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ELEFBRFHAE#EDE (ERRGRREEERESEE)
REMRBEE
BEE T LT 5) ) BRI L DEY - RBEIEFES AT AOREICET MR
EEEE Bt mEBAFRFREER AR ESR

PREE KEZa7 LT3 /7RFEHRH;-HBEL. JNICREEEEE LERAZA
IATe Z & TEEEN L LI-EY - REIEE VAT LAOBRRBEEZHAT-, DNAIZ L D R&EEHE
LIZEAT 2857 5. FEAF AL CpG E2HI (CpG EF—7) % &ELr DNA (CpG DNA) T X
W=~ 7 07 7y —CRUHFHEEEHE., vV A< 7 077 —UKAK RAW264.7
WD SHEEY A A UPEESNDZ EEMIB L, /., CpG AV IX 7 LAF K
(CpGODN) A FA U)K —LEEEE LT U REENICRE T 5 Z &L TEREERE
MBERB OB LMK Lz, RWT, BEBBEINLI I FA U HEEMERWT
IZ CpG ODN D& EEM(LAEZ T 5 7212, ODN OFEEERIC L 2 HREERIZ OV TR
Ftl7c. TORRER, %n%n#%fowﬁm&3ﬁﬁ@omv%%wrﬁﬁttvﬂzxﬁ
ODN (Y-ODN) #3, @%H#ED ODN LB L THEILE WY A M UA VEARZETDIZ
EEHFIICRE L, &5I2, Y-ODN 2 IERERZTHZ L TEES VT 4 ZITE LR
20nm DF » KU <~ —4% DNA DOBIFIZEKT L, 2 RAW264.7 Mg ~D I L Y Y-ODN
;D%méz WZIR NS A NI A VEAREETAZIEERALNIILE, —FH. UERIOT
YRY—iIZBL T, 5 AI FDNA— F¥ /v (DXR) #EEEEERL, TOFA%
BRI L7, R T OMBBEME L RAW264.7 #8522 DNA-DXR 2#iRM L= &2 A, i
Ba3ETEIL CpG EF — 7IRFEMICHR LI < MFIEND Z R ENTZ, Fio, F%F&%%?
)L 7 Z~0 CpG DNA-DXR D#ARAZR 512 L 0 . KRR CoOREMaEMEIIA BITHH) 7T6E
bHot-, UbEXY, DNA 227 ¢45F /RIF2BEL. Zhl rﬁ%HMRtﬁﬁ%&m
DI=HD CpG TF — 7 #fAAte Z & T, BIEEICFIHATRELEY - REIEEI AT LDOR
I LT,

A BIXE®N

fEEAZ CIImEFZAMEATLE L, @ F M
TEELFB LW A XOESF - BRLF A3
EHETHI NS, VT I 70 FIZERE
100 nm LA FOF /RF52FATHZ & THE
BRBE~DEYEZ—TT 4 L ITBAEETH
By INETIZ, URY—ARTFT /A T7=xT
REEXXY VT ELEMEREAINICITDL
N7-fER. R TR ARRELRRAINRFE SN
BILES>TWAD, LMLdb, I&KRELT
BT B EMIEELS S ICER ST

B EITEVEE,

—F5 EBRRZRET 5 L TERKIZHED
BREMEETEELT 2 EEREFIEIC
HERZELNBFELN TV, DNA U7
F U OHBEITIT, REHEEMIL THRSERE
RETHZ LITMA T, DNA ROIEAF L
{k CpG E2%l (CpG TF—7) I L BR&EHE
WA OEE A TER R 2R T
BL&ND, £ TEPETIE. DNA %=
TE LT/ RFAEBTICERE - L,
nmﬁﬁm&cmy%%—7k%ﬁﬁQU;



& T ALFERER U RERIEY RRFICERT
HERIBE LV AT LOBREERLDL, EF. E
EHBIIER T I~/ u 77— EDR
YR, EEABRE TRV TARE
DEABEZILDETIEMEZHRT 51
ENRETL.EBAT = —F 2T 5Z
L TEMROEE - &%, BHEETET L
EMBREINTNB,CpG EF—T7IXB AR
EEEHLTAZENS B2 aT TS
EYx v ) 7TERWVWD LT EBHEPIC
B L aEEYEROENIc L 2HE
EREOFENFIND, /-, DNA i
Fx e (DXR) 72 DNA A 4 —
AL—FEORFEREERTDHI LMD, KBk
F JRiFERAWD Z LT, PUEER & FEEAR
NE—=FT 4 TTARIELAREEEZD
N5, fEERELEE(LT DL L bICHE
U L DM RSB HF IR /¥
AL XDDSit. AH=ZXLDRRB 2 ODE
BRI ABME LR AT LATHY Y
R — Ll EEMERICREE 22X Y VT
ZFA L-HUER DDS LR Y, HED
P OBEmWHRBESRVEFIND,

B. BiIRAXE

(1) T A~D DNA £ 5%D TNF-aE 4 :
CpGDNA ¢ L TN 727 —ERBEHTST R
I F pCMV-Luc %, CpG EF— 772
DNA & L T4 Mg (CT) DNA /=13 A F
it pCMV-Luc # A\ 7z, BRFHIIZ ICR =7
AERAW. 7 Fex—brgHFIRY —Lb%
BIRAKRE LI RE2~w7 077 — VKR
EeYRE LI, ATFF YR Y —LITIE
N-[1-(2,3-dioleyloxy)propyl]-n,n,n-trimethylam-
monium chloride (DOTMA) & a VA7 o—
N%EE)VE 1:1 TIRE L7 DOTMA/Chol Y
RY —L%EERL, DNA L URY—L%E
kb 11224 (<) CTRETHZLTAF A
YR —LEEEETAB LT, 5 DNA &,

HMF-ldhF4Ao IRy —L8EBEHKE
L CEIRAKR S L. BEMICHESR B L UE
BEsF OEBEERF (TNF) aRE %
ELISAEIC X W BIE LT,

(2) DNA IZ & SiEEMaN 5 D TNF-oEFE £
ICR v U ANLEEMBEE~ /a7 77—,
Bfg~r a7y —, FFEEEMAR, BAY
VXU LA EEE L, MBIZIET T AT
7 1 77— Uk RAW264.7 & AV -,
pCMV-Luc £ 7213 CT DNA 2 B H 5\ Mid b
FAUMIRY —LBEEE L L TRIZE
ML, —ERFRIEE%ZO LED TNFoREL
ELISA {512 L W BIE LTz, Bi&. &R T
@ Toll-like receptor-9 (TLR9) DFEEL% real-
time PCRIZ L W EF M L 7=,

