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Regeneration-Type Nerve Electrode Using Bundled Microfluidic Channels
Takafumi Suzuki*, Member, Naoki Kotake™* * Non-member,
Kunihiko Mabuchi*, Non-member, Shoji Takeuchi* * *, Non-member

Neural interface devices that will allow signals from the human nervous system to control external equipment are extremely

important for the next generation of prosthetic systems. A novel multichannel regeneration-type nerve clectrode designed to

record from and stimulate peripheral nerves has been developed to allow the control of artificial hands and to generate artificial

sensations. In this study a novel flexible regencration microelectrode based on the nerve regeneration principle was designed and
fabricated using MEMS technologies. The electrode, which was fabricated on a 25-um-thick Parylene C substrate, has multiple
fluidic channels. Each fluidic channel was 100 ym wide = 30 pum high = 1500 pm long and featured multiple electrodes inside

them as recording and stimulating sites. They also served as guidance channels for the regenerating axons.
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Keywords : nerve regeneration electrode, brain-machine interface, neural interface, neural electrode, peripheral nervous system
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Fig.1. Schematic of the regencration-type nerve electrode
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Fig. 2. Distance between the recording sites and the Ranvier

node of a single nerve fiber.
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Fig. 5. Photo of the fabricated probe. (A) Overview of the
probe before rolling. The whole length of the probe is 29.9
mm, (B) Tip of the probe. Each fluidic channel is W100 pm >
H30 um = L1500 pm (C) After rolling, but before removing

the photoresist. (D) After removing the photoresist.

AT, BICiBOBRIAHAOMEER L2 2 LK
ZEhAH, ZhiZoWTERRBHNED a—T 1« 7§
2, MENTICEHET2PEHOLTRE FETHRNNLET
HD,

RO B KE-OTLRIZBIL T, EBICiIIEx FiTF3
BRIz iz (BHREE2EHSHT) BITAH, FL

r& o<



CTERDEN 7o R2A@ICHD LI IZE DO EER
TENEIDBRLE-TLEEESTAM, WTFhiCLTh,
BROBIHEIZHE-> CTHREAETHS, 2ED, &V%
COMMAREL CHME A BB DMFEOFEE 4L
LTESORIFELH LSE0ESD, OV THES
SO LTS DICHALRZERLLVWRED
HEHZE > THEIT 5 Z L BATETH D,

FRELOESEHOF 2 — T OERLRE-THSOR X
Iz, ARECSVYTEEREAENL LSmm & L=
M, ZhiC oW T LI DAL REOREN, [EEOREN,
ELICHBREECSALER L EOBENG, EMIALE
BiICLIFMEBRFNLELELONS,

ARECEBOWTRAREOBEBRDO %, 2474 L OER

HETEBLES, LIZROBELIRZ FITERTD
Eoiziz, ZoOEEROMMEIZ VT HRFT A LER
»BH.

(4:3) BWEAUVE—FRIZTDONT SlE{ERE L7

EiEX, £OBMRAY Ly C oRiRICHREL, ZOROE
MEELE L THEEI AL 0O ET, EFLIZLDETHR
(3~3) LHEMIZ BRI LD THD, BE LT TV RR
T, EOEBERICAEAE» VERT A REMRSEA SN
A5, FITHE 4 SRV TIIERORSHSY & E Az
FTHEEA E—F A RA~OEEH/NE ot I kDR
ENTW3, FRICBNTHEE EIFdb OISR
i1, ETHROBEREIZERERMETHLHILD, #HE LT
D7t ATER-CEMREEE L TWenEEL bhs,
(4-4) SHOBMBMEMRE BETLHEROEHRI
k, FESREL O MR AR R & FRE TN L AR R s o
AP BC T LZEELTVED, SLIZHME~LEAH
5 I A EATTREREA (T 5 52 L2 LV, NGF (&
BREINF) LXOBEERETS5HEESFMERIZEAN
LT, MREOEMGOBEIABIIRA L LEZHNA,
MEFARERY, T ARFAMFESAEBL TIAL
OTHETZ b0 THALH, RACHBREEICHETIH
kB AT 5 LENHD, BWE, 7 v PEFHELTH
E L DAL TFMERE T, MEFENERLLTO
"HEERIERTH S,

5 # ]

