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Regeneration-Type Nerve Electrode Using Bundled Microfluidic Channels
Takafumi Suzuki®, Member, Naoki Kotake™® *, Non-member,
Kunihiko Mabuchi*, Non-member, Shoji Takeuchi* **., Non-member

Neural interface devices that will allow signals from the human nervous system to control external equipment are extremely

important for the next generation of prosthetic systems. A novel multichannel regeneration-type nerve clectrode designed to

record from and stimulate peripheral nerves has been developed to allow the control of artificial hands and to generate artificial

sensations. In this study a novel flexible regeneration microelectrode based on the nerve regeneration principle was designed and
fabricated using MEMS technologies. The electrode, which was fabricated on a 25-pm-thick Parylene C substrate, has multiple
fluidic channels. Each fluidic channel was 100 pym wide = 30 pm high = 1500 um long and featured multiple electrodes inside

them as recording and stimulating sites. They also served as guidance channels for the regenerating axons,
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Development of a Neural Electrode Integrated with Microdialysis Function -Preliminary result-
Naoki Kotake*, Takafumi Suzuki, Kunihiko Mabuchi, Shoji Takeuchi (The University of Tokyo)

Abstract

We propose a neural clectrode with microdialytic function, fabricated using MEMS technology. It was designed so that it can

monitor both neuroelectrical and neurochemical activities, simultancously. The electrode, which was fabricated on a 25-pm-thick

parylene C substrate, consisted of four electrodes and a fluidic channel. The fluidic channel was 170 um wide, 30 — 40 um high,

1.5 mm long, and has 15-pum-thick semipermeable membrane for microdialysis.

F—J—F: RBE, 1 70FATIA
(Neural Electrode, Microdialysis)
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Photo of the fabricated probe.

& 1
Fig. 1
(A) Overview of the probe. (B) Tip of the probe.
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Development of “RatCar” a

1B EF R OHhH

BMI vehicle for a rat:

Extraction of locomotion related firings using neural electrodes implanted in multiple regions of brain
Osamu Fukayama®, Noriyuki Taniguchi, Takafumi Suzuki, Kunihiko Mabuchi (The University of Tokyo!

Abstract

Novel neural electrodes and a spikes discrimination technique were applied to ‘RatCar’ system; a brain-machine
interface (BMI) vehicle controlled by neural signals of a rat’s brain. A rough control of the vehicle by neural signals
recorded in the motor cortices had been achieved imitating actual locomotion of the rat. In this paper, an electrodes
array to simultaneously record multiple regions of the motor center was applied. Recorded signals were then auto

matically sorted into neural units and artifacts by applying Gaussian-mixture model to the feature quantities of their

waveforms, which enabled a more reproducible estimation.

F—D—F i1 TAY I A 2E—T 21— A 3 EE, BAFR, FITHEE

(Brain-machine interface, neural electrodes, spike sorting, locomation estimation )
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2. RatCar
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recorded by electrodes were transferred to the
filter, the amplifier, then to the computer

Basic structure of “RatCar” system. Sigrals
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Bundled Microfluidic Channels for Nerve Regeneration Electrodes

Takafumi Suzuki', Naoki Kotake ", Kunihiko Mabuchi’, Shoji Takeuchi

Abstract- The development of a neural interface that allows
signals from the human nervous system to control external

equipment is extremely important for the next generation of

prosthetic systems. A novel multichannel regeneration-type
nerve electrode that was designed to record from and
stimulate peripheral nerves has heen developed 1o allow for
the control of artificial hands and to generate artificial
sensations. In this study we propose a neural probe with
multiple microfluidic channels for measuring signals from
regenerated axons passing through the fluidic channels. Each
channel also serves as a guidance tube of the nerve
regeneration and as fluidic pathways for injecting chemicals
such as nerve growth factors (NGF). Parylene microfluidic
channels were formed with microelectrodes and then the
substrate was rolled up, resulting in bundled channels. We
have succeeded in injecting NGF from the channels and
observed the regeneration of an axon guided by the channels.

I INTRODUCTION

The development of a man-machine interface between the
human nervous system and external equipment, such as
artificial hands, 1s extremely important for the next
generation of prosthetic systems. A regeneration-type nerve
electrode 18 a key device in this research field.
Regeneration-type nerve electrodes hold promise as Key
devices for producing these neural interface systems. The
underlying principle of the regeneration-type electrodes is
that the peripheral nerves of vertebrates will regenerate after
being severed. In this process, the axons in the distal portion
will degenerate, but will regenerate from the proximal
portion and reach the distal end of the severed nerve bundle.
Therefore, if a device consisting of many microelectrode
holes is implanted between the severed stumps, the axons

can regenerate through the holes, and the action potential of

the regenerating axons can be measured by the electrode
(Fig. 1). This electrode has many advantages, such as a
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long-term and stable input/output due to good electrical and
physical compatibility between the electrode and nerve
fibers [1]. However, in many previous works, the electrodes
have had a plane structure (Fig. 1) [2]. and they also have
problems, such as difficulty in recording signals with a good
S/N ratio if the position of the recording site is located far
from the Ranvier node (Fig. 2). We have developed a 3D-
structured regeneration nerve electrode with bundled
microfluidic channels using a flexible Parylene film (Iig. 3).
The proposed electrode has many advantages including: 1) it
hardly ever fails to record signals as long as one of the
Ranvier nodes 1s located in the channels, because the signal
attenuation 1s small in each fluidic channel, 2) it has a high
S/N ratio because it has a large recording site, and each
recording site is sufficiently insulated, and 3) it promotes the
regeneration of axons by allowing for the injection of
medicines like NGF.