(3) CpG DNAHEEKIZL ZIMEENE - &
7+ A7V A7)0 (PO) B CpG
ODN # 3%t L7= (5-TCGACGTTTTGACGT-
TTTGACGTTTT-3") , XfBBIZiL CpG EF —7
%&£ 72V ODN (random DNA, GpC DNA)
AW, BHROEASRB L OEMEL E
BRIGHE T 272 0IC Vv T T —EER
EIWCREBRT HEMAEER B16-BL6/Luc BT}
colon26/Luc %83z L7-, BERENIZEHMEE
BHTHZ L THEEBETT L~V A%E
L., TOEENIZE DNA ZEME- T

"DOTMA/Chol VR Y —ALEEEL LTHRE

Lz, B 7 BiLICIEENIEZSE 2/ L, B
BHRLYT 7 —EEMEEEICEMRE
ML, £/, BAE~ U ATOERESD
TNF-aB LA v F—aAfFx (IL) -12 &
E% ELISA ZIZEVBIET DL EBIT. =
7 2 DEMDEIZ OV T HRE LT,

(4) Y-ODN DHEEH LU CpG EF—T7%8
CHAY B ONA OB : ThEh¥HT o
FEMEA7Z: 3 FEE D 30 $EE D ODN ZHE /L
FTORE L. 95°C TMEAERAIZHHT S
Z & TYODNZFEB Lz, ZD L& Z Y-ODN
O 1 Bt %72 CpG £ F — 7 GACGTT iZ



E# L7 Y-CpG ODN, 3 Efiz@#L
Y-3CpG ODN Z #H7-I1Z5%5 L 7=, Bli&k. X8
ELTYREZEHRKTHODNDI LD 1 %
—ZA484 (ss) ODN, Z hIZ+aHRY7Z2ERS % HD
R T ZA$ (ds) ODN, Y B OEK DX
T% 2 AL LKL 3 BE D dsODN
(dsODNx3) & THE L7,

(5) Y-ODN ;&#5(2 & 5T > F1)T—# DNA
DR : 4 BEDORELS Y-ODN (1 EEOD
Y-CpG ODN #&tr) #{E® L. DNA ligase
EFRAVWCIEREST 22 LT HAK3I OF
>~ F U <= —#%k DNA (G3-dendritic CpG DNA :
G3) ZHEL,

(6) PS % ODN #&¢ Y-ODN DFRAH : CpG
EF—T7 % Y0a8iZ 1 o0& T Y-CpG ODN %

8% 5t L 72, Y-CpG ODN % #%5X 9 5 ODN (Y0a,

YOb, Y0c) ZNZFHIZHOWT PS BAICE#R
L7~ ODN(S)2RHE L/, £/, CpG TF—
Zeal Yoa SUCEL TIE, WIREDS 3
BOFEEDHREEBRRLT- ODN(S;)bREHL
72o POBRIK U PS B ODN %2 fE 4 A A
" T Y-CpG ODN %3S L 7=,

(7) aLXTa—/L{EH CpG ODN (CpG
ODN-Chol) ®&HRK : CpG EF—T7 %85 |
A8 ODN 27 I %E AL, cholesteryl
chloroformate % RIG & ¥ % Z & T CpG
ODN-Chol &% L 7=,

(8) REFMHLAED L : RAW264.7 #lifa %
FEHE L .24 FFE]14 124 ODN 2~ DR E (2,
6. 18 pg/ml) TEHEMLZ, BEHLOEIZL
LT, EiEF INF-aRB X VIL-6, IL-12 BE
% ELISA B5IC X W BIFE L 7=,

(9) ODN D #t45F(f : Y-ODN 1 L U¥ dsODN
tZ DNase I (0.75 U/10 pg DNA) F£7-13 50 %
fetal bovine serum (FBS) ##f0L. 37°C T
A FaX—hkL7, EDTA DHFEMIL VK
SEREIRE. R T2 UNT I RS LVESRK
g2 X Y & ODN D45 % #¥4fi L 7=, ODN D
R T oY A X3 BELEEIC L Y BIE

Lz o, V—=nAY A7 72XV Etig
BE (Tm) 28E L7,

(10) ODN O#ARaER Y A - FITC 25k L 7= &
ODN % f& 4 OB T RAW264.7 HRIZHNN
L7=. 1 BEf14IZ flow cytometry {2 X 9 HIE
L 7- AR oD JE IR BE % $51%E1Z ODN D#ffa B
D AZ A5 L7,

(11) SHRIETEMHIZH R - RAW264.7 HEAIZ
4 ODN (10 pg/ml) % &40 8 R D Lg%
conditioned medium (CM) & L TEIR L 7,
REINNY T =257 —FEREEILRET D~
7 A AF /) —~<Bl16-BL6 #2 (B16-BL6/Luc)
ETNEMRE LTHY, ZhiZ&CM &
WL, 48 BFfiglo v 7 = 57— ¥ EM
FRUETHI L CRMRBELFMEL. &
ODN AAE|Z & 2 EMRETEIHIZI R 2 HIE
L7z,

(12) DNA-DXR D& : CpG DNA & LT
pcDNA3.1,. & L 72\ DNA (non-CpG DNA)
& LT pCpG-mes ER L, DXR ¢ EELL
10:1 TIRE L. ZRTIKREHFET L LT
EAREZFR L7, DXR DS IL DXR O
FEBIEST D & T L=

(13) DNA-DXR #5&KI- & =R ig5EH
#: FT7 X v EBIZ RAW264.7 #lifR %
T E%IZ colon26/Luc % #&fE L 7=, 53 24 FFfH
#1Z DXR £7-1X DNA, DNA-DXR # RAW
MR EIN L 48RRI R ZE LS T = T —
TEMEZERICERREERIE L,

