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<< Dendrites Are Only a CLICK Away

From one side of the neuronal cell body an axon emerges; from the

“ AAAS other, a branched dendritic tree. These processes are crucial for the abil-
ity of a neuron to receive and transmit electrochemical signals via
www.stke org synapses. Neuronal activity is important in driving dendrite outgrowth,

but the intermediary players are not well understood. Because neuronal
activity increases intracellular Ca%* concentration, roles for members of the family of Ca?*/calmod-
ulin-dependent protein kinases (CaMKs) have been investigated. Takemoto-Kimura et al. have
looked at CLICKIII (also known as CaMKly or CL3). They found that CL3 undergoes sequential lipid
modifications of its C-terminal tail: prenylation, which anchors CL3 to the plasma membrane,
followed by palmitoylation. Lipid fractionation experiments then showed that prenylated and palmi-
toylated CL3 was predominantly associated with lipid raft microdomains in the plasma membrane,
and most of the lipid raft-localized CL3 was found in the proximal dendrites. Studies of rat embry-
onic neurons revealed that total dendrite length was enhanced by overexpression of wild-type but
not kinase-deficient CL3, and knockdown of CL3 resulted in fewer and shorter dendrites. Lipid
raft-localized CL3 in dendrites activated the Rho GTPase family member Rac, leading to rearrange-
ment of the actin cytoskeleton of the growing dendrite. Together these data suggest that CL3 is a key
factor in transducing Ca®* transients into signals responsible for dendrite outgrowth. — JFF

Neuron 54, 755 (2007).
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SUMMARY

Ca®* signaling plays a central role in activity-
dependent regulation of dendritic arborization,
but key molecular mechanisms downstream of
calcium elevation remain poorly understood.
Here we show that the C-terminal region of
the Ca®*/calmodulin-dependent protein kinase
CLICK-IIl (CL3)/CaMKIly, amembrane-anchored
CaMK, was uniquely modified by two sequential
lipidification steps: prenylation followed by a
kinase-activity-regulated palmitoylation. These
modifications were essential for CL3 membrane
anchoring and targeting into detergent-
resistant lipid microdomains (or rafts) in the
dendrites. We found that CL3 critically contrib-
uted to BDNF-stimulated dendritic growth.
Raft insertion of CL3 specifically promoted
dendritogenesis of cortical neurons by acting
upstream of RacGEF STEF and Rac, both pres-
ent in lipid rafts. Thus, CL3 may represent a key
element in the Ca®*-dependent and lipid-raft-
delineated switch that turns on extrinsic
activity-regulated dendrite formation in devel-
oping cortical neurons.

INTRODUCTION

Neurons grow two characteristic processes: axons and
dendrites. The specification of these processes, their
outgrowth, and their precise arborization are prerequisites
for the formation of appropriate connections between
neurons. These steps, which constitute the basis for the
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establishment of neuronal circuits, represent central
questions in neuroscience for which the molecular mech-
anisms still remain largely unsolved.

The dendrite formation, which is critical for proper
integration of synaptic inputs, is believed to be determined
by genetically encoded cell-intrinsic signals as well as
environmental-extrinsic signals from neighboring cells.
Recent works have shed light on the critical roles of sem-
aphorin 3A, neurotrophins, Notch1, Slit-1, cadherin, BMP,
and Wnt/B-catenin in mediating signaling events regulat-
ing various stages of dendritogenesis in the developing
cerebral cortex (reviewed in Ciani and Salinas, 2005;
Higgins et al., 1997; Jan and Jan, 2003; Whitford et al,,
2002). In addition, a wealth of work has shown that the for-
mation of dendritic trees is shaped by neuronal activity
(Cline, 2001; Konur and Ghosh, 2005). For example, surgi-
cal and pharmacological attenuation of sensory inputs
impaired dendritic development in the visual cortex as
well as in the barrel cortex (Fox and Wong, 2005), while
in contrast, enriched environments promoted dendritic
growth (Kozorovitskiy et al., 2005). However, how neural
activity regulates dendrite arborization at the molecular
and cellular level is not well understood.

Activity-dependent regulation of dendritic arbors is
believed to be mediated, in large part, via increases in
intracellular calcium concentration, which in turn activate
several signaling cascades. How can neuronal activity
influence dendrite formation downstream of calcium entry
and mobilization? Several works have so far indicated
a possible involvement of one or multiple members of
the multifunctional Ca®*/calmodulin (CaM)-dependent
protein kinases (CaMKs) family in dendritic development.
CaMKs represent major targets for an activated Ca?t/
CaM complex generated by intracellular calcium rise,
and two subclasses (the CaMKI/IV subfamily [consisting

Neuron 54, 755-770, June 7, 2007 ©2007 Elsevier Inc. 755



of five genes] and a CaMKII subfamily [consisting of four
genes]) have been shown to be highly expressed in the
central nervous system (CNS) (Soderling and Stull, 2001;
Hook and Means, 2001; Hudmon and Schulman, 2002).
The general CaMK inhibitor KN-62, which inhibited
activation of members of both kinase subclasses, was
shown to block neurite outgrowth in various cell lines
(Zheng et al., 1994; Kuhn et al., 1998; Vaillant et al.,
2002). The role of CaMKIl in neurite outgrowth has been
controversial, however, in part because of the contrasting
effect observed between the = and f isoforms of CaMKI|
(Konur and Ghosh, 2005). CaMKIV, enriched in the
nucleus, was shown to mediate dendrite formation via
CREB phosphorylation and CREB-mediated transcription
(Redmond et al., 2002). Additionally, CaMKI activity may
participate in the regulation of growth cone motility and
neurite extension (Wayman et al., 2004; Schmitt et al.,
2004), but the underlying isoforms and critical mecha-
nisms involved remained obscure.

