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The error propagation in the CBF and CMRO; values estimated in this study was based
on the measured input functions obtained in the series of our PET study. The size of the error
in these values might change, for example, if the H)’O injection or '*O; inhalation period is
changed. In particular, method (B) is highly dependent on the shape of the input function.
Further studies are required to investigate how method (B) works when the shape of the input
function is different from that of the input function we used here.

In the simulation, we used a 3 min time interval between the injections of the first and
second tracers. This 3 min time interval was based on a previous simulation study (lida et a/
2002), which suggested that images of a quality equivalent 1o the 3SARG protocol could be
obtained if the time interval was at least 3 min. Additionally, a 3 min scan duration for oxygen
would provide reasonable image quality in CBF and CMRO, (Kudomi ef al 2005).

In conclusion, this study demonstrates the feasibility of the separation of the dual tracer
coexistent input function for rapid and simultaneous measurement of CBF and CMRO, using a
single PET scan that accompanies the sequential administration of two tracers. The simulation
studies showed that the present method for separation of the two components H}>0 and >0,
provides reasonable accuracy for the quantitative values of CBF, OEF and CMRO:..
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Body-contour versus circular orbit acquisition in cardiac
SPECT: Assessment of defect detectability with channelized

Hotelling observer

Antti Sohlberg?, Hiroshi Watabe?, Miho Shidahara® and Hidehiro lida®

Background The resolution of a gamma camera is depth-
dependent and worsens with increasing distance to the
camera resulting in a loss of fine details in SPECT images.
A common approach to reduce the effects of this resolution
loss is to utilize body-contour acquisition orbits. Even
though body-contour orbits can improve resolution of
reconstructed images their effect on lesion detection is not
well known.

Objective To investigate whether body-contour orbits
offer better defect detection performance than circular
orbits in cardiac SPECT.

Methods The mathematical cardiac torso (MCAT)
phantom was used to model **™Tc-sestamibi uptake. A total
of four phantoms (two male and two female) with eight
defects (four locations and two sizes) were generated and
projection data were simulated using an analytical projector
with attenuation, scatter, collimator response and acquisition
orbit modelling. The circular and body-contour projections
were reconstructed using the OSEM algorithm with/without
collimator response compensation. Defect detection
performance was assessed by calculating area under the
receiver operating characteristic (ROC) curve for channelized
Hotelling observer.

Results The defect detection performance of circular and
body-contour acquisition was very similar and the

Introduction

The resolution of a gamma camera is depth dependent,
which results in a loss of fine details in SPECT images. In
order to reduce the effects of this depth dependency,
body-contour acquisition orbits are often applied. Body-
contour orbits improve the resolution by minimizing the
object-to-detector distance and can provide approxi-
mately 1-2 mm improvement in resolution without any
loss in sensitivity, when projection data is acquired with
parallel hole collimators. Utilization of body-contour
orbits is, however, complicated by the more complex
acquisition process, especially if automatic contour
tracking is used, and by the fact that body-contour orbits
might be more prone to image artefacts than circular
orbits [1,2]. These artefacts are generated due to
resolution non-uniformity among different projections
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difference in the area under the ROC curve between the
orbits was not statistically significant with or without
collimator response compensation. The collimator
response compensation, on the other hand, was noticed to
be valuable and it provided significantly better defect
detection performance than reconstruction without it
regardless of the acquisition orbit type.

Conclusions We conclude that by replacing circular orbit
with more complex body-contour orbit will not lead to
statistically significant increase in defect detection
performance in cardiac SPECT. Nucl/ Med Commun
28:937-942 © 2007 Wolters Kluwer Health | Lippincott
Williams & Wilkins.
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and their severity depends on the geometry of the orbit
and also on orientation of the target in the field of view
[3.4].

Another approach to reduce the depth-dependent
blurring is to apply collimator response compensation in
reconstruction. Several investigators have indicated that
significant improvements in image quality can be
achieved when collimator response compensation 1is
applied during reconstruction [5-8]. Collimator response
modelling might also be beneficial when combined with
body-contour orbits, because in addition to its resolution
enhancement capabilities collimator response correction
increases uniformity of resolution and could therefore
reduce the artefacts, which have been reported to reduce
the quality of body-contour studies.

Copyright © Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.
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Image quality obtained with different acquisition and
reconstruction configurations is usually assessed with
traditional metrics such as resolution and contrast. Even
though these metrics are easy to apply and understand
they are not necessarily good predictors of defect
detection performance, which is the primary concern in
cardiac SPECT. In this study the channelized Hotelling
observer (CHO), which has shown to correlate well with
human observer performance [9], was used to compare
body-contour and circular orbits with and without
collimator response compensation. The goal was to
determine whether body-contour orbits could offer better
defect detection performance in cardiac SPECT studies
than circular orbits and to find the optimal acquisition—
reconstruction method combination.

Materials and methods

Phantoms

The mathematical cardiac torso (MCAT) phantom
[10,11] was used to simulate **™Tc-sestamibi distribution
and non-uniform attenuation in the chest region. Four
different phantoms, large female/male and small female/
male, were generated each with eight different defects
(Fig. 1). The lateral and antero-posterior sizes were 38 cm
and 26 cm for the large phantoms and 32 cm and 24 cm for
the small phantoms. The relative activities per voxel
assigned to myocardium, liver, kidney, spleen, lung and
rest of the body were 100, 50, 100, 80, 5 and 2.5. The
defects had 90° or 120° angular extent, approximately

Fig. 1

2.5 c¢m length and they were simulated with 20% contrast
with respect to healthy myocardium.

Projection data simulation

Noise-free projection data was simulated using an
analytical projector. Attenuation was simulated with the
MCAT attenuation maps and collimator response was
modelled according to the method by Metz [12]. A high-
resolution low-energy parallel hole collimator with 4.0cm
hole length and 0.18cm hole radius was used in the
simulations. Circular hole shape was assumed which
allowed the collimator point-spread function to be
calculated analytically according to:

g(r,D) = 2 cos™ <%) —%VI—%, (1)

where 7 is the distance in the detection plane from the
intersection of the line perpendicular to the detection
plane containing the source, D perpendicular distance
from collimator to the source, R the radius of collimator
hole and rr the displacement of the centres of the
projected aperture functions from the front face and back
face of the collimator [13]. 71 is given by

L
=r— 2
"DrL+C’ @
where L is the collimator hole length and € the distance
from back of the collimator to the detector crystal.