(14) BIET DX T®D DNA IZwT B RE
% : colon26/Luc % BALB/c HtE~D 2D
BT I I3EREN. FIRNICEBET 5 Z &
T, R THEE. EEEE FEgerr~<y
ZEERLT-, —EHRRBE, HE~ T X
IZ pcDNA3.1 % 250 pg DNA/mouse D 5-&
TEARNZR S L 2% O M E S & ORI,
fEfE+ TNF-ofB B % ELIZA {EIC L VBEIE L
2o B, FFEREET /L~ XIZDNA 5
v it DXR, DNA-DXR & &Kz #ARMNRS



L. 6 Bl omiER L OFES IL-12 BE
% ELIZA B X D #I7E L7z, CpG DNA KT}
non-CpG DNA W5 Z & THA b hA v
EAILBITS CpG EF—T7DEEIZHONT
3 L7
(15) FFECRBHNFIHE : colon26/Luc % FIARA
{Z#HE 8 B %12 CpG DNA-DXR. DXR, DNA
EERAKRE L, B 13 BRICES
B ThHLIFBEREL A7 25— 8
A2 BB IFERB 2 5 L7,
(16) MIEBHHE . = 7 RFEAKE sarcoma-180
(S-180) % 5 iEih ICR Mt~ 7 A 1x10°
cells/mouse TREMENBHET 5 Z & THEKE
EFETFNTTRAEER L=, B 6 BRIV
13 B#IiZ DNA-DXR %#fEfER&Z S L. &8
IR EELS & A7 B A L7,

C. IRLHER
(1) DNA #iRRIRS5 RO IV AMESD | @I
th TNF-oBEE : = 7 Z{Z 250 ug @ CpG DNA

ZFARNEE LIcB S miET 72 o N AR,
FEIE T L~V TNF-adsgii &z, — 7.

CpG EF— 7 D72\ > CT DNA TidRHIR
RUTFTEo, hFA MY R —LEEHE
DFEITIE. 25 pg DNA OFAIZH CpG +
F— 7 KR TNF-aDEENRD vz,
ZOYA NIA UEAIX. BT Kupffer #ifaE
LU~ 07 7 — PR BREMICRET
A ETIHITEFERICHEEL, Zh b ianid
ERRENT,

(2) DNA 2 & AEHEI 2O 7—Uh D
TNF-aDE 4% : RAW264.7 RO~ o
77—, FFEEEMBIENHIZ. CpG DNA

DFEMZ LY TNF-uEEDBRD NI, —F

BE~ /077 —CBLUBAY U F UL
MBTRBRE IR M-, FHRTO
TLRY EHIZ, B~/ o077 —UTRLE
<. WWCHHEELMIE, EiE~s o7 7 —
COIETHY . CpG DNA FNIEEDY A kA

A VEL L OMICEDHENRRED LN, £
e AFF MY R —bBEEERWE
BiTiE. URY —L0RE - IEEHEEUKTTR)
RYA MIA VEADBRD LN,

(3) CpG ODN &K 5T &L SEIR BN
EEBIH - CpG ODN A& EIZ LD,
RERERIC S EE D TNF-a. IL-12 AR &N
7-. # Z T. B16-BL6/Luc F 7=i% colon26/Luc
BE~V A ERWTHEERZFM L
& Z A, CpG ODN E&&IZ & v ERENIZEE
BT AEMBEN 2 e —LEEDOR
0.1%IZFE TR Lz, 2V, £FBHE
HERIZIER LT,

(4) Y-ODN O¥4EE(l - EX KB DR R,
Y-ODN {3#9 350 bp fHifLiZ¥— D/ F & L
TkEh&Ens, 1 2= bdHi= ) OEEEIZT
90 base THD I &M 5. Y-ODN (I dsODN
CHBLTESVEBELR 2T LATFR®SE
Nz, BN EHELEIC LV RIE LI RT0
YA XiEH Tnm TéH Y . Y-CpG ODN, Y-3CpG
ODN DA HIFIZREOEI G LN,

(5) Y-ODN I2& 541 b hA4 DEE : BLSIF
\Z38 47 CpG EF—T7 %2 & %72\ ODN %
RAW264.7 fERIZERIML7-354 . ODN BE
DEKIZHEWETFED TNFaEADBRD L
hi-, —7F. RULEZFIO ODN THRHE L
Y-ODN 2# &M+ 22 ¢ T, AEIZHW
TNF-aDEANRRD OGN, IL-6 IZBELTH
REROERNEO NI,

(6) ODN OREMH & Uik YAH : LI E
LV, ODNZYRLFTHZLTHA b hA
CVEARRBHKTAZENTINT, £EZ T,
ZDOYODNIZEBEWYA MAA VEEDN
ODN DEEMDERIZL DI NITHOPNT
DNase | F 7213 50%KZ M FBS & WV THRE
L, ZORR, WThOBEIIBWTYH
Y-ODN 13 dsODN & F#RIZ oItz — 5.,
FITC =% ODN # VTR E L7z RAW264.7
MEA~DE Y AL iL, dsODN & H# LT



Y-ODN CHEILSWZ &R E T,

(7) Y-CpG ODN =& bHA Fh4a UEE:
ODNIZ# N7 CpGEF—T75HATHI L
T, RAW264.7 Hfa~OFMIZ LV EA SN
% TNF-aidWTFHOBICBWTHEHEICHE
KL7, CpG TF—7#dH7- D D TNF-offE
ABETHET S L. Y-CpG ODN 3 ssCpG
ODN %I U DB & 8 L THEICSW
TNF-oa#EA %R LT, PTH. BFIX CpG
EF— 72 EDY-CpG ODN & T XTR%E
T& 5 dsCpG ODNx3 & DB Tid, K16 {F
BV TNF-oB X OV IL-6 DEANRE LN,
W25 AN CpG EF— 7 % 3ABAL
7= Y-3CpG ODN Ti¥. #5172 CpG EF—7
251 EHOAHD Y-CpG ODN L D bHEEIZEHW
TNF-a L TVIL-6, IL-12 AN/ LN,
(8) fZHARRIBTEMNHIZHE : & ODN Z &ML
7= RAW264.7 #BIR O8I & L 5% #1 % Bl6-
BL6/Luc Mz HM L= Z A, Y1 FHA
CEAZRBEL T Y-3CpG ODN DA Ik
bV VEARRETE M &I R A S b Tz,
(9)G3IZ&kDHYA bhA VEE  ERKENC
LY, " HAEETEHLIHLODT R
< —¥ DNA OB HER SN, [/FhHhl
G3 DEMTDOH A Xi3#) 23nm TH Y| &
BHRBE~OZEB Y —F T 4 TIZE LY
A RXTHDHI ENHEREINT, RAW264.7 Hb
FCEMIC X D EE SN D TNF-alREIL.
Y-CpG ODN ¢ (L THEICE . FIZE
BE (2 pg/ml) TEHS EHV TNF-ad R
i,