Recently, a variety of Rho small GTPase family proteins
were shown to contribute to dendritic morphogenesis
through regulation of actin cytoskeletal remodeling (Luo,
2002; Van Aelst and Cline, 2004). How the small GTPase
activity was turned on and off as a function of neuronal
activity and multiple coexisting extracellular cues
remained largely unknown. In some instances, the GDP-
GTP exchange factor (GEF) for a Rho small GTPase family
protein was shown to be activated downstream of Ca®*.
Thus, a synaptically localized Rac-GEF Tiam1 was
involved in the regulation of dendritic spines by linking
NMDA-receptor activity to Rac1-dependent actin remod-
eling (Tolias et al., 2005). However, it was not known
whether nor which specific CaMK activity may contribute
to small GTPase-dependent dendritic actin remodeling
during dendritogenesis.

Here, we show a unique function of a lipid-raft-
associated Ca?*/calmodulin-dependent protein kinase,
CLICK-IIl (CL3)/CaMKly, in dendritogenesis of developing
cortical neurons. The C-terminal end of CL3 was the
substrate for sequential lipidifications, i.e., prenylation
and palmitoylation. Prenyl-palmitoyl-CL3, generated in
a kinase-activity-dependent manner, efficiently accumu-
lated into dendrite-enriched raft-like lipid microdomains.
Intriguingly, knockdown or knockout of CL3 reduced the
number and the total length of dendrites, but not those
of axons. Furthermore, blockade of CL3 occluded
BDNF-stimulated dendritic growth, and CL3 membrane
anchoring appeared to play an important role in mediating
this morphological effect. In keeping with the critical sig-
nificance of raft insertion of CL3, Rac and its upstream
regulator STEF, a Rac-specific GEF, acted downstream
of CL3 in the molecular cascade linking Ca®* to actin
remodeling, and both were present in the lipid rafts. Con-
sistent with these results, Rac activity was sufficient to
rescue the dendritic phenotype associated with CL3
knockdown, while raft disruption abolished the dendrito-
genic effect of CL3 overexpression. Taken together, we
thus uncovered a novel CaMK-Rac signaling pathway by
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which lipid raft insertion and activation of a specific CaMKI
isoform may couple extrinsic neuronal activity with
dendrite-restricted cytoskeletal remodeling in developing
cortical neurons.

RESULTS

Prenylated CL3 Is Palmitoylated in a Kinase-Activity-
Dependent Manner and This Dual Lipidification
Determines Golgi Membrane Anchoring

and Dendrite-Enriched Lipid Raft Targeting
Prenylation was often reported to be accompanied by
palmitoylation in many neuronal proteins (El-Husseini
and Bredt, 2002). We directly tested the presence of
multiple palmitoylation sites in the vicinity of the CAAX
motif of CL3/CaMKly, a membrane-anchored CaMK
(Takemoto-Kimura et al., 2003) (Figure 1A). Tritiated
precursors for either prenyl or palmitoyl moieties, [*H]-
mevalonate or [°H]-palmitate, were added in the culture
medium of COS-7 cells expressing either wild-type (WT)
CL3 or various C-to-S substitution mutants of CL3, and
lipidification of CL3 was tested using SDS-PAGE and
digital autoradiography. Either [*H]-mevalonate conjuga-
tion or [*H]-palmitate incorporation was significantly
detected in WT-expressing cells (Figures 1B and 1C,
WT). The former was absent in a C474S mutant (Figure 1B,
C47489), consistent with a CAAX prenylation. In contrast,
the latter was reduced to background levels in a quadruple
mutation (4CS) of four cysteines (C417S, C419S, C420S,
and C4238) (Figure 1C, 4CS), identifying these residues
as potential palmitoylation sites.

We next tested whether there was a possible interaction
between prenylation, palmitoylation, and kinase activity.
Interestingly, the 4CS mutant was prenylated to a similar
extent as the WT CL3 (Figure 1D), while palmitoylation
was hardly detected in a prenylation-deficient C474S
mutant (Figure 1E). Thus, prenylation and palmitoylation
might take place in a series, with prenylation perhaps
occurring prior to and as a prerequisite for palmitoylation.
Furthermore, a K52A kinase-inactive mutant of CL3, in
which the consensus ATP-binding lysine residue was
replaced with an alanine, was prenylated as much as the
WT (Figure 1D), but its palmitoylation was significantly
impaired (Figure 1E). These lines of evidence suggested
that kinase activation on a prenylated (and thus presum-
ably membrane inserted) CL3 may perhaps trigger a
robust conformational change near the membranes that
is necessary for full palmitoylation.