Scatter was included using the method by Hutton
[14,15]. Hutton’s method consists of three steps. In the

rr

Top row: Example transverse slices of the MCAT phantoms used in the simulations. Bottom row: Example short-axis slices illustrating defect locations

(defect contrast was enhanced for displaying purposes).

Copyright © Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.
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first step the activity distribution is convolved with
monoexponential scacter kernels (exp o(d;)r;), whose
slopes a(d;) depend on the depth in tissue (4;). In the
second step the convolved emission distribution is scaled

using transmission-dependent scatter-to-true  scatter
fraction SF:
dia Y
- E mA
SF=4-Ble = ~1, (3)

where p; is the linear attenuation coefficient for voxel 4,
4 the voxel size and parameters 4, B and vy are fitting
parameters obtained from experiment [14]. Scatter
projections are finally obtained in the third step by
forward projecting the convolved and scaled activity
distribution at each projection angle.

Projection data was generated for 128 angles over 360° arc
using 256 x 256 projection matrix and 0.156 cm pixel size.
The radius of rotation for the body-contour orbits, at each
projection angle, was determined by tracking the distance
from the centre of rotation to the surface of the
attenuation map of each four phantoms and circular
orbit’s radius of rotation was set to the maximum radius
found in the corresponding body-contour orbit study.
After simulation the projections were collapsed into 64 x
64 matrix size and Poisson noise was added. Projections
were scaled so that the number of total counts was
approximately 3.0 MCts. A total of 480 noisy projection
data sets (four phantoms x eight defects x 15 noise
realizations) with defect and 480 projection data sets
(four phantoms x 120 noise realizations) without defect
were generated for both orbits.

Reconstruction and post-processing

Reconstructions were performed using OSEM algorithm
[16]. The projectors in our OSEM implementation were
rotation based [17] and the rotation was performed using
bilinear interpolation. Attenuation correction was included
into the algorithm by rotating the attenuation map with the
reconstruction volume during the reconstruction and
applying each voxel the appropriate attenuation factor,
which was calculated by summing the attenuation map
along perpendicular lines from the volume elements to the
detector. Original attenuation maps were blurred using a
three-dimensional (3-D) Gaussian kernel with 1.0 cm full
width at half maximum (FWHM) before they were
applied in reconstruction in order to make attenuation
compensation more realistic. Collimator response com-
pensation was implemented by blurring each image plane
at a different distance from the detector with a separable
two-dimensional Gaussian kernel, whose FWHM was
calculated assuming a linear model

FWHM(D) = « + BD, (4)

for the decrease of resolution as a function of distance (D)
from the detector. The o and B parameters were obtained by

simulating point sources at different distance from the
collimator using the analytic projector described in previous
section. FWHMs of these measurements were calculated
and the linear model in Equation 4 was fitted to the
measurements. It is worthwhile to note that collimator
response compensation was performed using a different
method that was used to simulate the projection data. This
approach should provide more realistic results with collima-
tor correction, which are not ‘too good’ due to the complete
match of the projectors used in generation of the projection
data and reconstruction. Correction for scatter was not
performed.

Every noisy circular and body-contour projection data set
was reconstructed with/without collimator response
compensation using 32 subsets and two iterations.
Reconstructed images were post-filtered with 3-D
Gaussian filter with 1.25cm FWHM. These reconstruc-
tion/post-filtering parameters have shown to provide near
optimal defect detection performance in previous studies
[18,19]. After filtering, images were realigned into short-
axis slices and a single slice through the centre of the
defect (for defect absent images the corresponding slice)
was extracted for further analysis.

Channelized Hotelling observer and receiver

operating characteristic analysis

Defect detection performance is most often measured using
human observers. In these studies observers are shown a
large number of images with and without defects acquired/
reconstructed using the methods, which are to be compared
against each other. The observers rate the existence of a
defect, e.g., with a continuous scale from 0 (defect definitely
absent) to 100 (defect definitely present). These ratings are
then used to generate a receiver operating characterstic
(ROC) curves, which plot the true positive fraction (fraction
of images correctly classified as defect present) of the ratings
against the false positive fraction (fraction of images falsely
classified as defect present). The area under the ROC curve
can be used as a measure of defect detection performance.
The human observer studies are, however, often too time-
consuming and expensive to perform and therefore compu-
ter observers such as the channelized Hotelling observer
have been developed.

The CHO comes from signal-detection theory and its
derivation is beyond the scope of this paper, but can be
found elsewhere [20]. The following explains how CHO
was applied in this work. The test statistic (), which is
analogous to the rating obtained in a human observer
study, was calculated for the CHO as

A=k eg, (%)

where 4" is the CHO, g is the feature vector and
superscript T denotes transpose operation. The feature
vector was obtained by processing the short-axis slice
under testing by frequency selective channels, which

Copyright © Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.
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have been added to computer observers to mimic human
visual processing of images [18]. In chis study four
rotationally symmetric channels with 1/64-2/64, 2/64—4/
64, 4/64-8/64 and 8/64~16/64 cycles/pixel passbands were
used. The frequency channels were shifted to each
defect centre (shift was performed also for defect absent
images) with a phase shift and the channels were
converted into spatial domain with inverse Fourier
transform. The CHO was calculated as

A = (@) — (&))" 87, (6)

where (g;) is the mean feature vector for defect present
images, (gz), mean feature vector for defect absent
images and §y; the intraclass scatter matrix [18,21]. First
half of the short axis slices for each orbit/reconstruction
method combination were used to calculate the CHO and
the remaining half of the images were used to obtain the
actual test statistics. Each receiver operating character-
istic (ROC) curve was therefore estimated from the
rating data of 240 defects present (four phantoms x eight
defects x 15 noise realizations—2) and 240 defect
absent (four phantomsx 120 noise realizations+2)
images. The ROC curves and areas under the curves
(AUC) were obtained using the ROCKIT software
(http://www-radiology.uchicago.edu/krl).