regenerating

silicone tube axons

~ ~
: } \
proximalj \ distal
nerve ] ) nerve
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hole with recordlng S|te

I1ig. 1: Schematic of regeneration-type nerve electrode

I1 METHODS

A schematie of the flexible regeneration-type electrode we
fabricated is shown in Iig. 3. Each fluidic channel has one or
multiple recording/stimulation sites and serves as a guidance
tube for the regenerating axons. The fabrication process 1s
shown in Fig. 4. This process is similar to that of the probe
integrated with microfluidic channels that we have
previously reported [3]. A 30-um-thick photoresist was
sandwiched by Parylene thin films used as a sacrifice laver
and removed by using acetone after rolling; consequently
multiple microfluidic channels were created. Fach channel
has an electrode undemeath.

1
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Fig.
electrode. The electrode has a microfluidic channel
for the injection of chemicals and other microfluidic
channels for neuro guidance

III RESULTS and DISCUSSIONS

Figure 5 shows the entire structure of the fabricated neural
probe. The 125 microfluidic channels (124 gudance
channels + one imjection channel) were bundled in the probe
The average impedance of the recording sites was 613 k ohm
at 1 kHz. Even when the probe was bundled, it retained the
same impedance. The bundled electrodes did not break and
retained their conductivity

We performed an injection test on the microfluidic channels
bv using blue ink to visualize the stream. The device was
immersed in a water bath and then the ink was introduced
using a syringe. The ink nicely distributed to all the 24

outlets without any leakage, demonstrating the feasibility of

the microfluidic channels.

In vitro experiments were performed to evaluate the
efficiency of injecting NGI into the channels by using
unrolled probes attached to culture dishes. Primary cultured
neural cells which were derived from a rat embryo brain
were plated in front of the outlets of the channels. We
injected 500 ng/ml of NGF into the microfluidic channels

once a day. Although it was a preliminary result,
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Fig. 4: Fabrication process
The photoresist is removed by using acetone after
rolling the fluidic channel area.

microfluidic channel
for injection of chemicals

i

L

e gold

/ electrodes

.

fluidic channels for neuro guidance
Fig. 5: Photograph of [abricated probe.
Each microfluidic channel for neuro guidance is W 100 pm
< H 30 pm x L 1500 pm

we observed an axon that regenerated into the channel filled
with NGF. These results suggest that our electrode will work
in guiding and promoting the regeneration of axons. We are
attempting to gather more clear evidence using both in vitro
and in vivo experiments.

REFERENCES

[1] A. Mannard, R. B. Stein, D. Charles: Regeneration
electrode units: Implants for recording from single

peripheral nerve fibers in freely moving animals,
Science, 183, 547-549 (1974)

[2] G T. A Kovacs, C. W. Storment, J. M. Rosen
Regeneration Microelectrode Array for Pernpheral
Nerve Recording and Stimulation, IEEE Trans. BME,
39, 893-902 (1992)

[3] S. Takeuchi, D. Ziegler, Y. Yoshida, K. Mabuchi, T

Suzuki: Parylene flexible neural probe with micro
fluidic channel, Lab on a Chip, 5, 519-523 (2005)



JOURNAL OF
NEUROSCIENCE
METHODS

www.elsevier.com/locate/jneumeth

Journal of Neuroscience Methods 160 (2007) 45-51

A new multi-electrode array design for chronic neural recording,
with independent and automatic hydraulic positioning

T. Sato*, T. Suzuki, K. Mabuchi

Department af Information Physics and Computing, Graduate School of Information Science and Technolagy,

. o il a 11 Qrer 1
The Universiy of Toryo, 7-3-1, Tokye, 113-86506, Jupan

Received 12 June 2006; received in revised form 16 August 2006; accepted 21 August 2006

Abstract

We report on a new microdrive design, which enables the construction of multi-electrode arrays capable of chronically recording the multi-
unit neural activity of waking animals. Our principal motivation for inventing this device was to simplify the task of positioning electrodes,
which consumes a considerable amount of time and requires a high level of skill. With the new microdrives, each electrode is independently and
automatically driven into place. A hydraulic drive system is adopted to reduce the size, weight. and cost of the structure. The hydraulic fluid is also
used as a part of the electrical circuit, and facilitates the wiring of the electrodes. A routing system has been attached to reduce the number of tube
connections. The microdrive is cylindrical, has a diameter of 23.5 mm, a height of 37 mm, and a weight of 15 g. Tt allows for up to 22 electrodes,
which are arranged on a 0.35 mm grid. Each electrode can be positioned at any depth up to approximately 4 mm. The microdrive was evaluated
under acute and chronic recording experiments, and is shown to be capable of automatically positioning each electrode and successfully recording

the neural signals of waking rats.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Automatic microdrive: Hydraulic base; Chronic neural recording; Neural interface