KRR & B LE L @B AL A2 ERT S
ZEEL T, B TR oo ph iR B AR Y R o) [ R A A W
RTB7=0i, AR EMEEZHTL28H L VREE
REMAREL:, MELETRA Y L LEEL DA
FOBYEE AR LIER B CREVETHD Z c 2R
fEiCl -~ TEIL, BEOSFHE#HR LIZETIEZ 2N
-

O

FFRICE VT, 2227 OFERIE, ERAERHEER
VAT LREHHENE 4 (VDEC) O 2 M L1,
F7o, REFEO I, FAEGEBE RS E (HI7-

oup

1548

J/-010), BLUCHHEERZENARMEG (BRI
(A) HEEES 17206022) 12X > TfFbhi-, ZZICRELT
WErgLET,

CERE194E2 A 27 BZAFT, FRE194-7 A 17 REEZ)

X (3

A Mannard, R. B. Stein, and D. Charles : “Regeneration electrode umts:
Implants for recording from single peripheral nerve fibers in freely moving
ammals”, Science, Vol 183, pp 547-549 (1974)

G T. A, Kovacs, C. W. Storment, and J. M Rosen : “Regeneration
Microelectrode Array for Peripheral Nerve Recording and Stimulation™.
TEEE Trans. BME, Vol 39, pp.8Y3-902 (1992)

T. Suzuki, K. Mabuchi, and S. Takeuchi : “A 3D flexible parylene probe
array for multichannel neural recording”. Proc. of Ist international [EEE
EMBS Conference on Neural Engineering, pp. | 54-156 (2003)

S. Takeuchi, T Suzuki, K. Mabuchi, and 1. Fupta : “3D flexible
multichannel neural probe array”™, Journal of Micromechames and
Microengineering, Vol.14, No.l. pp.104-107 (2004)

S. Takeuchi, D. Ziegler, Y Yoshida, K. Mabuchi, and T. Suzuki : “Parylene
flexible neural probe with micro fluidic channel”, Lab on a Chip. Vol 5,
pp.519-523 (2005)

(3)

(4)

i K B X

(EE) 1970 F4, 1995 HEHATKERFERE L
¥R R T ERETREE T, 1998
R R MR TSR RRE T, [
EHR FEEPE - BEILRTRA: ¥ —BF,
2002 FHGE K KFEMEFRE TE R
{EiMa0, 2007 fEEIWFFERIMED. M+ (15,
FETYE, LETHECHTIMRICES. BHE
A fE T %2, IEEE 4 YDA,

Mo EOB GESE) 198044, 2003 #£ 3 HEEREF K
HEH AR — Y MR, 2005 £3 HEEEE
KPR FIET R TRE CHEIET, e
ERAERER LEFMER CRERTIEHR
W ERERTEED, Wik, ¥ 72— AT
AR iR,

(FELB) 1951 R4, 1976 FRFKFESTH
[ 28, 1978 R RS TEH T ¥
AR, 1986 F HURL KT B & KPR R R 1E
T, 1996 F UK FERS « pEF SKRIWFSE & o &
— B, 2002 4F $URUK FOT IR R T R A
EFEdR, ETNL, EREETE, A TR,
B T o — AOFRICHESE, BFERE
T4, B4 AL ¥4, IEEE R X DEA,

(F=£B) 1972 £4, 2000 4F 3 B ERKFEK
Fhr LFERIF SR T Aol LR
ET. 2001 F R ARZAES N FCATMA.
2003 1 0 FBhENE, ML (L%, #E&1
27 x—A, EEGFERVE MEMS 754
AR T LRI REE, BARERELSER
IEEE s Y£R8,

IEEJ Trans. EIS, Vol. 127, No.10, 2007



FR0FERFREEAS

3-524-6

e 7 1 — TRFFEDBLIR & Rk

oA B3 (RRKFE)

Neural probes - Present status and future prospects-
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Development of a Neural Electrode Integrated with Microdialysis Function -Preliminary result-
Naoki Kotake*, Takafumi Suzuki. Kunihiko Mabuchi, Shoji Takeuchi (The University of Tokyo)

Abstract

We propose a neural electrode with microdialytic function, fabricated using MEMS technology. 1t was designed so that it can

monitor both neuroclectrical and neurochemical activities, simultancously. The electrode, which was fabricated on a 25-pm-thick

parylene C substrate, consisted of four electrodes and a fluidic channel. The fluidic channel was 170 pm wide, 30 — 40 pm high,

1.5 mm long, and has 15-pm-thick semipermeable membrane for microdialysis.