Results

The results of the acquisition orbit comparison are
presented in Table 1 and Fig. 2. As can be seen body-
contour orbit offers slightly better defect detection
performance than circular orbit when collimator response
compensation is not applied, but the difference in the
AUC values between the two orbits is not statistically
significant at P = 0.05 level. Interestingly circular orbit
performs better with collimator response correction than
body-contour acquisition. This is probably due to the fact
that the reconstruction voxel size is quite large compared
to the FWHM of the Gaussian that is used to model the
collimator response, which might lead to relatively crude
presentation of the blurring kernels. With body-contour
orbits this phenomenon has even bigger effect, because
the imaging distance is shorter and thus the Gaussian
kernels are narrower. It is, however, important to note
that the difference in AUCs between circular and body-
contour orbits when collimator response compensation is
applied is not statistically significant.

Table 1 Comparison between circular/body-contour acquisition
and reconstruction with/without collimator response compensa-
tion (coll)

Method 1 Method 2 AUC 1 AUC 2 P

Circular w/o coll Contour w/o coll 0.856 0.862 0.358
Circular w coll Contour w coll 0.901 0.894 0.325
Circular w/o coll Circular w cofl 0.856 0.901 <0.001
Contour w/o coll Contour w coll 0.862 0.894 <0.001

Fig. 2
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ROC curves for circular and body-contour orbit studies reconstructed
with/without collimator response compensation (coll).

Figure 3 shows representative images from circular and
body-contour orbit scudies. When comparing individual
images it is worthwhile keeping in mind that circular and
body-contour images correspond to different projection
data noise realizations and thus some of the differences
seen in images might be due to noise and not different
acquisition orbits. Overall there are no large differences
among the images. Reconstructions with collimator
response compensation provide smoother and thus per-
haps more visually pleasing image quality than recon-
struction without correction.

Discussion

Body-contour acquisition orbits have the ability to
increase resolution and contrast, but their effect on
defect detection performance in cardiac SPECT is not
well known. This study compared circular and body-
contour orbits using CHO and ROC analysis. The defect
detectability with the two orbits was noticed to be quite
similar. The difference in areas under the ROC curve was
0.006 for reconstruction without collimator modelling and
0.007 with collimator modelling. Even though the body-
contour orbit increased the area under curve, when
collimator response correction was not applied, it could
not provide statistically significant improvement in
defect detection performance. Similar findings were
made by White ez a4/ [22], who reported that circular
and body-contour orbits do not differ significantly in
terms of defect extent, reversibility or size assessment.

Body-contouring adds extra complexity to acquisition
procedure and may generate additional artefacts as

Copyright © Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.
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Fig. 3

Original

Circ w/o coll

Cont w/o coll

Circ w coll Cont w coll

Example reconstructed short-axis slices obtained with circular and body-contour orbit with/without collimator response compensation (coll). Original

image has enhanced defect contrast.

explained in Introduction. We proposed that collimator
response modelling might reduce these artefacts and
could therefore offer better image quality. No significant
acquisition orbit related artefacts were, however, noticed
in this study. The absence of artefacts might be partly
related to the utilization of 360° acquisitions orbits,
which have shown to be less prone to errors than 180°
orbits {1]. Moreover, many of the studies that have
reported artefacts with body-contour orbits have used
filtered back-projection (FBP) as reconstruction method,
whereas we used OSEM, which is known to provide
images with higher quality than FBP. Even though the
body-contour orbit and collimator response compensation
combination did not outperform circular orbit with
collimator response correction, the collimator response
compensation itself was noticed to be very valuable.
Collimator response correction increased AUC by 0.045
for circular and by 0.032 for body-contour orbit. Both
improvements were statistically significant. Similar find-
ings have been presented before [23,24].

This study has three primary limitations, which are
discussed next. First the acquisition orbit comparison was
performed using simulated rather than real patient data
and thus might not provide the level of realism of a
clinical study. On the other hand the complete lack of
patient motion and other such factors that deteriorate the
quality of clinical SPECT studies allowed us to concen-
trate only to differences due to acquisition orbits.
Moreover, the exact knowledge of the size, shape and
location of the defects made the detection performance
measurements reliable. This investigation would have
been quite difficult to perform as a clinical study: In order
to obtain statistically reliable results a large patient
population with, for example, angiography information
would have been needed. Each patient participating in
the study would have also needed two sequential SPECT
scans, which would have increased patient discomfort and
risk for motion artefacts, in addition to halving the
throughput of our scanner.

Second, the simulations in this study were performed
using an analytical projection code instead of a Monte
Carlo simulator. An analytical simulator was chosen
because many of the Monte Carlo packages available do
not directly support acquisitions with non-symmetrical
body-contour orbits. Our analytical simulator, on the other
hand, allows easy modelling of the acquisition orbit. The
collimator response modelling in our simulator is
performed using similar method as with the popular
SIMIND [25] and SIMSET [26] Monte Carlo packages.
Thus the only larger difference between our analytical and
Monte Carlo simulators is the incorporation of scatter.
Scatter modelling in our simulator was implemented using
Hutton’s method and although this method produces
relatively crude scatter approximation it still increases the
realism of the projection data. We also believe that
accurate scatter modelling is not so important in this
study, because we are studying resolution effects.

Third, the image quality was assessed using computer
observer instead of human observers. We chose computer
observers, because human observer studies are time-
consuming and expensive to perform. The CHO used in
this work has, however, shown to correlate well with
human observers [9,27]. CHOs can also provide much
better prediction of human performance than metrics like
resolution, contrast and noise level, which are often used
to compare acquisition and reconstruction methods.