Recently, 23 palmitoyl acyl transferases (PATs) have
been identified (Fukata et al., 2004; Linder and
Deschenes, 2004). The brain-specific localization and
the Golgi enrichment of a PAT, originally identified as
a Golgi-apparatus-specific protein with the DHHC zinc
finger domain (GODZ) (Uemura et al., 2002), were reminis-
cent of the distribution of CL3. We therefore tested
whether GODZ might palmitoylate CL3. GODZ coexpres-
sion with CL3 in heterologous cells yielded a 4.3-fold
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(A) Domain structure of CL3 (upper panel) and
amino acid sequence of its C-terminal end
(lower panel). The numbers show the position
of amino acid residues. In addition to a classi-
cal prenylation site at the Cys-474 residue (in
blue) of the C-terminal CAAX motif (double
underline), the unique C-terminal region of
CL3 contained multiple Cys residues (in red
and green), which constituted potential
palmitoylation sites. Among them, four neigh-
boring Cys (in red and underlined) were
experimentally validated as critical residues
for palmitoylation, as shown also in (C). AID,
autoinhibitory domain; CBD, Ca®*/calmodulin-
binding domain.

(B) Prenylation of the CAAX motif of CL3.
Immunoprecipitates for each sample were
obtained using an anti-GFP antibody and ex-
amined by SDS-PAGE followed by autoradio-
graphic exposure. [*H]-mevalonate (°H]-MVA)
incorporation (left) was detected in a wild-type
GFP-CL3 (WT), but not in a CAAX motif
mutant (C474S) or GFP alone. The amount
of loaded proteins in each lane was compara-
ble, as shown by CBB staining (right). The
mobility of GFP-CL3 and GFP are indicated
by arrows, and the heavy chain of the IgG
used for immunoprecipitation is shown by an
asterisk.

(C) Determination of critical palmitoylated
Cys residues on CL3. Incorporation of [BH}-
palmitate ([*H]-Pal) was observed in wild-type
GFP-CL3 (WT). Incorporation of PH]-palmitate

GoDz

was significantly diminished in two mutants (in red), C417/419/420S (triple Cys-to-Ser substitution atresidues 41 7,419, and 420) and C423S, indicating
the existence of multiple Cys residues critical for palmitoylation. Unaffected mutants are shown in green. A quadruple mutant (4CS) with a quadruple
substitution had the least amount of [°H]-palmitate incorporation and was considered to be a palmitoylation-deficient mutant (4CS).

(D) Unchanged level of prenylation on both a paimitoylation-deficient (4CS) and a kinase-dead (K52A, a Lys residue in the ATP-binding pocket replaced

with an Ala) mutant of CL3.

(E) A decrease in palmitoylation was observed in a prenylation-deficient mutant (C474S), as well as a kinase-inactive mutant (K52A).
(F) Coexpression of HA-GODZ, a neuronal palmitoyl acyl transferase, led to a significant increase in CL3 palmitoylation by 4.32 £ 0.55 fold (n=5). “*p<

0.01 by paired t test.

increase (4.3 + 0.55, n = 5) in the amount of palmitate
incorporation (Figure 1F).

We previously found that prenylation per se may be
necessary for membrane anchoring and for trafficking to
diverse membrane compartments, such as the Golgi
apparatus or the plasma membranes (Takemoto-Kimura
et al., 2003). To test whether an additional palmitoylation
may help to redistribute CL3 into specific membrane
signalosomes such as those enriched at lipid rafts (Ander-
son and Jacobson, 2002), we expressed GFP-tagged CL3
(GFP-CL3) in cultured cortical neurons using a lentiviral
vector driven by a synapsin | promoter. Consistent with
our hypothesis, CL3 cofractionated with the lipid raft
markers, caveolin-2 and flotillin-1, in the Triton X-100-
insoluble low-density membrane fractions (Figure 2A).
We next directly visualized raft-inserted CL3 localization
in cultured neurons treated with 0.1% Triton X-100, as
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any residual GFP signal should then be indicative of the
presence of CL3 in detergent-resistant membrane micro-
domains. In keeping with this, a sizable detergent nonex-
tractable pool of GFP-CL3 was present in the perinuclear
Golgi and proximal dendrites in developing hippocampal
neurons (see Figure S1A in the Supplemental Data avail-
able with this article online, -GODZ arrow and arrowhead;
and Figure S1B), and this pool was further increased by
coexpression of GODZ (Figure S1A, +GODZ arrow and
arrowheads). In immature cortical neurons, a large major-
ity of the CL3 signal that was resistant to detergent treat-
ment was present both in the intracellular perinuclear
Golgi-like membranes and in the minor processes (i.e.,
dendrites) (Figure 2B, upper panel, see line scan in the
inset for CL3 signal in the dendrites). Importantly, this
detergent-resistant pool of CL3 was almost completely
lost when neurons were treated with zaragozic acid, an
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