F——F: WHEREE, A I/nFATUA
(Neural Electrode, Microdialysis)
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Fig. 1 Photo of the fabricated probe.
(A) Overview of the probe. (B) Tip of the probe.
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Development of “RatCar” a BMI vehicle for a rat:
Extraction of locomotion related firings using neural electrodes implanted in multiple regions of brain
Osamu Fukayama*, Noriyuki Taniguchi, Takafumi Suzuki, Kunihiko Mabuchi {The University of Tokyo!

Abstract

Novel neural electrodes and a spikes discrimination technique were applied to ‘RatCar’ system; a brain-machine
interface (BMI) vehicle controlled by neural signals of a rat’s brain. A rough control of the vehicle by neural signals
recorded in the motor cortices had been achieved imitating actual locomotion of the rat. In this paper, an electrodes
array to simultaneously record multiple regions of the motor center was applied. Recorded signals were then auto

matically sorted into neural units and artifacts by applying Gaussian mixture model to the feature quantities of their

waveforms, which enabled a more reproducible estimation.

F—U—F:TLAV IV A F—T 2—A, WZEE, FAFHD, BITHE

(Brain-machine interface, neural electrodes, spike sorting, locomotion estimation )
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filter, the amplifier, then to the computer
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Bundled Microfluidic Channels for Nerve Regeneration Electrodes

Takafumi Suzuki ', Naoki Kotake™, Kunihiko Mabuchi', Shoji Takeuchi

Abstraci- The development of a neural interface that allows
signals from the human nervous system to control external
equipment is extremely important for the next generation of
prosthetic systems. A novel multichannel regeneration-tvpe
nerve electrode that was designed to record from and
stimulate peripheral nerves has been developed to allow for
the control of artificial hands and to generate artificial
sensations. In this study we propose a neural probe with
multiple microfluidic channels for measuring signals from
regenerated axons passing through the fluidic channels. Each
channel also serves as a guidance tube of the nerve
regeneration and as fluidic pathways for injecting chemicals
such as nerve growth factors (NGF). Parylene microfluidic
channels were formed with microelectrodes and then the
substrate was rolled up, resulting in bundled channels. We
have succeeded in injecting NGF from the channels and
observed the regeneration of an axon guided by the channels.

I INTRODUCTION

The development of a man-machine interface between the
human nervous svstem and external equipment, such as
artificial hands, is extremely important for the next
generation of prosthetic systems. A regeneration-type nerve
electrode is a key device in this research field.
Regeneration-type nerve electrodes hold promise as key
devices for producing these neural interface systems. The
underlying principle of the regeneration-type electrodes is
that the peripheral nerves of vertebrates will regenerate after
being severed. In this process, the axons in the distal portion
will degenerate. but will regenerate {rom the proximal
portion and reach the distal end of the severed nerve bundle.
Therefore, if a device consisting of many microelectrode
holes 1s implanted between the severed stumps, the axons
can regenerate through the holes, and the action potential of
the regenerating axons can be measured by the electrode
(Fig. 1). This electrode has many advantages, such as a
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long-term and stable input/output due to good electrical and
physical compatibility between the electrode and nerve
fibers |1]. However, in many previous works, the electrodes
have had a plane structure (Fig. 1) [2], and they also have
problems, such as difficulty in recording signals with a good
S/N ratio if the position of the recording site is located far
from the Ranvier node (Fig. 2). We have developed a 3D-
structured regeneration nerve electrode with bundled
microfluidic channels using a flexible Parylene film (Fig. 3).
The proposed electrode has many advantages including: 1) it
hardly ever fails to record signals as long as one of the
Ranvier nodes is located in the channels, because the signal
attenuation is small in each fluidic channel, 2) it has a high
S/N ratio because it has a large recording site, and each
recording site is sufliciently insulated, and 3) it promotes the
regeneration of axons by allowing for the injection of
medicines like NGF.

o regenerating
snloone{tjbe / axons
_f“w = /
proxima - distal
nerve = _ nerve
stump S0 ) stump
% / / A ‘{ g

hole with recording site

Fig.1: Schematic of regeneration-type nerve electrode

I1 METHODS

A schematic of the flexible regeneration-type electrode we
fabricated 1s shown in Iig. 3. Each (luidic channel has one or
multiple recording/stimulation sites and serves as a guidance
tube for the regenerating axons. The fabrication process is
shown in Fig. 4. This process is similar to that of the probe
integrated with microfluidic channels that we have
previously reported [3]. A 30-pm-thick photoresist was
sandwiched by Parylene thin films used as a sacrifice layer
and removed by using acetone after rolling; consequently
multiple microfluidic channels were created. FEach channel
has an electrode underneath.
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Fig. 3:
electrode. The electrode has a microfluidic channel
for the injection of chemicals and other microfluidic
channels for neuro guidance.

