
7B). Interestingly, raft depletion by treatment with zara-
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gozic acid abolished the dendritogenic action of overex-
pressed CL3 (Figure 7C). Together, these results further
supported the idea that the presence of intact lipid rafts
was critical for CL3 to exhibit its dendritic effect.

In keeping with this, a palmitoylation-site-deficient 4CS
mutant of CL3, which was made resistant to shCL3 RNAi
vector, was unable to rescue the dendritic effect of CL3
knockdown in cortical neurons (Figure S4C). Intriguingly,
in hippocampal neurons, the inaccessibility of 4CS mutant
protein toward detergent-resistant raft membranes in
CL3-knockdown cells (Figure S8A) was accompanied
with the appearance of exuberant thin filopodial pro-
cesses from the soma (Figure S8B, arrows). These results
are consistent with a role of palmitoylation in targeting,
and perhaps restricting, CL3 expression to its appropriate
sites of cellular actions. Taken together, CL3 palmitoyla-
tion may be a useful means to restrict STEF-Rac activation
to microdomains in the vicinity of dendritic rafts during
early dendritogenesis.

DISCUSSION

Identification of CL3/CaMKly as a Privileged Kinase
Involved in the Regulation of Dendritic
Cytoarchitecture during Early CNS Development
Previous analyses have established the necessity
of CaMKIl, a predominant form of CaM kinase, as
molecular switch required for neuroplasticity in the hippo-
campus, the barrel cortex, and the visual cortex (Lisman
et al., 2002; Fox and Wong, 2005). Furthermore, the role
of CaMKIl isoforms in several forms of dendritic develop-
ment was extensively studied, though the exact effect on
dendrite morphogenesis has remained rather controver-
sial. CaMKlla was shown to contribute to dendritic out-
growth in cerebellar granule neurons (Gaudilliere et al.,
2004), and CaMKIIB but not CaMKI|x regulated the move-
ment and branching of filopodia and fine dendrites in rat
hippocampal neurons (Fink et al., 2003). In contrast, in
Xenopus retinotectal neurons, CaMKIl was reported to
limit dendritic outgrowth and to stabilize dendritic arbori-
zation in vivo (Wu and Cline, 1998).

In contrast to CaMKII, which is one of most abundant
proteins expressed in the postsynaptic density (PSD)
(Kennedy, 2000), CaMKIV in the nucleus plays a critical
role in mediating Ca2*-regulated transcription via a
CREB/CBP pathway, which is necessary for the formation
of long-term synaptic plasticity and long-term memory
(Silva et al., 1998; Bito and Takemoto-Kimura, 2003), as
well as activity-dependent dendritic elongation (Redmond
et al., 2002). In turn, a cytosolic CaMKI activity has been
shown to participate in the gating of an ERK/MAP-kinase-
dependent form of LTP (Schmitt et al., 2005). Neurite out-
growth was also reported to be regulated by a presumably
cytosolic CaMKK-CaMKI/IV pathway: indeed, a constitu-
tively active CaMKIV was suggested to enhance dendritic
growth via stabilization of B-catenin (Yu and Malenka,
2003), while a CaMKK inhibitory drug, STO-609, or puta-
tive dominant-negative constructs specifically blocking
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Figure 5. Requirement of CL3 for BDNF-Stimulated Dendrititogenesis

(A) BDNF-induced calcium transients in developing cultured neurons. A representative image of cortical neurons during a typical calcium rise after
BDNF bath application is shown in (A). Embryonic cortical neurons (1 DIV) were loaded with a calcium indicator, Fluo-4AM, and calcium responses
were measured by time-lapse imaging. A green fluorescence image was overlaid on a DIC image. Colored boxes indicate the location of cells shown
in (B). Scale bar, 50 um.

(B) Representative calcium responses in individual cells after BDNF administration. Three different types of calcium responses were revealed. The
majority of cells showed a large transient response followed by smaller repetitive responses (blue), whereas some showed oscillation (yellow) or
chronic increases from the baseline (red).

(C) Averaged calcium responses after BDNF administration. An averaged response from 70 cells in a microscopic field is shown.

(D) Cortical neurons were transfected with a morphological tracer, mCherry, and stimulated with BDNF from 6 hr to 48 hr after plating, in the presence
or absence of KN-93, a general CaM kinase inhibitor. BDNF treatment maximized dendritogenesis, and this BDNF-stimulated increment was
occluded in neurons treated with KN-93. Numbers of neurons: vehicle + DMSO, n = 25; vehicle + KN-93, n = 44; BDNF + DMSO, n = 38; BDNF +
KN-93, n = 32.

(E) Quantification of dendritogenesis in BDNF-stimulated CL3-knockdown neurons. CL3 knockdown severely inhibited dendritogenesis induced by
BDNF administration, to an extent similar to that obtained with KN-93. Numbers of neurons: vehicle + shNega, n = 40; vehicle + shCL3, n=41; BDNF +
shNega, n = 40; BONF + shCL3, n = 40.

(F) Suppression by CL3 knockdown of BDNF-stimulated dendritogenesis can be rescued by coexpression of an shRNA-resistant wild-type CL3
(WTres), but not by a nonlipidified mutant CL3 (C474Sres). Numbers of neurons: shNega + mock, n = 52; shCL3 + mock, n = 57; shCL3 + WTres,
n = 57; shCL3 + C474Sres, n = 55.