(10)PSEODNEH Y-ODNIZ & B8 1 + A
4 VE%:Y-CpG ODN IZ & B TNF-aE4£ 1T,
CpG £F—7 %#&{e ODN ORI 5 3 &
HHVNIETOY VEEREZ PSRILE TS
L TCHEIZHE AR L7, CpG ODN(S)& CpG
ODN(S;) & ODRIZEE2FEWIBO LR
7=, CpGODN $§% PSEIODN &% Z

LT MBEBPCOLEENER LI ENG,

EMLRED BRI L ERDOBEKRIZLD Z &
B EIni, £7-. PSE ssCpGODN X ¥V
HEWLLD TNF-adiG oo Z &b,
PS & ODN DIFEITH Y BFAIT L D YA
NOA VEAPBRT S LB RENT, —
F. CpG EF—T7 2 EF72\ODN % PS &
ICBBRLIEBEDOY A b4 VEAIZX. 2T
PO %! ODN TFM L /- Y-CpG ODN & [F% T
Hot-, £7-. 3FEEHEDODN # PSH L L1
BAIIIEERYA b4 VEERTHE
gan, Z0LE, TmMEIFEIETL
=z &db, 2TH ODN#H%E PSE LTS
ZET Y BEBERINUTL < 725 FTHEHEA
raINT,

(11) CpG ODN-Chol IZ& YA b h A VE
4 : CpG ODN-Chol IE, = VAT a—/LiEA
HBECEATMEKTFOICBECSEE LMK
THIENALNE R ST, RAW264.7 Hifa
WEMT 5 Z & TEALAEND TNF-od, 22V
AT o —/LHKAER CpG ODN & 9 & JEEI/IZ
BWIEBNRENE, TIVHEAEKR
rhodamine Effifk, HHWIT VAT o—/L
& CpG ODN & DIREMTIIE\ I A F A
VEEIREDONE o ENE, CpG
ODN-Chol iZ L B®mW\ YA M A VEAIZIT
ODN iZ2%xt% 3 2 L AT o — /LEMNLET
B EBRINT,

(12) DNA-DXR IZ & 5 2 #iRa 8 REHNH) - CpG
DNA @ RAW264.7 fAfa~DEEIMI LD |
colon26/Luc HIAR D HEFE I FHIH] S L7223,
non-CpG DNA AN TIXEREMNHIZNRITFE
Lo 7=, DXR EMIZE D colon26/Luc
RO IIBRE I HH S . CpG DNA @
BERIC X D ZOMFEIDNRITER LI,

(13) BET Y A TD DNA-DXR 12T B &
ZHOFE: K TESS 5\VIIEEREEET
L= 17 A2 CpG DNA 2§k E L= L Z
A EH< U A LIZIERZED TNF-afEA MR
oz, —FH. FEBET L~ U AW



Tix. CpG DNA # 5. X v i+ X URTHR
TEE<VALY LBAEIIEY TINFaELE
BESNT-, FZ TH&, colon26/Luc HAa
DOFEBET L~ T 2Zx L. CpG DNA
AV Md non-CpG DNA % §#ikNKB S L& =
7. CpG DNA &5 DFEIZR Y k5 &K
fizme IL-12 BEO LENBEINT,
CpG DNA-DXR (B L THRIZHRDOBEE %
To71-& 2%, CpG DNA OB A L BT 3
LIEWHLDODOEERIL-2ELENRED b,
(14) DNA-DXR IZ & % FFéx# i : CpG DNA
(250 ug/mouse) DEMBEIZL Y | FFliES
BRI ETED T 2ERBE D SNk
MARRE LT 10" EREOEMBAARE S
N, —F5. DXR O&EIZL>TH AEK
FHLRBENHDEIBO O, —EE
(250 pg/mouse)  CpG DNA (Z DXR % #E&
SHIGEITIIRLAEHED 1/10 LLTFIZET
B ENEL LT,

(15) S-180 BEKEETINI VA TOESHG D
B : CpG DNA-DXR DfERERNZ 5B Tid. I8
IKEEIETEIAE S REBMBIME S5 & L
HiZ, BEFOEMHBRBRO oM,

D. BR

CpGDNAIZX VEASINDI YA A v
X, Thl BUIZDESNDHUEE YA b A
BHLTHEI ENLEDERE~DILHA
REFIN TS, L2L2AS, Toll-like
receptor-9 (TLRY) % 41 %5 CpG DNA 587,
EHITiIY A A VELACBELTE.BD
WCPSHEAY TX 7 LAF FEHAWZREIH
TONTBY  ZOBEBLTLLT TR
FDNA 72 ¥ DO POR DNAIZITYE TIXE 67
W EbhEEEEINTWS, &6k, ATFA
YHEEEM E DEEEEIZEI Y CpG DNA I
LBV A MUA VELARIIBATIERIZ
B DM, BEDHETIILT L b—HEAICH
EINRBWIZELIEHAINDDOH D, EHIZ

BiR OB B, CpG EF— 772V DNA
PRABLCA LA — Tz u PEARZFET
ABEOHEELALNLEINTEE, Zhb
DOEHRIZ. DNA BREEHER L LTHA
TRETH DI L EEKRT S LRI, £DEE
RSB E R E BRI REROLENS
ERBETELOTHD, AFETIE, KBk
(DNA) #a7 L35 LICLpREERY
AL S DHEEY A bhA L FEL B
BN L DEABRAZIR & OHFEMMHE IR L
REBETHEY - RFEIEEV AT AORRE LXK
AT