I11 RESULTS and DISCUSSIONS

Figure 5 shows the entire structure of the fabricated neural
probe. The 125 microfluidic channels (124 gudance
channels + one injection channel) were bundled in the probe.
The average impedance of the recording sites was 613 k ohm
at | kHz. Even when the probe was bundled, it retained the
same impedance. The bundled electrodes did not break and
retained their conductivity.

We performed an injection test on the microfluidic channels
by using blue ink to visualize the stream. The device was
immersed in a water bath and then the ink was introduced
using a syringe. The ink nicely distributed to all the 24

outlets without any leakage, demonstrating the feasibility of

the microfluidic channels.

[n vitro experiments were performed to evaluate the
efficiency of injecting NGF into the channels by using
unrolled probes attached to culture dishes. Primary cultured
neural cells which were derived from a rat embryo brain
were plated in front of the outlets of the channels. We
injected 500 ng/ml of NGF into the microfluidic channels
day. Although 1t was a preliminary result,

once a
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Fig. 4: Fabrication process
The photoresist is removed by using acetone after
rolling the fluidic channel area.
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Vg

.
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Fig. 5: Photograph of fabricated probe.
Each microfluidic channel for neuro guidance is W 100 pm
< H 30 pm x 1. 1500 pm

we observed an axon that regenerated into the channel filled
with NGF. These results suggest that our electrode will work
in guiding and promoting the regeneration of axons. We are
attempting to gather more clear evidence using both in vitre
and in vivo experiments
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Abstract

We report on a new microdrive design, which enables the construction of multi-electrode arrays capable of chronically recording the multi-
unit neural activity of waking animals. Our principal motivation for inventing this device was to simplify the task of positioning electrodes,
which consumes a considerable amount of time and requires a high level of skill. With the new microdrives, each electrode is independently and
automatically driven into place. A hydraulic drive system is adopted to reduce the size, weight, and cost of the structure. The hydraulic fluid is also
used as a part of the electrical circuit, and facilitates the wiring of the electrodes. A routing system has been attached to reduce the number of tube
connections. The microdrive is cylindrical. has a diameter of 23.5 mm, a height of 37 mm, and a weight of 15 g. It allows for up to 22 electrodes,
which are arranged on a 0.35 mm grid. Each electrode can be positioned at any depth up to approximately 4 mm. The microdrive was evaluated
under acute and chronic recording experiments, and is shown to be capable of automatically positioning each electrode and successfully recording

the neural signals of waking rats.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Automatic microdrive; Hydraulic base: Chronie neural recording; Neural interface

1. Introduction

Extracellular recording using a fine wire elecirode is a
valuable technique for measuring the neural activity of freely
moving animals. Single electrodes have long been used in
electro-physiology to measure spikes in both acute and chronic
recording modes. The concept of coding in large populations
of neurons, however, has increased the importance of chronic
recording from multiple channels simultaneously. The rela-
tionship between simultaneous spikes and motor, for example,
was revealed by multi-unit recordings (Riehle et al., 1997).
Brain-machine interfaces have also succeeded thanks (o tech-
nical improvements in chronic recording (Chapin et al., 1999;
Donoghue, 2002; Serruya, 2002; Taylor et al., 2002; Wessberg
et al., 2000).

The experimental focus of such studies has mainly been on
primates and rodents, both of which can be trained to perform
tasks concurrent with electrophysiological recording. In the case

* Corresponding author. Tel.: +81 3 5841 6880; fax: +81 3 5841 6882,
E-mail address: Takashi_Sato@ipe.i.u-tokyo.acjp (T, Sato).
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of rodents, the entire recording apparatus must be fixed to the
head so as to allow access to the dura. The apparatus must also
not be intrusive, so as o permit free movement of the head and
limbs. Many types of multi-electrode array systems have been
developed, to meet these requirements, especially in the MEMS
ficld (Rutten, 2002).