In conclusion, circular and body-contour orbits offer quite
similar defect detection performance and thus the
selection of acquisition orbit is of not vital importance
in cardiac SPECT. Collimator response compensation, on
the other hand, significantly increases defect detect-
ability regardless of acquisition type and should therefore
be applied in reconstruction whenever available.
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Abstract

Objective A conventional pinhole single-photon emis-
sion computed tomography (SPECT) with a single cir-
cular orbit has limitations associated with non-uniform
spatial resolution or axial blurring. Recently, we demon-
strated that three-dimensional (3D) images with uniform
spatial resolution and no blurring can be obtained by
complete data acquired using two-ciccular orbit, com-
bined with the 3D ordered subsets expectation maximi-
zation (OSEM) reconstruction method. However, a long
computation time is required to obtain the reconstruc-
tion image, because of the fact that 3D-OSEM is an
iterative method and two-orbit acquisition doubles the
size of the projection data. To reduce the long recon-
struction time, we parallelized the two-orbit pinhole
3D-OSEM reconstruction process by using a Beowulf
personal computer (PC) cluster,

Methods The Beowulf PC cluster consists of seven PCs
connected to Gbit Ethernet switches. Message passing
interface protocol was utilized for parallelizing the
reconstruction process. The projection data in a subset
are distributed to each PC. The partial image forward-
and back-projected in each PC is transferred to all PCs.
The current image estimate on each PC is updated after
summing the partial images. The performance of paral-
lelization on the PC cluster was evaluated using two
independent projection data sets acquired by a pinhole
SPECT system with two different circular orbits.
Results Parallelization using the PC cluster improved
the reconstruction time with increasing number of PCs.
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The reconstruction time of 54min by the single PC was
decreased to 10min when six or seven PCs were used.
The speed-up factor was 5.4. The reconstruction image
by the PC cluster was virtually identical with that by the
single PC.

Conclusions Parallelization of 3D-OSEM reconstruc-
tion for pinhole SPECT using the PC cluster can sig-
nificantly reduce the computation time, whereas its
implementation is simple and inexpensive.

Keywords Pinhole SPECT - Image reconstruction -
3D-OSEM - PC cluster - Parallel computing

Introduction

Small animal single-photon emission computed tomog-
raphy (SPECT) allows in vivo high-resolution three-
dimensional (3D) imaging of physiological functions in
small animals. This facilitates an objective assessment
of the pharmaceutical development and regenerative
therapy in pre-clinical studies [1-8]. However, a conven-
tional pinhole SPECT with single circular orbit has
major limitations associated with non-uniform spatial
resolution or axial blurring [1, 9]. This blurring can be
moderated by applying statistical image reconstruction
methods such as maximum likelihood expectation maxi-
mization (MLEM) [10] or ordered subsets expectation
maximization (OSEM) [11] rather than Feldkamp’s fil-
tered back-projection (Feldkamp-FBP) method [12], but
still remains problematic at the periphery of field of view
[1, 9]. Recently, we have demonstrated that the unifor-
mity of spatial resolution can be improved by complete
projection data acquired with two different circular
orbits [13, 14] that satisfy data completeness condition
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of Tuy [15], combined with 3D-OSEM. However, a long
computation time is required to obtain the reconstructed
image because 3D-OSEM is an iterative method and
two-circular orbit acquisition doubles the size of the
projection data. To reduce the long reconstruction time,
we parallelized the two-orbit 3D-OSEM reconstruc-
tion process by using a personal computer (PC) cluster.
Several investigators have demonstrated speed-up of
3D-OSEM reconstruction in positron emission tomog-
raphy (PET) [16-19] and SPECT [20]. This study
was aimed at improving the speed of the computing time
for two-orbit pinhole 3D-OSEM reconstruction. We
have previously succeeded in improving the performance
of motion correction for PET using a Beowulf PC cluster
[21]. Beowulf PC cluster (http://www.beowulf.org) is
defined as a cluster of several PCs running a free-
software operating system such as Linux or FreeBSD,
interconnected by an Ethernet or Myrinet network.
Therefore, this cluster system can be extremely inexpen-
sively built compared with conventional super computer
systems. In this study, we implemented two-orbit pinhole
3D-OSEM on our Beowulf PC cluster, To test the per-
formance of the PC cluster, actual data were processed
and compared with results obtained by a single PC.

Materials and methods
PC cluster

The Beowulf-type PC cluster consists of seven PCs.
There are four 2.4 GHz Xeon processors for a master PC
and dual 1.4GHz Pentium III processors for six slave
PCs connected to Gbit Ethernet switches (Fig. 1, Table
1). Each PC has 1 GB physical memory. For the paral-
lelizing task, we installed the local area multicomputing
(LAM) 6.5.7 version of the message passing interface
(MPI) protocol (http://www.lam-mpi.org) on each PC.

Table 1 Specification of our Beowulf personal computer (PC)
cluster

Component Specification

Master PC PowerEdge 2650 (Dell)
4 Xeon (Intel) 2.4 GHz
1 GB physical memory

Linux 2.4.18 operating system

PowerEdge 1650 (Dell)

Dual Pentium I1 (Intel) 1 .4GHz
I GB physical memory

Linux 2.4.18 operating system

SuperStack 3 Switch 4900 (3COM)
12 x 1000BASE-T port

Slave PCs (six)

Switching hub

A Springer

The program for this system was written in the C lan-
guage (gcc version 2.96) on a Linux operating system
(version 2.4.18).

Theory of formulation for parallelizing two-orbit
pinhole 3D-OSEM reconstruction

Figure 2 shows a schematic diagram of two-orbit pinhole
SPECT geometry and two-orbit 3D-MLEM iterative
reconstruction. The two-orbit 3D-MLEM update can be
expressed as

k n
Mt a3 3 ()
222Gy T X G

=1 =1 J=1

where A is the value of the image voxel j for the kth
iteration, y; is the measured value of the projection pixel
i for the /th orbit, and C); is the probability of detecting
a photon originating from image voxel j at projection
pixel i for the /th orbit. Each iteration of the MLEM
algorithm for two orbits consists of the following four
steps: (1) forward-projecting current image estimate 7»?
for two orbits (forward-projection), (2) dividing the
measured and forward projections for two orbits (coi-
rection), (3) back-projecting corrections for two orbits
(back-projection), and (4) generating 7»’;'” with the
back-projected image. A 3D voxel-driven projector using
bilinear interpolation on the detector plane wasemployed
in both the back- and forward-projections.