DNA 2~ U ARBIRNICKRE LT Z A,
CpG EF — 7IKFRY A bl A VELER
HEIN, FOEALVVEIIFAUHY R
Y=L DEEEKLTHIETHEIIEX
THZEbHERENS, 7o Fax— &R
VR —bxBAWIREN S AT Kupffer
B, Blig~27 o7 7r—UkkEORREMELS,
CpG DNA #3R# L C TNF-a/e Y2 EET S
TENTRENT, TOZEE, TV ANDE
BLI-IRER~ I 07y — VAWK
SrbbXFEINT, CpGDNAIZL Y FHE
ANBYA MIA K BHEEDREH
ETH-0Il, v~V AEEEEET V2RV
TEHE L7z, EDFEHR. CpG ODN EEK %
BEERKRET 32 L THEERNEEDRS
BoN, —HO= U AW TILEE R
BERVANLVORERERESFEEFMETH -
Too LDXLAERS, HFAHYRY—AIZ
BERTEEZLNIBEENBESIN. T2
RIBEVAT AEBETHI-DITIIATFA
LG & FIAE T2 CpG ODN DE M
FEAKTHIENEELEZONL,
FIZTEY. T FJU~—4 DNA DAL
EEThD Y-ODN IO\ T, REEMEILEE
BEEME LIz, TORER. ODNZYRIET D
Z & TssODN=CdsODN & L& L THEEILE
WY A bAoA CVEENB LN, I OTFEME



KIZOWT, BEMD B VITHEEY AR
BLTRELEEZA, Y BT Y
RAW264.7 MR ~DE Y iIAZ DB KT HH
myBERH LI, —F. Y B{kiz kY ODN
BETAREEILRD I ENRENT, KifEK
WENZEBBENRZEHOBHEEZI LN
%, RBREEIZIX, Y-ODN ZIERER TS
Z ¢ T, X 3 o7 FU~—%8 DNA
(G3) DEFIZAKZN L7, G3 i, Y-CpG ODN
CHEBLTHFEILEWYA MIA VEESR
T~ LT, BREFEOEAICL D, AEIFAR L
G3 IZI3mA %D 12 D Y-ODN IZDHE 2
BDOCPGEF—T7NEENR TV - T,
1 CpG TF— 7Y DEM.IZ, TR
v —RIBELTHI L TREMICEE D
EWTRBE N, T OTEMEE KA Y-ODN O
HEICRDONT-HIIZ L DEV AHREK
WEET AP OWV TS HORMBMLE
Thd, SEMAE LK G IL. BEEKE~D
FYNRY—ZBLIZYA X (9200m) TH
HTEMB, G3 REEREEE LTT /RT
PR TOLI L T.OERAOREES—TT 4«
VIMMEBRFRELEZ D,
dsDNA & tb#3 5 & Y-ODN iZBFTAEE
THdDZEMWREINTT=8, PS E ODN OF|
Bz X AREIZOVWTHRE L, 208
2. 17 ED ODN # PS# L L7z Y-ODN O
AT Tm [ EOFERETIIFRD SN T,
MEF COREMHIIERTIHERMBBOHL
N, —%4. 2% 513 EHED ODN % PS
RL L-BAITIE,. Tm OFERIET MR
bz, CpG ODN 2H 755 DV I FERIC
PS L3252 L THERYA MUA VEE
DERBRO N KE. Tm EDE TR
H BT ODN TEYA bAoA VEAELIK
WZ e ran, LEDRKRIE. Y-ODN
12 & BREEMIIZE VT ODN DL EMIT
EET&;& HLOD, FHNLLEIZ Y-ODN D1
BEMNEETHDIZILETRTHLOLE

bbb, 2L RT a—){EER CpG ODN %
RAWT-RE» I UM bFEH LT Z
I L AIEEEEO RN R E N, T
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Introduction

Summary

DNA containing unmethylated CpG dinucleotides (CpG DNA) is a potent
activator of innate and acquired immune responses. Although the
sequence-specific immunostimulatory activity of CpG DNA has been
extensively explored, little information is available about the importance
of the stereochemical properties of CpG DNA. In this study, Y-shaped
oligodeoxynucleotides (Y-ODNs) were prepared using three ODNs with
the halves of each ODN being partially complementary to a half of the
other two ODNs. Y-ODN induced greater amounts of tumour necrosis
factor-a and interleukin-6 from RAW264.7 macrophage-like cells than did
conventional single-stranded ODN (ssODN) or double-stranded ODN
(dsODN). The Y-ODN was less stable in serum than dsODN, but greater
amounts of Y-ODN were taken up by macrophage-like cells compared
with dsODN. A newly designed Y-ODN containing three potent CpG
motifs generated significantly higher levels of cytokines compared with
dsODN containing the identical sequences. These results indicate that the
Y-shaped form of ODN is a novel, reproducible and reliable approach to
enhancing the immunostimulatory activity of ODNs.

Keywords: CpG motif; immunostimulatory activity; oligodeoxynucleo-
tides; Toll-like receptor 9; Y-shape formation

combinations, and several rules have been proposed. The
activity of CpG DNA depends on the flanking sequences,
and an ODN containing a GACGTT hexameric nucleo-

Bacterial DNA contains unmethylated CpG dinucleotides
(CpG motifs) that induce a potent immunostimulatory
response upon recognition by the Toll-like receptor 9
(TLR9) expressed on dendritic cells, B cells and macropha-
ges."? Synthetic oligodeoxynucleotides (ODNs) containing
CpG motifs (CpG ODNs) can mimic the immunostimula-
tory activity of bacterial DNA and exhibit similar immune
responses. Once activated by bacterial DNA or CpG
ODN, i.e. CpG DNA, immune cells secrete various cyto-
kines, including interleukin-6 (IL-6), IL-12, interferon-o/p
(IFN-o/B), IEN-y and tumour necrosis factor-a (TNF-a),
and increase the expression of various costimulatory mole-
cules.> Thus, CpG DNA can induce T helper type 1 cyto-
kine production; this promotes a cytotoxic T-lymphocyte
response with enhanced immunoglobulin production,
which has been used in the treatment of a broad spectrum
of diseases, including cancer, viral and bacterial infections,
allergic diseases and inflammatory disorders."”™’

The immunostimulatory activity of DNA has been
extensively investigated using ODNs with varying base

© 2008 Blackwell Publishing Ltd, /mmunology
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tide motif strongly stimulates the immune system in
rodents.'®!! Other parameters have also been reported to
be important for immunostimulatory activity of DNA,
e.g. TpC dinucleotide on the 5' end, pyrimidine-rich on
the 3’ side of the motif and the presence of two or three
CpG motifs in a sequence.' Thus, the optimal sequence
of CpG ODN for activating mouse or human immune
cells was elucidated by examining many possible base
combinations. Although a few reports have shown that
aggregation of ODNs increases their immunostimulatory
activity,'>"? the stereochemical effects of CpG ODN on
immunostimulatory activity have hardly been explored.
DNA possesses many desirable chemical and physical
properties as a polymeric material and much progress has
been made in DNA computing '*'> and DNA nanotech-
nology.'®™'? Recently, Li et al. established a reproducible
method for constructing dendrimer-like DNA, by con-
necting Y-shaped DNA (Y-DNA) composed of three
ODNs.2% This unique-structured DNA has been applied
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to various experimental settings, including nanobar-
codes.”! However, the biological and immunological char-
acteristics of such structured DNA preparations have not
been examined. Their unique structure may be recognized
differently by immune cells.