Some experiments have also demonstrated the feasibility of
recording single-unit activity from the neocortex (Kipke et al.,
2003: Branner and Normann, 2000). Nonetheless, several dif-
ficulties still plague the recordings of single-unit activity in
freely moving animals, such as small detection sites and the lack
of biocompatible electrodes. Unexpected impacts (o the elec-
trodes or tissue rejection observed as encapsulation (Collias and
Manuelidis, 1957: Polikov et al.. 2005) often cause destructive
deformation of the signal. Precise and independent positioning
of the electrodes is therefore needed, to ensure their continued
sensitivity to single units within the same animal (Kralik ct al..
2001).

Several researchers have tried to solve these problems by
developing screw-based microdrives (Nichols et al, 1998:
deCharms et al., 1999; Venkatachalam et al., 1999; Keating
and Gerstein, 2002; Swadlow et al,, 2005). In these systems,
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cach electrode can be moved independently after implantation.
In most cases, however, the positioning is performed manually.
This procedure requires a considerable amount of time, and is
strongly affected by the researcher’s skill.

Even though antomating the procedure may alleviate these
problems, only a few automated microdrives have been devel-
oped. The main reason for this is the excess size and weight of
the attached motor. Although the pioneering work of Fee and
Leonardo (2001) and Cham et al. (2005) has demonstrated an
automated positioning process with several promising advan-
tages, their system designed supports only a few channels due
to the limitations of the mechanical structure and motor size.

In response to the above issues, we have designed and devel-
oped a microdrive for the chronic recording of neural activity in
rodents. The design and development of this microdrive were
motivated by the above issues. A hydraulic drive is used to
independently and automatically adjust each electrode, and the
recording apparatus can hold up to 22 electrodes. We evaluated
the electrical connection and positioning precision of this novel
design in acute experiment. Chronic experiments were also con-
ducted, in which it is shown that the electrodes can be positioned
individually and automatically. During individual recording ses-
sions, well-isolated single units were typically recorded on about
a quarter of the channels.

2. Materials and methods

A chronic microdrive has several technical requirements. Our
device was designed to fulfill the following design criteria: (1) it
should have as many channels as possible; (2) it should have an
electrode tip capable of moving more than several mm or more
(assuming that the cerebral cortex is the target); (3) each elec-
trode should be capable of moving independently; (4) it should
be capable of fixing the electrode tip positions after adjust-
ment; (5) it should be sufficiently small and light enough to
be implanted in rodents; and (6) the position of the electrodes
should adjust automatically.

2.1. Implant

First we explain the overall design, followed by its details of
specification. The basic design of our microdrive is illustrated in
Fig. 1. To allow fine spacing (350 pm) and independent move-
ment of the electrodes, they are arrayed closely together at the
bottom of the implant but fan out towards the top through indi-
vidual guide tubes. A hydraulic system is used to drive each
electrode, and a router was built into the device to select the
particular electrode.

The electrodes are made of tungsten wire (@ 30 pm), coated
with 5 pm of poly-monochloro-paraxylylene (Parylene C) and
cut with fine scissors at the tip. Their typical impedance was
between 100k§2 and 200k$2. The electrodes are attached o
stainless steel guides with a diameter of ¢} 1.3 mm as shown in
Fig. 2. The guides move like pistons through the holes and help
stabilize the electrode motions. The guides, along with their elec-
trodes, are inserted into holes drilled in the electrode housing.
Twenty-four holes are drilled in two concentric circles towards
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Fig. 1. Overall view of the implant, which consists of router, electrode housing,
and tip. The electrodes are attached to stainless steel guides, which move like
pistons through their housing by hydraulic fluid pressure. The router selects
which channel to move.

a central point, to achieve fine spacing at the cusp. Two holes
are kept as empty channels for the purpose of initializing the
hydraulic fluid; the other 22 are used as electrode channels. This
device can be used for any electrode type and material, as long
as it fits in the stainless steel guides.

The router is consists of a cylinder, case, and cover. By rotat-
ing the cylinder, the hydraulic fluid flows from the pump to
selected channels (i.e., the holes drilled in the electrode hous-
ing). In each channel, an O-ring between the cylinder and the
casing seals the channels when they are not selected. This gas-
ket also prevents further motion of the electrode after it has been
positioned. At the end of the positioning procedure, the router
is lined up with the empty channels and any hydraulic fluid left
in the path is vacuumed out.

—— Circuit
- Platinium Black

Stainless Steel Guide

-~ Electrode housing

' Electrode

Fig. 2. Schematic figure of a piston-like driver. O-rings set into the grooved,
stainless steel guide prevent fluid leakage and provide for smooth locomo-
tion. Signals from the electrode are transferred to the circuit via the conductive
hydraulic fluid, at any electrode position.