**p < 0.001; n.s., not significant (ANOVA with post hoc Tukey-Kramer test).

either CaMKK or cytosolic CaMKI/CaMKIV (but not nu- down and CL3 null neurons (Figure 4 and Figure S3),
clear CaMKIV) activities prevented axonal extension and while axonal morphology was not significantly distinct
growth cone dynamics as well as neurite extension from controls. Knockdown of CL3 prior to plating of
(Schmitt et al., 2004; Wayman et al., 2004). neurons strengthened this suppressive effect on the

Taken together, multiple CaM kinase pathways that are dendrites while still sparing the axons (Figure S4). Taken
segregated in distinct subcellular compartments may together, our data suggested a prominent role of CL3
regulate several critical steps converging onto dendrite during the early stages of dendritogenesis that pre-
elongation and maturation. This prompted us to investi- sumably followed completion of the axon/dendrite
gate the particular role of CL3/CaMKly (Takemoto- specification.
Kimura et al., 2003; Nishimura et al., 2003), a membrane- While this paper was under review, an independent
anchored form of CaMKI, which was highly expressed in study reported that CL3/CaMKly may regulate activity-
the cortical plate neurons of the mouse embryo (this dependent dendritic growth at an even later stage of
study). Intriguingly, we found a specific impairment in development in hippocampal neurons (Wayman et al.,
the number and total lengths of dendrites in CL3 knock- 2006; see also Figures S6 and S7 of this study).
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Figure 6. A Critical Role for RacGEF STEF and Rac in Mediating CL3-Induced Dendritic Outgrowth

(A) Cortical neurons were cotransfected with GFP-CL3 and either dominant-negative Rac1 (RacDN) or dominant-interfering fragment of STEF
(STEFDN) together with a morphometric tracer, mRFP1. Examples for dendrites (arrows) and axons (arrowheads) are shown. Scale bar, 20 um.
(B) Quantification of longest dendrite. Number of neurons: GFP + mock, n = 51; GFP-CL3 + mock, n = 50; GFP-CL3 + RacDN, n = 57; GFP-CL3 +
STEFDN, n = 60. **p < 0.001 (ANOVA with post hoc Tukey-Kramer test).

(C) Cumulative probability analysis of the length of primary dendrites showed that inhibition of STEF and Rac activity suppressed the extension of
primary dendrites induced in GFP-CL3-expressing neurons. Number of examined dendrites (neurons): GFP, n = 324 (from 51 neurons); GFP-CL3,
n = 332 (from 50 neurons); GFP-CL3 + RacDN, n = 328 (from 57 neurons); GFP-CL3 + STEFDN, n = 378 (from 60 neurons). ‘p < 0.05; *"p < 0.01;
“*p < 0.001 (Kolmogorov-Smirnov test).
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(A) Cortical neurons were transfected with a morphological tracer, mCherry, and cuttured in the presence of various combinations of raft-depleting
agents from 6 hr to 48 hr after plating. Disruption of cholesterol/sphingolipid synthesis strongly inhibited formation and outgrowth of the dendritic
processes around the soma. Scale bar, 50 pm.

(B) Ensemble average of experiments shown in (A). DMSO, n = 10; 10 uM mevastatin, n = 15; 10 uM fumonisin B;, n=15: 10 uM fumonisin By and
10 uM mevastatin, n = 15; 100 uM zaragozic acid, n = 15; 100 uM zaragozic acid and 10 uM mevastatin, n = 15. “**p < 0.001 (ANOVA with post hoc
Tukey-Kramer test).

(C) Raft depletion using zaragozic acid abolished the increase of dendritogenesis induced by CL3 overexpression. A significant CL3-mediated
increase in dendritic growth was shown in the DMSO control, but this significant increase was abolished by raft depletion in the presence of zaragozic
acid (two-way ANOVA, CL3 effect, Fy g5 = 8.65, p = 0.0045; drug effect, F; 55 = 51.95, p < 0.0001; CL3 x drug, Fi.6s = 8.38, p = 0.0052). ***p < 0.001
(post hoc Bonferroni test). DMSO, n = 15 (—CL3), n = 24 (+CL3), 100 pM zaragozic acid, n = 15 (-CL3), n = 15 (+CL3).

Control of CL3 Targeting to Lipid Microdomains and expression of proper function in the vicinity of special-
by a Kinase-Activity-Regulated Dual ized membrane compartments. Largely based on quanti-
Lipidification Mechanism tative work on Ras and PSD-95, a palmitoylation/depalmi-
In polarized neural cells, covalently attached lipid modifi- toylation cycle has been previously suggested to play
cation of proteins is important for membrane targeting a crucial regulatory role in determining the proper

(D) The amount of GTP-bound active Rac1 was measured by a Pak1-PBD pulldown assay using cortical neurons transfected with shNega or shCL3
vector. The amount of active Rac1 was reduced by CL3 knockdown.

(E) Presence of Rac1 and STEF immunoreactivities in lipid raft fractions of cortical neurons. For STEF detection, a pooled and concentrated raft
fraction was used. Transferrin receptor was used as a non-raft membrane marker.