The ordered subsets (OS) scheme was used to reduce
the number of iterations, and subsets were evenly divided
for both orbits. In our earlier studies [13, 14], as 120

Master PC

Fig. 1 Photograph of our Beowulf personal computer (PC)
cluster
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Fig. 2 Schematic diagram

of geometry and three-
dimensional ordered subsets
expectation maximization
(3D-OSEM) iterative image
reconstruction in the pinhole
single-photon emission
computed tomography system
with two-circular orbit

Axis of rotation

for Orbit 2

(Conventional
non-tilted orbit)

orbit 2"

(Additional
tilted orbit)

for all Iterations {

for all Subsers{

Process 1! in paraliel
for (Views/ Subsets) X Orbits on each PC { "

Forward-project current image estimate
Calculate correction (measured projection / forward projection)

Back-project correction

- - Process 2: synchronization
| Sum partial back-projeced images on all P(s

Update current image estimate (image < image X backprojected image)

}

Fig. 3 Pseudocode of parallelized 3D-OSEM for two orbits

projections for single orbit or 240 projections for two
orbits were acquired and the current image estimate was
updated with 8 subsets, 15 or 30 projections were assigned
to one subset (i.e., data of 6 =0°, 24°,48°, 72°, . . ., 336°
from both orbits were used to form the first subset).
We applied the projection space decomposition (PSD)
[18] for parallelizing the two-orbit pinhole 3D-OSEM
reconstruction. This method operates projection data in
a block of a view. Figure 3 shows a pseudocode of paral-
lelized 3D-OSEM for two orbits. Process 1 in Fig. 3 can
be parallelized because the forward- and back-projection

Detector

Axis of rotation
for Orbit 1

A

¢

Table 2 Distribution of 30-projection data in first subsct to scven-
PC cluster

PC number

Projection number (orbit number)

1 1)y  573) 113() 49(Q)  105()
2 9(1)  65(1) 1) 5702 113 Q)
3 17()  73(1) 92  65(2)
4 250 81()  17Q)  73(Q2)
5 3B1)  89(D)  25() 81(2)
6 4y 97()  33Q) 89@Q)
7 49 (1)  105(1)  41(2) 97(2)

operations associated with each view are independent
and can therefore proceed in parallel. At the end of each
subset, a partial back-projected image is generated on
each PC and these partial images are transferred to
all PCs and then summed, to obtain the complete back-
projected image (Process 2 in Fig. 3). Image synchroni-
zation is required for Process 2. Initial image estimates
are loaded on memory on all PCs. The MPI library was
used to implement this parallelization. In the MPT pro-
tocol, an identical program runs on independent
PCs, with their interactions controlled by exchanging
messages.

Figure 4 shows the distribution of 15 projections in
one subset for single orbit in the case of total 120 projec-
tions. Table 2 shows the distribution of 30 projections in
the subset for two orbits when seven PCs are used. As
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Inner: Projection number for first subset
Quter: PG number

1 } 2
7 113 9 3
105 17
6 97 254
5 89 335
a1 41
4 6
73 49
3 65 57
2 1

Fig. 4 Distribution of 15-projection data in the first subset for
single orbit to seven-PC cluster

shown in Table 2, one PC needs to compute all 30 projec-
tions by itself, whereas with seven PC cluster each node
uses five projections.

Performance evaluation using pinhole SPECT data

To evaluate the effects of parallelization, data obtained
from previous phantom study were used. Detailed
descriptions of the pinhole SPECT system were reported
previously [13, 14]. This system consisted of a rotating
object stage, a fixed conventional SPECT gamma camera
(GCA-7100A, Toshiba, Tokyo, Japan) equipped with a
pinhole collimator. The system can acquire two indepen-
dent projection data sets with two different circular
orbits to satisfy the completeness condition of Tuy. The
rotating stage held the object vertically at tilted angles
of ¢ = 0° and 45° to satisfy Tuy's condition. A multiple-
disk phantom with ®™Tc solution was used to evaluate
axial blurring and resolution uniformity {13]. Projection
data were acquired for 120 angular views in 3° steps for
both orbits, in a 128 x 128 matrix with 16-bit integers.
After decay correction, the total size of 240-projection
data for two orbits with 32-bit floating point numbers
was 15.7MB. The projection data were reconstructed
with eight subsets and two iterations, in a 128 x 128 x
128 matrix with 32-bit floating point numbers
(8.4MB).

Time for reconstruction was measured using different
numbers of PCs from one to seven to evaluate the per-
formance of the PC cluster. These measurements were

@ Springer

repeated 10 times and the averaged reconstruction time
was computed. For reference, the reconstruction time by
non-iterative single-orbit Feldkamp-FBP approach was
also measured. Feldkamp-FBP program provided by
Toshiba was used in this study. The images reconstructed
by the PC cluster and single PC were compared to verify
whether they equaled. The difference of the two images
was evaluated voxel by voxel by calculating the recon-
struction error as
S_9M
| J A | XIOO(%), (2)

€ =max S ]
j lj

where A is the voxel value of image obtained with single
PC and A obtained by PC cluster.

Results

Figure 5 shows the relationship between the number of
PCs and the reconstruction time. The reconstruction
time was reduced by increasing the number of PCs. The
reconstruction time was 54min and 18s with a single
PC, and was reduced to 10min and 2s with PC cluster.
The speed-up factor was approximately 5.4. In this
study, the reconstruction time with seven PCs was not
improved compared with that with six PCs. The recon-
struction time using single-orbit Feldkamp-FBP was
2min and 44s. The long reconstruction time by our
two-orbit 3D-OSEM was greatly reduced by paralleliza-
tion with PC cluster, and compared with Feldkamp-
FBP, the computation time was about 7min longer with
the PC cluster whereas it was about 52min longer with
the single PC.

As shown in Fig. 6, the image reconstructed by the
cluster with six PCs was virtually identical with that with
the single PC, and considerably better than image by the
single-orbit Feldkamp-FBP method. The reconstruction
error € for the difference between these two images was
0.0001% from Eq. 2.