In the present study, Y-ODN was prepared using three
ODNs with the halves of each ODN being partially com-
plementary to a half of the other two ODNs. Then, the
immunostimulatory activity of Y-ODN was examined
using RAW264.7, a mouse macrophage-like cell line.
Here, we show that newly designed Y-ODN containing
three potent CpG motifs can be a powerful immunostim-
ulatory compound through increased uptake by immune
cells.

Materials and methods

Chemicals

Dulbecco’s modified Eagle’s minimum essential medium
(DMEM), RPMI-1640 medium and phosphate-buffered
saline (PBS) were obtained from Nissui Pharmaceutical
(Tokyo, Japan). Fetal bovine serum (FBS) was obtained
from MP Biomedicals (Eschwege, Germany). Opti-modi-
fied Eagle’s medium (Opti-MEM) was purchased from
Invitrogen (Carlsbad, CA). DNase I and 20-base-pair (bp)
DNA ladder were purchased from Takara Bio (Otsu,
Japan). Polymyxin B sulphate salt was purchased from
Sigma Chemical Co. (St Louis, MO). All other chemicals
were of the highest grade available and were used without
" further purification.

Cell cultures

RAW264.7 macrophage-like cells were grown in RPMI-
1640 medium supplemented with 10% heat-inactivated
FBS, 0-15% NaHCO,, 100 units/ml penicillin, 100 pg/ml
streptomycin and 2 mm L-glutamine at 37° in humidi-
fied air containing 5% CO,. Cells were then plated on
24-well culture plates at a density of 5 x 10° cells/ml
and cultured for 24 hr. B16-BL6/Luc, a clone of murine
melanoma B16-BL6%* that stably expresses the firefly
luciferase gene,” was grown in 5% CO, in humidified
air at 37° with DMEM supplemented with 10% FBS,
100 IU/ml penicillin, 100 pg/ml streptomycin, and 2 mm
L-glutamine. They were then plated on 24-well culture
plates at a density of 2 x 10* cells/ml and cultured for
8 hr.

Oligodeoxynucleotides

Phosphodiester ODNs (Table 1) were purchased from
Invitrogen. For cellular uptake studies, YOa labelled with
fluorescein at the 5’ end was used for all fluorescein-
labelled ODN preparations.
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Table 1. Oligodeoxynucleotide (ODN) sequences used for prepara-
tion of single stranded-, double stranded- and Y-shaped ODNs

Name Sequence (5'—3)

Y0a TGACTGGATCCGCATGACATTCGCCGTAAG
YOb TGACCTTACGGCGAATGACCGAATCAGCCT
Yoc TGACAGGCTGATTCGGTTCATGCGGATCCA
r.YOa TGACCTTACGGCGAATGTCATGCGGATCCA
r.YOb TGACAGGCTGATTCGGTCATTCGCCGTAAG
r.YOc TGACTGGATCCGCATGAACCGAATCAGCCT
Y0a(CpG) TGACGACGTTCGCATGACATTCGCCGTAAG
YOb(CpG) TGACCTTACGGCGAATGACCGAATCAGCCT
Y0c(CpG) TGACAGGCTGATTCGGTTCATGCGAACGTC
Y0a(CpG,) TCGACGTTTCCGCATGACATTCGCCGAACG
YOb(CpG;) TCGACGTTCGGCGAATGACCGAATCAAACG
Y0c(CpG,) TCGACGTTTGATTCGGTTCATGCGGAAACG
r.Y0a(CpGs) TCGACGTTCGGCGAATGTCATGCGGAAACG
r.YOb(CpG;) TCGACGTTTGATTCGGTCATTCGCCGAACG
r.YOc(CpG3;) TCGACGTTTCCGCATGAACCGAATCAAACG

All ODNs have a phosphodiester backbone. The ‘r.” indicates that
the sequence is complementary to the ODN with four base over-
hangs at both 5 ends, and each of these complementary ODNs was
used to obtain double-stranded ODN. The potent immunostimula-
tory CpG motif (GACGTT) is underlined.

Preparation of Y-ODN and double-stranded ODN

Y-ODN was prepared by mixing equimolar amounts of
three 30-base ODNs as reported previously.?” In brief,
three ODNs dissolved in an annealing buffer [10 mm
Tris-HCI, pH 8-0, 1 mm ethylenediaminetetraacetic acid
(EDTA) and 50 mm NaCl] were mixed in sterile Milli-Q
water at a final concentration of 0-5 mm for each ODN.
Mixtures were incubated at 95° for 5 min, 65° for 2 min,
62° for 1 min, then slowly cooled to 4°. Formation of
Y-ODN was confirmed by 21% polyacrylamide gel elec-
trophoresis (PAGE) at 200V for 1-5-2 hr. Double-
stranded ODN (dsODN) with four base overhangs at
both 5' ends was prepared by addition of a complemen-
tary ODN (r.Y0a, Table 1) to YOa ODN.

Dynamic light-scattering analysis

The apparent hydrodynamic sizes of Y-ODN, Y-ODN
(CpG), Y-ODN(CpGs;), single-stranded ODN (ssODN;
Y0a) and dsODN were measured by laser light scattering
using a Malvern Zetasizer 3000HS (Malvern Instruments,
Malvern, UK) equipped with a helium-neon laser
(633 nm).