(F) Representative images of shCL3/mRFP1-expressing neurons coexpressing constitutively active GFP-Rac1 (+V12Rac1) or GFP (+mock). Expres-
sion of constitutively-active GFP-Rac1 (+V12Rac1) restored appearance of multiple dendrites (arrows) in shCL3-expressing neurons, while expres-
sion of GFP alone did not. Scale bar, 50 um,

(G) Quantification of dendritic morphogenesis confirmed that constitutively active GFP-Rac1 attenuated the specific impairment of dendritic
morphology induced by shCL3 transfection. Number of neurons: shNega + mock, n = 22; shCL3 + mock, n = 47; shCL3 + V12Rac1, n =49. "p <
0.05; **p < 0.01; ***p < 0.001 (ANOVA with post hoc Tukey-Kramer test).
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trafficking and function of palmitoylated signaling proteins
(Huang and El-Husseini, 2005). Dynamic regulation of pal-
mitoylation was already shown for a large number of syn-
aptic constituents such as AMPA-receptor subunits (Hay-
ashi et al., 2005), GABAR vy-subunits (Keller et al., 2004),
and GRIP/ABP (DeSouza et al., 2002), indicating a critical
role for neuronal PAT in synaptic maturation and mainte-
nance. However, a direct involvement of protein palmitoy-
lation in early stages of neuronal morphogenesis has not
been examined.

In this work, we demonstrated that the C-terminal end
of CL3 was covalently modified in a sequential manner
by prenylation and by palmitoylation. A dually lipidified
CL3 was generated in a kinase-activity-dependent man-
ner, in part via the PAT GODZ (Uemura et al., 2002),
resulting in an efficient enrichment into dendritic-raft-like
lipid microdomains.

We then found that dually lipidified CL3 was likely to be
partitioned and targeted to close proximity of dendritic
lipid microdomains. Consistently, CL3 showed self-
association (Figure 2C and Figure S2A), a property that
is not unusual for palmitoylated or dually lipidified proteins
(Zacharias et al., 2002). However, we failed to detect any
Ca”*/CaM-independent kinase activity of CL3, even under
conditions where CL3 multimerization was present. This is
distinct from the property of CaMKII, in which dodecame-
rization was shown to promote a Ca®*/CaM-independent
kinase activity that outlasted the duration of the incoming
Ca>* mobilization through an autophosphorylation mech-
anism. We thus speculate that oligomerization, if any, of
prenyl-/palmitoyl-CL3 may have roles other than the
generation of an autonomous kinase activity, such as
sustaining a high degree of molecular proximity and con-
centration that favors signal amplification and increases
the specificity and efficiency of coupling to downstream
signaling events.

A BDNF-CL3-Rac Pathway May Underlie Excitation-
Morphogenesis Coupling during Early Cortical
Dendritogenesis

Previously, neuronal activity has been shown to promote
initiation of dendrite formation via small GTPases such
as Rac and Cdc42 (Luo, 2002; Van Aelst and Cline,
2004). To date, however, knowledge about how neuronal
activity regulates these small GTPases is still limited.
The strongest evidence in favor of activity-induced den-
dritic arborization so far involved several Ca®*-regulated
transcriptional factor such as CREB, NeuroD, and CREST
(Gaudilliere et al., 2004; Konur and Ghosh, 2005), though
the cellular mechanisms linking nuclear events and neuro-
nal morphogenesis remained as yet largely undetermined.
Here we found that a membrane-bound CaM kinase, CL3/
CaMKly, may possibly act downstream of BDNF and Ca®*
signals to promote dendritic cytoskeletal remodeling via
the small GTPase Rac, especially during early stages of
dendritic development. Furthermore, we provided several
lines of evidence that collectively indicated that CL3-

766 Neuron 54, 755-770, June 7, 2007 ©2007 Elsevier Inc.

Neuron
Regulation of Dendritogenesis via CLICK-III/CaMKIy

STEF-Rac signaling triggered at or in the vicinity of lipid
rafts may play a critical role.

Could lipid rafts, also known as sphingolipid- and
cholesterol-rich membrane microdomains, be distributed
in an asymmetric fashion such that some of these may
influence dendrite targeting of signaling proteins such as
CL3? In support for such an idea, depletion of cellular
cholesterol/sphingolipid content in cultured neurons
revealed an important role for cholesterol (Fan et al.,
2002) or sphingolipids (Schwarz and Futerman, 1998;
Pelled et al., 2003) in dendritic growth and spine mainte-
nance (Hering et al., 2003). In addition, no responsiveness
to glutamate application was reported in neonatal cortical
neurons of a mutant mouse deficient in cholesterol
biosynthesis, despite a normal amount of GIuR and
NMDAR subunit expression, indicating a possible defect
in membrane insertion of dendritic glutamate receptors
(Wassif et al., 2001). A distinct kind of raft-mediated
asymmetry may play a role in axonal fate specification
(Da Silva et al., 2005).

If raft formation was coupled with the creation of a
polarized asymmetry of signaling molecule distribution,
how could this possibly underlie a morphogenetic
response, especially downstream of BDNF? Recruit-
ment of activated TrkB to lipid rafts (Suzuki et al.,
2004) could evidently contribute to efficient coupling to
raft-targeted CL3 downstream of BDNF. In neurons,
fractionation experiments during development have
also previously revealed a privileged association of
Rac with rafts, but not of RhoA or Cdc42 (Kumanogoh
et al., 2001; see also Figure 6E). We additionally found
that a portion of STEF was clearly present in the raft
fractions as well (Figure 6E). As the fragment encom-
passing the PHNnTSS domain of STEF (PHnTSS) has
been shown to act as a specific dominant-negative
form for both STEF and Tiam1 (Matsuo et al., 2002), it
remains possible that there may also be an additional
contribution of Tiam1, a known substrate for CaMK
activity (Tolias et al., 2005).