Discussion

We recently demonstrated that the major limitations in
conventional pinhole SPECT, namely, non-uniform
spatial resolution or axial blurring in reconstruction
images were dramatically improved by complete data
acquired using two circular orbits, combined with 3D-
OSEM iterative reconstruction. One of the drawbacks
of this approach is that it takes a long time to recon-
struct in compensation for excellent image from two
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Fig. 5 Relationship between 60 )
the number of PCs and 54m 18s +4s
reconstruction time (min) in -
parallel computing using the 50
PC cluster .
g Speed-up factor: 5.4
5 40
E
=
5
B 30 27m 04s +5s
>
S
@ 18m 24s *2s :
5 20 i
(5] i
& 11m 44s *3s 10m 34s £4s :
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@ {b) {c) In this study, the reconstruction time with seven PCs

20 mm

Fig. 6 Coronal images of the multiple-disk phantom reconstructed.
The image (a) was reconstructed by the single-orbit Feldkamp-
filtered back-projection method on single PC. The image (b) was
reconstructed by the two-orbit 3D-OSEM method on single PC.
The image (¢) was reconstructed by the two-orbit 3D-OSEM
method with PC cluster (six PCs)

independent projection data sets with two circular orbits.
In this study, the long reconstruction time could be
markedly reduced by parallel computing with the PC
cluster. The parallelized reconstruction could be needed
when resolution recovery, attenuation correction, and
scatter correction are used in pinhole SPECT because
they also increase the computation time [22].

The image reconstructed using the PC cluster was
compared with that using the single PC. The error € for
evaluating the difference between these two images was
0.0001%, meaning that they were virtually identical. This
slight error is attributed to the fact that the order of the
addition of data back-projected from each view in the
PC cluster is different from that in the single PC, and
might have occurred during computation of the partial
back-projection. However, this difference is negligible as
shown by the small value of €.

was not improved compared with that with six PCs, as
shown in Fig. 5, because the number of projections pro-
cessed per one PC in the case of both six and seven PCs
were equal. The partial back-projected images on each
PC have to be transferred to all PCs, to sum those images
on all PCs as shown in Process 2 in Fig. 3. Therefore,
the communication time using seven PCs was longer
than that using six PCs. The network performance is
important for the Beowulf PC cluster.

This study was performed using the cluster with seven
PCs. 1f the cluster had 30 PCs, one PC would process
for only one projection. Assuming a linear model and
roughly estimating from the results of this study, the
reconstruction time using 30 PCs will equal that of 2-
3min with single-orbit FBP. Practically linear speed-up
is not expected because back-projection is not a com-
plete parallel process. The partial back-projected images
on all PCs have to be transferred to all PCs and then
summed on each PC with synchronization. We should
consider that the communication time to transfer the
partial images increases with increasing the number of
PCs or enlarging the size of data. A high-performance
communication network is essential for such cases [19].
When the size of the data is large, sufficient physical
memory should be prepared to avoid memory swapping
which increases the computation time.

To further improve the PC cluster, we must consider
optimizing the use of each PC. In this study, there is an
imbalance of the load distribution when using seven
PCs. As shown in Table 2, while PC 1 and PC 2 process
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for the fifth projections of the projections distributed,
the other PCs are idle. If projections processed are more
evenly distributed to all PCs, the speed of computation
should be improved further. The reason for such a non-
uniform distribution in this system is that one detector
space cannot be decomposited in the combination
of voxel-driven projector and PSD. There are two
approaches available to evenly distribute data for all the
PCs: (i) apply a ray-driven projector [23] instead of
voxel-driven one for PSD because it allows the decom-
position of one detector space and (ii) apply the image
space decomposition method [18] for voxel-driven pro-
jector. However, further investigations are required to
confirm that these alternative approaches improve the
computation speed. When the cluster has slow PCs or
other tasks use the resources in the cluster, the recon-
struction time will increase as a result of spending too
much time on slow PCs. In the present system, the fast
PCs wait until the slow PCs complete the back-projec-
tion process. If the cluster system monitors the computa-
tion speed and the progress of the process on each PC
and manages the distribution of the process to idle
or fast PCs, the speed-down of reconstruction will be
avoided [16].

At present we do not parallelize for one PC with
multiple processors. Because the multiple processors on
one PC can share memory, communication through the
network for summing partial images is unnecessary [16].
Shattuck et al. [17] reported that a four-processor coni-
puter was able to achieve speed-up factors of approxi-
mately 3.4 relative to a single processor. Parallelization
for both cluster PCs and multiple processors will effec-
tively speed up the reconstruction time.

The Beowull PC cluster system can be constructed
using essentially free-software such as Linux operating
system and MPI, and inexpensive PCs instead of super
computer. Also, modifications of only approximately
10 lines were required to parallelize the reconstruction
program. Although this article describes parallelization
for the two-orbit pinhole SPECT, the strategy can be
generalized for any pinhole SPECT (e.g., single orbit,
helical orbit, and multipinholes).

Conclusions

We were able to markedly improve the long computa-
tion time of 3D-OSEM reconstruction in two-circular
orbit pinhole SPECT by parallel computing using the PC
cluster. The reconstruction time of 54min decreased to
10min by using six PCs. The speed-up factor was 5.4.
The PC cluster is effective in decreasing the computing
time with low cost and easy construction.

@Springer
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Delayed Postischemic Treatment With Fluvastatin Improved
Cognitive Impairment After Stroke in Rats

Munehisa Shimamura, MD, PhD; Naoyuki Sato, MD, PhD; Masataka Sata, MD, PhD;
Hitomi Kurinami, MD; Daisuke Takeuchi, MD; Kouji Wakayama, MD; Takuya Hayashi, MD, PhD;
Hidehiro Iida, MD, PhD; Ryuichi Morishita, MD, PhD

Background and Purposes—Recent clinical evidences indicate that statins may have beneficial effects on the functional
recovery after ischemic stroke. However, the effect of delayed postischemic treatment with statins is still unclear. In the
present study, we evaluated the effects of fluvastatin in the chronic stage of cerebral infarction in a rat model.

Methods—Rats exposed to permanent middle cerebral artery occlusion were treated for 3 months with fluvastatin
beginning from 7 days after stroke. MRI, behavioral analysis. and immunohistochemistry were performed.