Cytokine release from RAW264.7 cells

RAW?264.7 cells were washed three times with 0-5 ml
PBS before use. Then, ssODN, one of three kinds
of dsODN, Y-ODN, Y-ODN(CpG) or Y-ODN(CpGs;)

© 2008 Blackwell Publishing Ltd, /mmunology



diluted in 0-5 ml Opti-MEM was added to cells. The
cells were incubated for 8 hr (TNF-a) or 24 hr (IL-6),
and the supernatants were collected and stored at —-80°
until use. To exclude the effect of contaminated lipo-
polysaccharide (LPS) on cytokine release, polymyxin B,
an inhibitor of LPS, was added to samples at a final
concentration of 50 ug/ml. The levels of TNF-a and
IL-6 in supernatants were determined by enzyme-linked
immunosorbent assay using OptEIA™ sets (Pharmingen,
San Diego, CA).

Stability of Y-ODN and dsODN in serum

The Y-ODN and dsODN (10 pg/100 pl) were incubated
with 50% non-heat inactivated FBS at 37°. After 0, 2, 4,
8, or 24 hr of incubation, the reaction was terminated by
adding 2 pl 0-5 M EDTA solution per 10 ul of samples.
ODNs were extracted with phenol/chloroform/isoamyl
alcohol, and the extracts were run on a 21% polyacryl-
amide gel and stained with ethidium bromide. Before the
extraction, a fixed amount of dsODN of 45 bp was added

to each sample, and the intensity of the band on gels was -

used to validate the efficiency of the extraction step. The
amount of remaining ODNs was estimated by a Cool
Saver (ATTO, Tokyo, Japan).

Uptake of ODNs in RAW264.7 cells

Fluorescein-labelled YOa ODN was used for the prepara-
tion of fluorescein-labelled (F-) ssODN, dsODN and
Y-ODN. RAW264.7 cells were plated on 96-well culture
plates at a density of 5 x 10° cells/ml and cultured for
24 hr. Cells were washed three times with 100 pl PBS,
incubated with F-ODN for 1 hr at 37° or 4°, harvested,
and washed three times with 100 pl PBS. Then, the inten-
sity of fluorescence of the cells was analysed by flow
cytometry (FACSCalibur; BD Biosciences, San Jose, CA)
using CeLLQUEST software (version 3.1; BD Biosciences).

Growth inhibition of B16-BL6/Luc cells

RAW264.7 cells (5 x 10° cells/ml) were mixed with each
ODN (10 or 20 pg/ml) and incubated for 8 hr. Then, the
conditioned medium was added to B16-BL6/Luc cells,
and the cells were cultured for 48 hr. The number of
B16-BL6/Luc cells was determined by measuring the lucif-
erase activity of cell lysates in a luminometer (Lumat LB
9507, EG & G Berthold, Bad Wildbad, Germany) as pre-
viously reported.”

Statistical analysis

Differences were statistically evaluated by one-way analy-
sis of variance (anova) followed by the Fisher’s protec-
ted least significant difference (PLSD) test for multiple
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comparisons. A P-value of < 0-05 was considered to be
statistically significant.

Results

Physicochemical properties of Y-ODN

Equimolar amounts of three ODNs (Y0a, YOb and YOc)
were hybridized to obtain Y-ODN, the putative structure
of which is shown in Fig. 1(a). Figure 1(b) shows the gel
electrophoresis of the DNA preparations. As reported in a
previous study,”® Y-ODN showed a single band, the
mobility of which was less than that of ssODN or
dsODN, supporting the assembly of all three ODNs to
form Y-ODN. Similarly, newly designed Y-ODN con-
taining a potent CpG motif, Y-ODN(CpG), was pre-
pared with Y0a(CpG), YOb(CpG) (identical to YOb)
and Y0c(CpG). The Y-ODN containing three potent CpG
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Figure 1. Formation of Y-shaped oligodeoxynucleotide (Y-ODN).
(a) Putative structure of Y-ODN, which was prepared with three
ODNs (Y0a, YOb, YOc) with the halves of each ODN being partially
complementary to a half of the other two ODNs. (b) Polacrylamide
gel electrophoresis analysis of single-stranded (ss), double-stranded
(ds) and Y-ODN. Each ODN was run on 21% polyacrylamide gel at
200 V for 2 hr. Lane 1, 20-bp DNA ladder (Takara Bio); lane 2,
ssODN; lane 3, dsODN; lane 4, Y-ODN; lane 5, Y-ODN(CpG); lane
6, Y-ODN(CpG;).
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motifs, Y-ODN(CpG;), was also prepared with
Y0a(CpG;), YOb(CpG;) and YOc(CpGs). Polyacrylamide
gel electrophoresis of the newly designed Y-ODN(CpG)
and Y-ODN(CpG;) showed one major band with a
mobility similar to that of Y-ODN (Fig. 1b, lanes 5 and
6, respectively), suggesting a Y-shape formation of these
ODNs containing CpG motifs. The apparent sizes were
estimated to be 7-02 +£0-22, 7-07 £ 040 and 7.09 *
0-24 nm for Y-ODN, Y-ODN(CpG) and Y-ODN(CpG,),
respectively. Similarly, the sizes of ss-(YOa) and dsODN
were estimated to be 3-61 + 0-68 and 6-86 + 1-34 nm,
respectively.

Cytokine release from RAW264.7 cells by ODNs

YOa, one of the three ODNs consisting of the Y-ODN,
was used as ssODN. A complementary ODN (r.Y0a) to
Y0a was hybridized to obtain dsODN with four base
overhangs at both 5 ends. Similarly, three kinds of
dsODN were prepared by designing complementary
ODNs to YOb and YOc. The mixture of these three kinds
of dsODNs (dsODN x 3) contained exactly the same
bases in the same structural configuration of four base
overhangs at both 5 ends as Y-ODN, representing a good
control to evaluate the effects of the Y-shape formation
on the immunostimulatory activity of ODNs. Figure 2(a)
shows the TNF-a concentration in the culture media of
RAW264.7 cells. The addition of ssODN, dsODN or
dsODN x 3 to RAW264.7 cells induced only weak secre-
tion of TNF-o at concentrations of 2 and 6 pug/ml
Increasing the concentration of these ODNs to 18 pg/ml
slightly increased TNF-a secretion to levels of up to
400 pg/ml. In marked contrast, large amounts of TNF-a
were secreted from RAW264.7 cells after the addition of
Y-ODN and the amounts varied in a concentration-
dependent manner. Figure 2(b) shows the IL-6 concen-
tration in the culture media. Again, Y-ODN induced
significantly greater amounts of IL-6 secretion from cells
than the other ODNs at all concentrations examined.
These results indicate that Y-ODN has a stronger immuno-
stimulatory activity than conventional ssODN or dsODN,
even though there are no potent immunostimulatory
CpG motifs in the sequence.