Taken together, dual lipidification of CL3 may be an
efficient mechanism not only to target it into rafts and to
limit its protein diffusion parallel to the lipid bilayer, but
also to generate a membrane-delimited area of Rac acti-
vation within segregated dendritic lipid microdomains at
the vicinity of Ca?*-mobilization events. Further studies
are needed to substantiate such a hypothesis.

In conclusion, we here uncovered a novel role for CL3/
CaMKly in the regulation of Rac-dependent dendritic
cytoskeletal reorganization, and we found evidence for
CL3 in mediating BDNF-stimulated dendritic growth.
Through a dual and sequential lipidification mechanism,
the unique C-terminal region of CL3 was covalently lipid-
modified in a kinase-activity-dependent manner, leading
to a privileged partition of membrane-anchored CL3 into
dendritic-raft-like lipid microdomains. This membrane-
sorting mechanism, unprecedented for a neuronal Ser/
Thr kinase, in turn may efficiently localize Rac activity
and thereby regulate dendritogenesis. Thus, CL3 turned
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out to represent a key element in the Ca®>*-dependent and
lipid-raft-delineated switch that turned on activity-regu-
lated dendrite formation in developing cortical neurons.

EXPERIMENTAL PROCEDURES

Cloning and Plasmid Constructions
A detailed description of all plasmids can be found in the Supplemental
Data.

Immunocytochemistry

Cells were fixed in 4% paraformaldehyde/4% sucrose/phosphate-
buffered saline (PBS) (—) at room temperature for 20 min, and immu-
nostaining was carried out as described (Takemoto-Kimura et al.,
2003). Additional methods can be found in the Supplemental Data.

Western Blot Analysis

For western blot analysis, primary antibodies were as follows: rat anti-
GFP (Nacalai Tesque, Japan), rat anti-HA (Roche Diagnostics), mouse
anti-Flotillin-1, mouse anti-Caveolin-2, and anti-Rac1 (BD Transduc-
tion Laboratories). A rabbit anti-STEF antibody was as described (Mat-
suo et al., 2002). Chemiluminescence detection was performed using
HRP-conjugated anti-rat and anti-mouse IgG and ECL-Plus reagent
(Amersham Biosciences).

Metabolic Labeling and Coimmunoprecipitation
For metabolic labeling, COS-7 cells plated onto 6-well plates were
transfected with wild-type and mutant GFP-CL3 vectors using
Fugene6 reagent (Roche Diagnostics). For mevalonate labeling,
a pMev vector (ATCC), which encoded a transporter that augmented
mevalonic acid uptake, was cotransfected with GFP-CL3 for 24 hr.
Cells were pretreated with 40 uM Compactin (Wako, Japan) for 2 hr,
then incubated for 20 hr in growth medium supplemented with
40 uM Compactin and 0.1 mCi/ml of [*H]-mevalonolactone (Perki-
nElmer or ARC). Palmitate labeling was initiated 48 hr after transfection
by pretreating cells with serum-free medium (DMEM with 1% fatty-
acid-free bovine serum albumin [Sigma]) for 1 hr, and then incubating
for an additional 3 hr in the serum-free medium supplemented with 0.4
mCi/ml of [*H]-palmitic acid (PerkinElmer). After metabolic labeling,
cells were washed twice in ice-cold phosphate-buffered saline (PBS)
(-) and lysed in lysis buffer containing 50 mM Tris-HCI (pH 7.5), 100
mM NaCl, 2 mM MgCl,, 10% glycerol, 1% Triton X-100, and a
Complete protease inhibitor cocktail (Roche Diagnostics). Lysates
were immunoprecipitated using a rabbit anti-GFP polyclonal antibody
(Molecular Probes) and Protein-A-Sepharose (Amersham Biosci-
ences). Immunoprecipitates were washed three times in lysis buffer
and boiled in 4x Laemmli buffer containing 5 mM DTT for 3 min and
were subjected to SDS-PAGE. Incorporated mevalonolactone and
palmitic acid were digitally detected using a BAS-5000 bioimage
analyzer and quantified using Multi Gauge software (Fuijifilm, Japan).
In coimmunoprecipitation assays, cortical neurons were transfected
with GFP-CL3 and HA-CL3 vectors by electroporation using Nucleo-
fector (Amaxa Biosystems) and plated onto poly-D-Lysine-coated 6
cm dishes at the density of 4 x 10°/cm? and then harvested at 2
DIV. Immunoprecipitation was performed as described above.

Lentivirus Production, Infection, and Lipid Raft Fractionation

A 536 bp synapsin | promoter was isolated by PCR from rat genomic
DNA and inserted into CS-CA-MCS (Miyoshi et al., 1998) to replace
the original chicken actin promoter. EGFP-CL3 fragment was further
inserted and cotransfected with pCAG-HIVgp and pCMV-VSV-G-
RSV-Rev into HEK293T cells using Fugene6 reagent to generate
a self-inactivating lentivirus vector. All original lentivirus vectors were
provided by Dr. Hiroyuki Miyoshi (RIKEN-BRC, Japan). Concentrated
virus solutions were obtained by ultracentrifugation at 80,000 x g,
and virus titer was determined using Hela cells. Cortical neurons
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(1 DIV) were infected with lentivirus for 5 hr at a nominal MOI of about
0.2, and after washout, maintained in Neurobasal containing 0.5 mM
Glutamax, 1 x B27, and 25 pg/ml insulin. Under these conditions,
GFP-positive glial cells (as determined by GFAP expression) were
less than 6%. Though the nominal MOl was about 0.2, this is very likely
to be an underestimate, as it was calculated based on the induction of
trace EGFP fluorescence in heterologous cells. Lipid raft preparations
were performed 2 days after infection (3 DIV).