Results—Two months of treatment with fluvastatin showed the significant recovery in spatial learning without the decrease
in serum total cholesterol level and worsening of infarction. Microangiography showed a significant increase in capillary
density in the peri-infarct region in fluvastatin-treated rats after 3 months of treatment. Consistently, BrdU/CD31-
positive cells were significantly increased in fluvastatin-treated rats after 7 days of treatment. MAP 1 B-positive neurites
were also increased in the peri-infarct region in fluvastatin-treated rats. In addition, rats treated with fluvastatin showed
the reduction of superoxide anion after 7 days of (reatment and the reduction of AB deposits in the thalamic nuclei after

3 months of treatment.

Conclusions—Thus, delayed postischemic administration of fluvastatin had beneficial effects on the recovery of cognitive
function without affecting the infarction size after ischemic stroke. Pleiotropic effects of fluvastatin, such as
angiogenesis, neuritogenesis. and inhibition of superoxide production and AB deposition, might be associated with a

favorable outcome. (Stroke. 2007;38:000-000.)

Key Words: angiogenesis m cerebral infarct m microcirculation m statins:

Despite conflicting data correlating cholesterol level with
stroke, 2 carly trials of HMG-CoA reductase inhibitors
(statins) in patients after myocardial infarction patients
showed a reduction in stroke risk as a secondary end point.!
A meta-analysis of 9 statin intervention trials, which enrolled
patients with coronary artery disease or those at high risk for
coronary disease, demonstrated a 21% relative risk reduction
for stroke after 5 years of treatment.2 Another clinical
evidence suggests that the commencement of statins within 4
weeks of a stroke results in a favorable 90-day outcome.? To
clarify the effects of postischemic statin treatment, previous
studies in which atorvastatin was started 1 day after stroke in
rodents showed improvement of sensory motor deficit
through induction of angiogenesis, neurogenesis, and synap-
togenesis.** These pleiotropic effects of statins were shown
to be the result ol induction of vascular endothelial growth
factor or brain-derived neurotrophic factor.# Additionally, the
microvascular dysfunction in the posttreatment of stroke with
recombinant human tissue-type plasminogen activator could

be reduced by statins in rodent model.¢ However, the effect of
delayed treatment with statins after ischemic stroke is still
unknown. From this viewpoint, we investigated whether
chronic statin treatment beginning 7 days after ischemic
stroke had influences on neurological deficits and pathophys-
iology after the permanent middle cerebral artery occlusion
(MCAo0) model in rats. '

Materials and Methods

Surgical Procedure

Male Wistar rats (270 to 300 grams; Charles River; Kanagawa,
Japan) were used in this study. The right MCA was occluded by
placement of poly-L-lysine-coated 4-0 nylon, as described
previously.?

Protocol for Treatment and Behavioral Tests

Ten rats were only anesthetized (sham operation) and 32 rats were
subjected to MCAo (day 1). Based on neuromuscular function on
day 7, the rats were divided equally into saline-treated (n=16) or
{tuvastatin-treated (n=16) groups. Fluvastatin (5 mg/kg per day:
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provided by Novartis Pharma) or saline was given by gavage from
day 7 to 100. We chose the dose (5 mg/kg per day), because a
previous report showed that this dose could effectively induce
angiogenesis in ischemic limb.2 On day 55, neuromuscular function
and locomotor activity were evaloated in (he surviving rats. Then,
cognitive function was examined by Morris water maze from day 56
to 63, because the effects of neuronal regeneration could be detected
not in the early stage but in the chronic stage of ischemic brain such
as 49 to 53 days after the insult.® On day 96, MRI was performed. On
day 100, microangiography was performed.

MRI

High-resolution T1-weighted fast spin echo sequence images (repe-
tition time [TR]}= 1500 ms; echo time [TE]=10.3 ms; field of view
[FOV]=4X 3 cm; matrix=256X192; slice thickness=1.5 mm; slice
gap=0.5 mm: number of slices=16; number of excitation= 10; total
time=9.39 min) were obtained using a 3-T MRI scanner (Signa LX
VAH/; GE).

Sensory Motor Deficit and Locomotor Activity
Although there are various batteries for testing sensory motor deficit,
we used a simple protocol.'® For forelimb flexion, rats were held by
the tail on a flat surface. Paralysis of the forelimbs was evaluated by
the degree of left forelimb flexion. For torso twisting, rats were held
by the tail on a (Tat surface. The degree of body rotation was checked.
For lateral push, rats were pushed either left or right. Rats with right
MCA occlusion showed weak or no resistance against a left push.
For hind limb placement, one hind limb was removed from the
surface. Rats with right MCA occlusion showed delayed or no
replacement of the hind limb when it was removed (rom the surface.

Spontaneous activity was measured via the open field (0.69 m>.
We set the sensor, which also put beams on the field, at 30 cm above
the field. The number of count, which is when the animal crosses the
beam, was measured for 30 minutes.

Morris Water Maze Task

A cylindrical tank 1.5 m in diameter was filled with water (25°C),
and a transparcnt platform 15 cm in diameter was placed at a fixed
position in the center of 1 of the 4 quadrants (O’Hara & Co, Ltd). In
the hidden platform trials, we performed the tests 4 times per day for
4 days. When the rat could not reach the platform. the latency was set
at 60 sec. In the visible platform trials. the tests were performed 4
times per day for 4 days, The acquired data were averaged per day.

Evaluation of Capillary Density

Using a recently developed microangiographic technique.!! capillary
density and blood—brain barrier leakage were evaluated in the
cerebral cortex after MCA occlusion. The area or length of vessels
was analyzed with an angiogenesis image analyzer (version 1.0;
Kurabo).