T Sato et al. / Journal of Newroscience Methods 160 (2007) 45-51

Connecting electrodes to a circuit is always a challenge, espe-
cially in multi-channel and drivable devices. To resolve this
problem, conductive hydraulic fluid was used so that it could
partially complete the circuit. As shown in Fig. 2, the connec-
tion between the electrode and the circuit will be maintained
via the conductive fluid for any electrode position. Electronic
insulation is ensured because the structure is leakproof. We can
therefore sandwich a 2D circuit between the router and the elec-
trode housing, a solution which is much simpler than wiring
each connection. The circuit board is flexible (Sanhayato 1K),
and coated with gold to prevent rust.

2.2, Implant assembly

We aligned the electrode tip and the electrode housing using a
specially made fixture clamp. Each electrode wires was inserted
through its guides tube, tip-first, then into the electrode housing
until a sufficient length of wire emerged. The wires were then
attached to the stainless steel guide, and pushed back into the
electrode housing. Silicon grease was applied to the stainless
steel guides as a sealant before they were pushed back.

After all electrodes were set into the device, fluid was supplied
to the electrode housing (avoiding bubbles). The electrode tip,
housing, flexible circuit board, and router were clamped together
with screws, forming a tight seal. Finally, the device was cleaned,
and the tip of each electrode wire was cut with fine scissors
and prepared for implanting. The microdrive was 23.5 mm in
diameter, 37 mm in height, and 15 g in weight. Photographs of
the fabricated device are displayed in Fig. 3.

2.3. Pump and electrode position control svstem

Gears and lead screws, which are commonly used, can often
introduce a significant amount of imprecision in such drives
due to gearing backlash. The use of hydraulics involves a sim-
ilar problem, which arises from fluid compression and friction
between the electrode and the electrode housing. This suggests
that the electrode position cannot be estimated accurately by
measuring the amount of fluid supplied by the pump. One way
to avoid this problem is o use a pre-pressurized system, which

Smm lube

connector
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is not affected by friction instability, This kind of structure,
however, usually needs to be larger. To achieve high precision
movements, we measured the fluid pressure continuously and
used this information to control the amount of fluid supplied.
Assuming that the electrode position can be calculated simply
from the pressure and volume of fluid, we obtain the equation
below:
x=aV +bP (1
where x is the electrode position, V the quantity of supplied, P
the fluid pressure, and a, b are constants. While a is invariant, b
depends on many factors such as micro-bubbles contaminating
in the fluid. We can calculate b during the initial phase of fluid
supply, when the pressure is increasing but the electrodes are
fixed in place by friction.

To introduce very small amounts of fluid, we use a stage
and a hand-made syringe pump (# 1 mm). The minimum step
rate of this pump is 0.004 mm® (or 2.8 wm in terms of electrode
movement), The stage is controlled by a computer (National
Instrument DAQ), which is also used to record neural activ-
ity (sampling interval 10kHz, bandpass 500 Hz to 3 kHz). The
hydraulic fluid used was physiological saline solution, to mini-
mize harm to the animal in case of leakage.

The electrodes are controlled automatically using the follow-
ing procedure. The selected electrode is advanced until it reaches
a set range (for example, from 500 pm to 1500 pm inside the
cerebral cortex). Once the device is positioned over the desired
recording region and the electrodes are extended to roughly the
desired depth, control proceeds to an automatic search mode. In
the search mode, the electrode is moved in constant increments.
In our experiments, the electrode was stopped every 50 pm and
the insertion speed was 5 pm/s, Silence should be maintained
for 20 s at each step, to avoid tissue dimpling and stabilize the
electrode state. After each such pause, the electrode records data
for 20 s, and a spike detection algorithm is applied to the signal.
If there is a spike detection that exceeds a given threshold (in
our case, SNR > 3 and spikes/s > 5), the electrode is fixed to that
position and the hydraulic fluid pressure is reset to atmospheric
pressure.
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Fig. 3. Photographs of our microdrive. (a) Bottom view: The guide tube array 1s extended about 1.5 mm from the housing tip to make contact with the dura, (b) Side
view: The router, flexible circuit board, housing, and tip are fixed together with screws. A pump connected to the tube moves the electrodes by hydraulic pressure.

Its diameter is 23.5 mm, its height is 37 mm. and its weight is 15 g.