Lentivirus-infected cortical neurons in 10 cm dishes (3.5 x 10° cells/
c:rn"’) were harvested at 3 DIV for preparation of detergent-insoluble
membrane fractions according to Suzuki et al. (2004) with minor
modifications. Thirteen fractions (1 ml each) were collected and 15 ul
of each fraction were subjected to SDS-PAGE followed by western
blot analysis. To obtain a concentrate of the raft fractions in Figure 5E,
raft fractions (fractions 4 and 5) were pooled, and a portion of it (1.4 mi)
was ultracentrifuged at 20,000 x g for 1 hrat 4°C. The pellet was resus-
pended in 140 pl of Buffer A (50 mM Tris-HCI [pH 7.5], 50 mM NaCl),
and 15 pl of the final sample was subjected to SDS-PAGE and western
blot analysis.

Cell Culture Preparation and Visualization of Raft-Targeted
Proteins

COS-7 cells were maintained in Dulbecco's modified Eagle medium
(DMEM) containing 10% heat-inactivated fetal calf serum (FCS).
Dissociated cortical cultures from embryonic day 19 Sprague-Dawley
rats were prepared as described previously for rat hippocampal
cultures (Bito et al., 1996) with minor modifications. Cortical neurons
were plated onto 12 mm poly-L-Lysine-coated coverslips at the
density of 5 x 10° cells per coverslip in a 24-well plate.

Gene targeting of CL3/CaMKly was carried out in a C57BL/6-
derived ES cell line RENKA (Mishina and Sakimura, 2007) by insertional
mutagenesis. The exons 2 and 3 of mouse the Camk1g gene, which
contained the kinase ATP-binding site, were deleted and replaced
by atargeting construst such that the first methionine of CL3 was fused
in-frame to an hCrePR-IRES-EGFP cassette that was juxtaposed to an
inverted neomycin resistance gene flanked by FRT sites. A detailed
analysis of the CL3/CaMKly null mouse mutant will be described
elsewhere (S.T.-K., M.O., T. Takeuchi, K. Sakimura, M.M., H.O., and
H.B, unpublished data). Cortical mouse cultures were prepared from
embryonic day 17 C57BL/6J wild-type or CL3 null mice.

For visualization of in situ raft-targeted GFP-fusion proteins, rat
cortical or mouse hippocampal neurons were washed with KRH buffer
(Suzuki et al., 2004) containing 2 mM Ca®* on ice, permeabilized with
0.1% Triton X-100/KRH(+) for 2 min on ice, washed gently, and then
fixed. Raft depletion in cortical neurons was carried out by including one
of the following drugs (10 uM mevastatin, 10 pM fumonisin By, 10 uM
fumonisin B, and 10 uM mevastatin, 100 uM zaragozic acid, 100 uM
zaragozic acid, and 10 uM mevastatin) in the culture medium from 6 hr
after plating onward for an additional 42 hr. mRFP1 was nucleofected
for accurate visualization of the contours of individual neurons.

In one instance, rat hippocampal neurons obtained from P0O-1
Sprague-Dawley rats (Bito et al., 1996) were used to quantify FRET
between CL3 molecules (Figure S2A).

Morphometric Analysis of the CL3-Associated Phenotype

in Cultured Neurons

Dissociated cortical cultures from embryonic day 19 Sprague-Dawley
rats were prepared as described previously for rat or mouse hippo-
campal cultures (Bito et al., 1996; Furuyashiki et al. 2002) with minor
modifications. Cortical neurons were transfected immediately after
dissociation by electroporation using Nucleofector and plated onto
12 mm poly-L-Lysine-coated coverslips at the density of 5 x 10° cells
per coverslip (rats) or 7.5 x 10° cells per coverslip (mice) in 24-well
plates, and then fixed at 2 DIV. Presumably because of a relatively
low amount of plasmid transfer across neuronal membranes during
electroporation procedure, use of a strong CAG promoter-driven
expression cassette was needed to reliably express foreign genes.
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Further, to unequivocally ascertain the phenotypes of neurons
expressing various shRNA vectors and rescue constructs, we carried
out all quantitative analyses based upon immunostaining of the mor-
phometric markers, either GFP or mRFP1 (a kind gift from Dr. Roger
Y. Tsien, HHMI, UCSD). This allowed us to obtain clearer images of
neuronal contours, thus facilitating morphometric analyses. The
transfection efficiency was relatively high (about 50% in our hands
using this protocol) when examined within a day after electroporation.
Thus, we were able to improve the accuracy of visualization in all
morphometric experiments by simply mixing the transfected cells
with nontransfected cells prepared in parallel, at a ratio of 1:20 (rats)
or 1:10 (mice), before plating. Dendritic and axonal arborizations of
most transfected neurons could then be traced in total isolation while
they still formed a dense network with neighboring untransfected
neurons. Neurons expressing pSUPER-type vectors revealed negligi-
ble amounts of either cell death (0%-0.5%) as measured by TUNEL
staining (Roche Diagnostics) or dsRNA-induced interferon-like
response monitored using a muMx2 promoter-luc vector (a kind gift
from Dr. Atsushi Asano, Hokkaido University) (Alvarez et al., 2006).