Immunohistochemical Study:

Bromodeoxyuridine Labeling

To identify newly formed DNA, saline-treated (n=5) and (luvasla-
tin-treated (n=5) rats received injections of bromodeoxyuridine
(BrdU, 50 mg/kg; Sigma-Aldrich, Saint Louis, Mo) intraperitoneally
starting on day 7 twice per day until day 13. Rats were euthanized on
day 14. After the sections (8-um thickness) was fixed in 10%
formaldehyde/MeOH neutral buffer solution and blocked, they were
incubalcd with mouse monoclonal anti-rat CD31 antibody (1:100;
BD Biosciences; San Jose, Calif), goat polyclonal anti-doublecortin
(anti-DCX; Santa Cruz) antibody (1:100; Santa Cruz, Calif), mouse
monoclonal anti-NeuN antibody (1:1000; Chemicon, Temecuia,
Calif). or mouse monoclonal anti-MAP1B antibody (1:100; Sigma-
Aldrich), followed by anti-mousce goat (luorcscent antibody (1:1000
for NeuN and MAPIRB, 1:400 for CD31, Alexa Flour 546, Molecular
Probes; Eugene, Ore) or anti-goat donkey fluorescent antibody
(1:1000 for DCX Alexa Fluor 546). For double immunostaining,
these sections were fixed again and incubated in 2 N HCI at 37°C for
30 minutes. After blocking, they were incubated with rat monoclonal

Table. Infarction Volume Galculated by MRI, Blood Pressure,
and Serum Total Cholesterol

Sham MCA0+S MCAo+F P
283.8+23.9 278.4*26.4 0.851

Infarction volume in
total rats (mm?)

Type of infarction in 0.828
Figure 1a (N of rats)

A .. 12 11

B 3 3

C 1 2

Infarction volume 322.8+15.0 327.0+18.8 0.758

(mm?) in type A rats

Systolic blood pressure
{mm Hg) in type A rats

Day 7 116.1+£54 123.7%6.0
Day 56 146.5£4.7 148327
85.9x5.6  75.3%3.5

115.527.3  0.654
136.1*£5.2  0.132

Serum total cholesterol 73.5£2.7  0.949

(mg/dl) in type A rats
on day 56

Type A, low-intensity area seen in the dorsolateral and fateral portions of the
nescortex and the entire caudate putamen; type B, low-intensity area seen in
the dorsolateral and lateral portions of the neocortex and in part of the caudate
putamen; type C, low-intensity area seen in part of the lateral neocortex and
caudate putamen. MCAo+S, saline-treated rats after MCAo; MCAo+F, fluva-
statin-treated rats after MCAo.

P, saline vs fluvastatin.

anti-BrdU antibody (1:200; Abcam, Cambridge, UK) followed by
anti-rat goat fluorescent antibody (1:1000, Alexa Fluor 488). For
immunohistochemical staining for AB, sections were pretreated for
30 minutes with hot (85°C) citrate buffer as described before.’2
Confocal images were acquired using an FV-300 (Olympus).

Quantitative Histological Analysis
To quantify the immunoreactivity for MAP1B and A, the acquired
image was analyzed by Image J (version 1.32; NTH).

Detection of Superoxide:Anion in Brain Sections

Superoxide anion was detected on day 14 as described previously.!3
Because intact cortex showed red fluorescence, we calculated the
ratio of fluorescence as tollows: ratio of fluorescence=[fluorescence
intensity in ischemic core or peri-infarct region)/[flucrescence inten-
sity in intact region].

Statistical Analysis

All values are expressed as mean®SEM. To analyze the differences
in the type of cerebral infarction, x* test was performed. The latency.
path length, and mean speed in Morris water maze and sensory motor
deficits were analyzed by a 2-factor repeated-measure ANOVA. Post
hoc analyses were performed, and the Scheffe test was applied to
control the inflation in type T error. The value of the serum total
cholesterol, the blood pressure, and the sponlancous activily was
analyzed by Scheffe rules. The differences in the immunohistochem-
istry and the volume of infarction were assessed by Mann—Whitney
U analyses. In all cascs, P<<0.05 was considered significant,

Results

Effects of Fluvastatin on Cognitive Impairment

To confirm the severity of cerebral infarction, all rats were
cxamined by T1-weighted MRI after 89 days of trcatment.
Although the total volume of infarction calculated in T1-
weighted images was not different between rats treated with
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Figure 1. Typical T1-weighted image of coronal section of rat brain (a). The images were divided into 3 groups. Type A, low-intensity
area seen in the dorsolateral and lateral portions of neocortex and the entire caudoputamen; type B, low-intensity area seen in the dor-
solateral and lateral portions of neocortex and in part of the caudatoputamen; and type C, high-intensity area seen in part of the lateral
neocortex and caudatoputamen. Sensory motor deficit (b). Spontaneous locomotor activity (c). Hidden platform test in Morris water
maze. Each figure showed latency (d), path length (e), and mean speed (). Days 1 to 4 indicate the trial day in the hidden platform test
(56 to 59 days after middle cerebral artery occlusion). Visible platform test in Morris water maze. Each figure showed latency (g), path
length (h), and mean speed (). Days 1 to 4 indicate the day in the visible platform test (60 to 63 days after middle cerebral artery occiu-
sion). MCAo+S indicates rats treated with saline after middle cerebral artery occlusion; MCAo+F, rats treated with fluvastatin after

middle cerebral artery occlusion.

saline and fluvastatin (Table), the patiern of cerebral infarc-
tion was divided into 3 groups: type A. low-intensity area
seen in the dorsolateral and lateral portions of the ncocortex
and the entire caudate putamen; type B, low-intensity area
seen in the dorsolateral and lateral portions of the neocortex
and in part of the caudate putamen; type C, low-intensity area
seen in part of the lateral neocortex and caudate putamen
(Figure la). In type C, most of the lateral neocortex was
intact. To exclude the influence of the pattern of cerebral
infarction on cognitive function, we focused on type A rats in
the present study. The volume of cerebral infarction in type A

rats was not different between the groups (Table). Blood
pressure and serum total cholesterol also showed no differ-
ence among the groups (Table).

Sensory motor deficit had spontancously recovercd to
some extent by 8 weeks in both groups, and there was no
ditference (Figure 1b). Locomotor activity in rats subjected to
MCAo was increased as compared with that in sham-operated
rats, as described before,'* but there was no significant
difference between fluvastatin-treated and saline-treated rats
(Figure 1c). In Morris water maze (Figure 1d-i), which
examines spatial learning, there were significant differences
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