Stability of Y-ODN

Because the stability of ODN would affect their biological
activity, the stability of dsODN and Y-ODN in 50% non-
heat inactivated FBS solution was examined. Each ODN
extracted was subjected to a PAGE analysis (Fig. 3a). The
bands for 45-bp ODN, which was added to the mixtures
just before extraction of ODNs, confirmed that the
extraction efficiency of ODNs was almost identical in all
samples. Both dsODN and Y-ODN were degraded with
time in the FBS solution. A densitometric analysis of gel
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Figure 2. Secretion of cytokines from RAW264.7 cells after addition
of oligodeoxynucleotide (ODN). Concentrations of (a) tumour
necrosis factor-a (TNF-a) and (b) interleukin-6 (IL-6) in culture
media were measured at 8 hr (TNF-a) or 24 hr (IL-6) after addition
of each ODN to RAW264.7 cells at varying concentrations: (open
bars) 2 pg/ml; (hatched bars) 6 pg/ml; (closed bars) 18 pg/ml.
Results are expressed as the mean + SD of three determinations. The
experiment shown was a representative of three experiments with
similar results. *P < 0-05, **P < 0-01, significantly different from
single-stranded ODN (ss-ODN), double-stranded ODN (ds-ODN)
and dsODN X 3 at the same concentration.

bands was performed in four identical experiments and
the remaining amounts of dsODN and Y-ODN were plot-
ted against the incubation time (Fig. 3b). Y-ODN showed
a similar profile of degradation to dsODN, at least for the
first 4 hr. Thereafter, it tended to be degraded more
quickly than dsODN. Similar results were obtained when
these ODNs were added to a solution containing DNase I
(data not shown). These findings indicate that Y-ODN is
degraded at a similar or slightly faster rate than dsODN
under the conditions examined.

Cellular uptake of ODNs in RAW264.7 cells
To investigate whether the enhanced immunostimulatory

activity of Y-ODN is mediated by an increased cellular
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Figure 3. Stability of double-stranded oligodeoxynucleotide (dsODN)
and Y-shape ODN (Y-ODN) in 50% non-heat inactivated fetal
bovine serum (FBS). (a) The dsODN and Y-ODN were incubated in
50% non-heat inactivated FBS at 37° for the indicated times and the
reaction was terminated by adding ethylenediaminetetraacetic acid.
ODNs extracted were run on 21% polyacrylamide gel at 200 V for
2 hr and stained with ethidium bromide. ‘M’ represents 20-bp DNA
ladder (Takara Bio). (b) The amounts of ODNs on the gel were esti-
mated by Cool Saver. The remaining amounts of dsODN (O) and
Y-ODN (®) were plotted against the incubation time. Results are
expressed as the mean * SD of four determinations.

uptake, the uptake of F-dsODN, F-dsODNx 3 and
F-Y-ODN was examined in RAW264.7 cells. The uptake
of these F-ODNs was greater at 37° than at 4° (data not
shown) in all cases examined. A fluorescence-activated
cell sorting (FACS) analysis was performed in three iden-
tical experiments and the mean fluorescence intensity
(MFI) was measured at each concentration of ODN. MFI
(37°—4°) was plotted against the concentration of ODN
(Fig. 4). The MFI of cells treated with F-Y-ODN was sig-
nificantly (P < 0-05) greater than the MFI of those treated
with other F-ODN preparations, suggesting that an
increased cellular uptake of Y-ODN contributes to the
enhanced immunostimulatory activity of Y-ODN.

Cytokine release from RAW264.7 cells by CpG ODNs
Activation of RAW264.7 cells by the newly designed

Y-ODN(CpG) and Y-ODN(CpG;) was examined under
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Figure 4. Uptake of fluorescein-labelled oligodeoxynucleotide (ODN)
in RAW264.7 cells. Cells were incubated with fluorescein-labelled
double-stranded ODN (dsODN) (O), dsODN x 3 (A) or Y-ODN
(®) for 1 hr at 4° or 37°, and the amounts of ODN associated with
cells were measured by flow cytometry. The mean fluorescence inten-
sity (MFI) was plotted against the concentration of ODN. Results are
expressed as the mean + SD of three determinations. *P < 0-05,
**P < 0.01, significantly different from dsODN and dsODN x 3.

the same conditions as above. Y0a(CpG;), an ODN con-
taining a potent CpG motif, was selected as ssODN with
a CpG motif, ssODN(CpG;). Then, dsODN(CpG;) and
dsODN(CpG;) x 3 were prepared as described above.
Again, dsODN(CpGs) x 3 had the same sequence as
Y-ODN(CpG,). Contrary to ODNs with no potent
immunostimulatory CpG motifs, any preparation of
ODNs containing CpG motifs showed a marked secretion
of TNF-a in a concentration-dependent manner (Fig. 5a).
Approximately six-fold higher amounts of TNF-a were
released from RAW?264.7 cells treated with Y-ODN(CpG3;)
compared with those treated with dsODN(CpG;) x 3.
The IL-6 concentration in the culture media was also
measured, and similar results were obtained (Fig. 5b). All
ODN preparations contained trace amounts of LPS, up to

. 2.5 EU/mg DNA, when measured by a Limulus test

(Wako, Tokyo, Japan). To exclude the effects of contami-
nated LPS on cytokine release, polymyxin B was added to
ssODN and Y-ODN(CpG;). The addition of polymyxin B
to Y-ODN(CpG;) slightly reduced the level of TNF-a
released from RAW264.7 cells (Table 2). However, the
level was much greater than those obtained with the med-
ium + LPS/polymyxin B or ssODN + LPS/polymyxin B,
suggesting that contaminated LPS has little effect on the
ODN-mediated cytokine release from RAW264.7 cells.
These results suggest that the immunostimulatory activity
of the CpG motif-containing ODNs can be significantly
increased by the Y-shape formation. In addition, increas-
ing the number of potent CpG motifs in Y-ODN is a
useful approach to increasing the immunostimulatory
activity of Y-ODN.