In the Rac1-rescue experiments, even an intermediate-level expres-
sion of a constitutively active Rac mutant, GFP-V12Rac1, using a CAG
promoter usually resulted in an aberrant neuronal morphology, such as
exuberant lamellipodia formation at the cell soma and premature
detachment from the glass coverslip. To circumvent this problem,
GFP-V12Rac1 was introduced using a CMV promoter-based plasmid
vector, as the observed expression level was lower than that obtained
using a CAG promoter vector. A few neurons still showed an aberrant
somata size and shape and thus were excluded from analyses.

Images of neuronal morphologies were captured based on immuno-
reactivities against GFP or mRFP1, using the Olympus BX51 micros-
copy system with the 20x objective or 40x objective in the cases of
CL3-overexpression experiments to visualize fine protrusions for
cumulative probability analysis. Dendrites and axons were identified
by standard morphological criteria. As the majority of neurons, in our
cortical culture preparation, possessed only one clearly classifiable
axon and one or more dendrites, neurons with nonpyramidal morpho-
logical features (such as multiple axons or no classifiable processes)
were excluded from analyses. The total length and the dendritic branch
tip number were determined manually using NeuronJ 1.1.0 (Meijering
et al., 2004), plug-in software for ImagedJ (NIH). Representative images
were acquired using the LSM 510META confocal microscope with the
40x objective. All analyses were performed by an observer blinded to
the identity of the transfected constructs.

In experiments described in Figure S4, electroporated neurons were
initially cultured as a suspension in a growth medium, without plating,
in plastic centrifuge tubes at the density of 2 x 10° cells/ml, while
neurons were allowed to form aggregation. Forty-eight hours later,
aggregated neurons were then dissociated mechanically by gentle
pipetting and plated onto 12 mm poly-L-Lysine-coated coverslips at
the density of 1 x 10° cells per coverslip. Fixation and analysis were
carried out 24 hr later.

Mouse hippocampal neurons were transfected using Lipofectamine
2000 (Invitrogen) at 7 DIV and analyzed at 9 DIV. Morphometric analy-
ses of hippocampal neurons were performed as essentially described
above for cortical neurons. Only primary dendrites were traced using
ImagedJ/NeuronJ software.

In Situ Hybridization

In situ hybridization using DIG technology (Roche Diagnostics) was
performed essentially as described (Ohmae et al., 2006). For the
generation of antisense and sense cRNA probes, a 374 bp fragment
corresponding to the nucleotide position 964-1337 of CL3 was subcl-
oned into pBluescriptll KS+ vector (Stratagene).

BDNF Application and Calcium Imaging in Cortical Neurons

BDNF (generously provided by Dainippon Sumitomo Pharma, Osaka,
Japan, by courtesy of Dr. Chikao Nakayama) and/or KN-93 (Calbio-

768 Neuron 54, 755-770, June 7, 2007 ©2007 Elsevier Inc.

Neuron
Regulation of Dendritogenesis via CLICK-IIl/CaMKly

chem) were added to cells at 6 hr after plating at the final concentration
of 50 ng/ml and 10 uM, respectively. Bath application was performed
by dissolving the reagents in one-half volume of the conditioned
culture medium and by mixing this gently with the remaining half of
the original medium in the dish. No medium change was done there-
after till fixation.

Fluorescent calcium imaging was performed essentially as de-
scribed previously (Furuyashiki et al., 2002). A detailed description of
further experimental conditions can be found in the Supplemental
Data.

Rac1 Pull-Down Assays, Measurement of Fluorescence
Resonance Energy Transfer, and Quantification

of Golgi Deformation

A detailed description of experimental procedures can be found in the
Supplemental Data.

Statistical Analysis

Statistical analyses were performed using Prism 4.0 (GraphPad Soft-
ware) and JMP5.1.2 (SAS Institute). Student's t test was used for com-
parisons of two groups. One- or two-way analysis of variance (ANOVA)
with post hoc Tukey-Kramer or Bonferroni test was used for factorial
analysis between more than three groups. The Kolmogorov-Smirnov
test was applied to verify whether the bidirectional effect of CL3
manipulation occurred throughout all dendrites or was restricted to
a subpopulation. All data are shown as mean + standard error of
means (SEM), unless otherwise mentioned.

Supplemental Data
The Supplemental Data for this article can be found online at http://
www.neuron.org/cgi/content/full/54/5/755/DC1/.
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Experimental Procedures:
Cloning and plasmid constructions

Mouse CLICK-III (CL3) /CaMKIy cDNA (Takemoto-Kimura et al., 2003) was
inserted into pEGFPC1 vector (BD Clontech) to generate pEGFP-CL3. The expression
vectors for C-to-S mutants, pEGFP-CL3C474S, -C466S, -C435S, -C423S, -C417/419/4208,
-C392S, -C3758S and a quadruple substitution mutant pPEGFP-CL34CS (C417, 419, 420,
423S) were created from pEGFP-CL3 by stepwise substitution of each Cys codon into a Ser
codon. A lysine (amino acid residue 52)-to-alanine mutation was introduced by site-directed
mutagenesis to generate pPEGFP-CL3K52A. The EGFP-CL3 fragments were transferred
into pMCS-CAG vector (identical to pcCAG as described by Kawauchi et al., 2003) to create
pCAG-EGFP-CL3 and pCAG-EGFP-CL3K52A. YFP- and CFP-tagged CL3 were
generated by replacing the EGFP moiety of pEGFP-CL3 with either Venus (a kind gift from
Dr. Atsushi Miyawaki, RIKEN-BSI, Japan) (Nagai et al., 2002) or Cerulean (Rizzo et al.,
2004), which are improved versions of YFP and CFP, respectively.

pcDNA3-HA-CL3C474S and pcDNA3-HA-CL34CS were created from pcDNA3-HA-CL3
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(Takemoto-Kimura et al., 2003).

Short hairpin RNA vectors were constructed based upon a modified version of
pSUPER vector, pSUPERneo+GFP (OligoEngine) or pPSUPER+mRFP1, in which a short
hairpin RNA and either a fluorescent marker GFP or mRFP1 (a kind gift from Dr. Roger Tsien,
UCSD and HHMI) (Campbell et al., 2002) were dually expressed under the H1 promoter and
the PGK promoter, respectively. To create pSUPER-shCL3, pSUPER-_shCaMKIIa, and
pSUPER-shCaMKIV, two complementary 60-bp oligonucleotides carrying antisense and
sense sequences for GAAACAGACCACCAACATC (19-bp, corresponding to nucletides
39-57 of mouse CL3), GGATCTGATCAATAAGATG (nucleotides 735-753 of mouse
CaMKlIla) and GTGTTAAAGAAAACAGTGG (nucleotides 214-232 of mouse CaMKIV)
were annealed and ligated to pSUPER vectors in accordance with OligoEngine’s instructions.
pSUPER-shNega was generated similarly except that an artificial 19-mer sequence
(ATCCGCGCGATAGTACGTA) was used as a target. This sequence was based upon a
commercially available negative control siRNA sequence (B-Bridge International), and we
confirmed it had no significant identity to any known mammalian gene based on a BLAST
search. The specificity of the CL3 shRNA vector against other CaMKs was tested using
CL3 shRNA expressing hippocampal neurons (>15DIV) and immunoreactivity against
CaMKlla, CaMKIIB and CaMKIV was shown to be unaltered. For the rescue experiments,
three silent mutations were introduced into the shRNA target sequence of EGFP-tagged
wildtype and mutant CL3 to generate shRNA-resistant cDNAs (pEGFP-CL3,s and related
constructs) and the open reading frames were further transferred into pCAG-MCS vector.

All mutated regions for CL3 vectors were verified by sequencing.
pmCherry-B-actin was created by essentially replacing the EGFP moiety of

pEGFP-B-actin (Furuyashiki et al., 2002) with mCherry (a kind gift from Dr. Roger Tsien,

-2.
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UCSD and HHMI) (Shaner et al., 2004). GODZ c¢DNA (Uemura et al., 2002) was subcloned
into pcDNA3-HA (Takemoto-Kimura et al., 2003). pEGFP-V12Racl was generated by
site-directed mutagenesis from pEGFP-N17Rac1 (a kind gift from Dr. Shuh Narumiya, Kyoto
University, Japan) and pcDNA3-Flag-PHnTSS STEF was as described (Matsuo et al., 2002).
Lyn-CFP was obtained by fusing a C-terminal Myc-tag of an active Lyn-Myc (a generous gift
from Dr. Zen-ichiro Honda, Department of Allergy and Rheumatology, the University of
Tokyo Hospital, Japan) in-frame with Cerulean. EGFP-GIuR1 was created from mouse
GluR|1 (Sakimura et al. 1990) according to Shi et al. (1999). MAP2-CTF-RFP was a kind
gift from Dr. Fumitaka Oyama (RIKEN Brain Science Institute, Wako, Japan) and Yasuo

Thara (University of Tokyo Graduate School of Medicine, Tokyo, Japan).

Immunocytochemistry

Primary antibodies used were mouse anti-HA, rat anti-HA (Roche Diagnostics),
mouse anti-HA (Cell Signaling), mouse anti-FLAG (Sigma), mouse anti-GM130 (BD
Transduction Laboratories), rabbit anti-DsRed (BD Clontech), mouse anti-Tau-1, rabbit
anti-microtubule-associated protein 2 (MAP2) (Chemicon). For secondary fluorescent
detection, Alexa 405-, Alexa 488-, Alexa 555-, Alexa 594- conjugated anti-mouse, anti-rabbit,
and anti-rat IgG antibodies (Molecular Probes) were employed. Wide-field fluorescent
images were obtained using a 20x (UplanFL 20x/NA 0.5, air, Olympus, Japan), a 40x
(UplanFL 40x/NA 0.75 air, Olympus) or a 100x objective (UplanApo 100x NA 1.35 oil,
Olympus) in combination with either a color CCD camera (DP-70, Olympus) on an upright
microscope (BX-51, Olympus), or an EM-CCD camera (iXon, Andor) on an inverted
microscope (IX-81, Olympus). Confocal fluorescent images were taken by a confocal laser

microscopy system (LSM 510META-V3.2, Carl Zeiss) built on an inverted microscope
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(Axiovert 200M, Carl Zeiss) with 63x or 40x objectives (Plan-Apochromat 63x/NA 1.4, oil,
Plan-Neofluar 40x/NA 1.3, oil, Carl Zeiss). In most cases, projected images of confocal
sections were shown, but occasionally, for clear separation of membrane- and/or Golgi-
fluorescent signals, single confocal sections were shown (Fig. 3E-H, Suppl. Figs. 1A, 7A,

8B).

Calcium imaging

Twenty-four hours after plating, cortical neurons on glass-bottom dishes were loaded
with Fluo-4/AM (2.5 uM, Dojindo laboratdries, Kumamoto, Japan) for 30 min at room
temperature. After wash, cells were incubated at 37 °C in a stage CO; chamber (Tokai Hit
Co., Ltd, Shizuoka, Japan) equipped on an Olympus IX81 inverted microscope. Time-lapse
fluorescence images were recorded at 4 frames/sec through a 40 x objective (NA 1.35) using
an EM-CCD camera (Hamamatsu Photonics, Hamamatsu, Japan) driven by an imaging
software (Aquacosmos Ver. 2.6, Hamamatsu Photonics). Culture medium was continuously
perfused during imaging session using a peristaltic pump (Rainin Instrument, Woburn, MA).
After baseline recording, a medium containing BDNF (50 ng/ml) was bath-applied through
the pump. Fluorescence changes in the cell bodies of individual cells were analyzed using
the Metamorph or Image J software, and raw pixel fluorescence values were normalized with
those in the first image (F/Fo). A majority of cells (83% + 9.9, mean + s.d.) showed

BDNF-induced calcium mobilization in our culture (N = 5 independent dishes).
Racl pulldown assays

For Rac1 pulldown assays, cortical neurons were electroporated with pPSUPER

vectors by Nucleofector and plated onto poly-D-Lysine-coated 6-cm dishes at the density of
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3.8 x 10°/cm? and then harvested at 2 DIV.  Cells were washed once in ice-cold PBS(-) and
lysed in the lysis buffer containing 25mM Tris-HCI (pH 7.5), 150 mM NaCl, 5 mM MgCl,
1% NP-40, 1 mM DTT, 5% glycerol, and a Complete EDTA-free protease inhibitor cocktail.
The lysates were centrifuged at 16,000 g for 15 min at 4°C, and the supernatant was collected.
The protein concentrations were determined using a BCA Protein Assay Reagent kit (Pierce).
GTP-bound activated Racl was detected by a pulldown assay using an EZ-detect Racl
activation kit (Pierce), according to the manufacturer’s protocol. Briefly,
SwellGel-immobilized gluthatione discs were placed into spin columns together with 20 pg of
GST-human Pak1-PBD and cell lysates containing at least 1 mg of proteins. The reaction
mixtures were incubated for 1 h at 4°C with gentle rocking. The resin was washed three
times in the lysis buffer followed by addition of 50 pl of 2X SDS sample buffer and by
boiling for 5 min. The eluted fractions were collected and subjected to SDS-PAGE and
Western blot analysis. ECL reaction time and film exposure times were adjusted to maintain

the signals within a linear dynamic range of detection.

Measurement of fluorescence resonance energy transfer

For FRET experiments, cultured rat hippocampal neurons were prepared on
Matrigel-coated glass bottom dishes (MatTek Corporation). Neurons were transfected with a
mixture of CFP- and YFP-CL3 at a ratio of 1:4 using Lipofectamine 2000 at 12-17 DIV.
Images were taken from living neurons 2-4 days after the transfection, using the LSM
510META confocal microscope equipped with a heated stage CO; incubator (Tokai Hit,
Japan). FRET was measured by the donor (CFP) dequenching after acceptor (YFP)
photobleaching method. CFP and YFP signals were monitored by independent scans using a

458 nm- and a 514 nm-laser for excitation, coupled with 470-500 nm (for CFP) and 530-600
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nm (for YFP) band-pass filters, respectively. The acceptor photobleaching was achieved
with repetitive scans with intense 514 nm-laser light on the cell body as well as dendritic
regions of transfected neurons, with no detectable photodamage. On average, 85+ 11%
(mean + SD) of YFP signals were specifically bleached after one photobleaching session.
Region of interests for quantification were set on neuronal cell bodies in the present study.
After background subtraction, FRET efficiency was calculated from CFP signals, before and
after the YFP photobleaching, according to a following formula:

FRET efficiency (%) = (Fcrp, afier — FCFP, before) X 100/FCEp after
Where Fcrp, before and Fcrp, after represent the CFP fluorescence signals before and after the

acceptor photobleaching,

Quantification of Golgi deformation

In experiments described in Suppl. Fig. 7, hippocampal neurons were transfected at 7
DIV with pSUPER vectors as described above and then fixed at 9 DIV. Stacks of confocal
images ( at 0.9 pm z-interval / section) were acquired to image GM130 immunopositive
signals for each neuron, and a single confocal section that contained the highest integrated
fluorescence intensity for GM130 immunoreactivity was selected. After background
subtraction, a cutoff threshold of 1/4 of maximal GM130 intensity was used as a criterion to
define a Golgi region that was positive for GM130 immunoreactivity. A CL3 knockdown
neuron typically contained a comparable amount of GM130-positive pixels, but showed a
more disassembled pattern of Golgi region consisting of an increased number of smaller
patches. The total area and the number of individual Golgi regions were determined by

Metamorph software.
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