1. Introduction

Extracellular recording using a fine wire electrode is a
valuable technique for measuring the neural activity of freely
moving animals. Single electrodes have long been used in
electro-physiology to measure spikes in both acute and chronic
recording modes. The concept of coding in large populations
of neurons, however, has increased the importance of chronic
recording from multiple channels simultaneously. The rela-
tionship between simultaneous spikes and motor, for example,
was revealed by multi-unit recordings (Riehle et al., 1997).
Brain-machine interfaces have also succeeded thanks to tech-
nical improvements in chronic recording (Chapin et al., 1999,
Donoghue, 2002; Serruya, 2002; Taylor et al., 2002: Wessberg
et al., 2000).

The experimental focus of such studies has mainly been on
primates and rodents, both of which can be trained to perform
tasks concurrent with electrophysiological recording. In the case
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of rodents, the entire recording apparatus must be fixed to the
head so as to allow access to the dura. The apparatus must also
not be intrusive, so as to permit free movement of the head and
limbs. Many types of multi-electrode array systems have been
developed, to meet these requirements, especially in the MEMS
field (Rutten, 2002).

Some experiments have also demonstrated the feasibility of
recording single-unit activity from the neocortex (Kipke et al..
2003: Branner and Normann, 2000). Nonetheless, several dif-
ficulties still plague the recordings of single-unit activity in
freely moving animals, such as small detection sites and the lack
of biocompatible electrodes. Unexpected impacts to the elec-
trodes or tissue rejection observed as encapsulation (Collias and
Manuelidis, 1957: Polikov et al., 2005) often cause destructive
deformation of the signal. Precise and independent positioning
of the electrodes is therefore needed, to ensure their continued
sensitivity to single units within the same animal (Kralik et al.,
2001).

Several researchers have tried to solve these problems by
developing screw-based microdrives (Nichols et al., 1998;
deCharms et al., 1999; Venkatachalam et al.. 1999; Keating
and Gerstein, 2002; Swadlow et al., 2005). In these systems,
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each electrode can be moved independently after implantation.
In most cases, however, the positioning is performed manually.
This procedure requires a considerable amount of time, and is
strongly affected by the researcher’s skill.

Even though automating the procedure may alleviate these
problems, only a few automated microdrives have been devel-
oped. The main reason for this is the excess size and weight of
the attached motor. Although the pioneering work of Fee and
Leonardo (2001) and Cham et al. (2005) has demonstrated an
automated positioning process with several promising advan-
tages, their system designed supports only a few channels due
to the limitations of the mechanical structure and motor size.

In response to the above issues, we have designed and devel-
oped a microdrive for the chronic recording of neural activity in
rodents. The design and development of this microdrive were
motivated by the above issues. A hydraulic drive is used to
independently and automatically adjust each electrode, and the
recording apparatus can hold up to 22 electrodes. We evaluated
the electrical connection and positioning precision of this novel
design in acute experiment. Chronic experiments were also con-
ducted, in which it is shown that the electrodes can be positioned
individually and automatically. During individual recording ses-
sions, well-isolated single units were typically recorded on about
a quarter of the channels.

2. Materials and methods

A chronic microdrive has several technical requirements. Our
device was designed to fulfill the following design criteria: (1) it
should have as many channels as possible; (2) it should have an
electrode tip capable of moving more than several mm or more
(assuming that the cerebral cortex is the target): (3) each elec-
trode should be capable of moving independently: (4) it should
be capable of fixing the electrode tip positions after adjust-
ment; (5) it should be sufficiently small and light enough to
be implanted in rodents: and (6) the position of the electrodes
should adjust automatically.

2.1. Implant

First we explain the overall design, followed by its details of
specification. The basic design of our microdrive is illustrated in
Fig. 1. To allow fine spacing (350 pm) and independent move-
ment of the electrodes, they are arrayed closely together at the
bottom of the implant but fan out towards the top through indi-
vidual guide tubes. A hydraulic system is used to drive each
electrode, and a router was built into the device to select the
particular electrode.

The electrodes are made of tungsten wire (3 30 um), coated
with 5 pm of poly-monochloro-paraxylylene (Parylene C) and
cut with fine scissors at the tip. Their typical impedance was
between 100k$2 and 200k§2. The electrodes are attached to
stainless steel guides with a diameter of () 1.3 mm as shown in
Fig. 2. The guides move like pistons through the holes and help
stabilize the electrode motions. The guides, along with their elec-
trodes, are inserted into holes drilled in the electrode housing.
Twenty-four holes are drilled in two concentric circles towards

Cover
Cylinder
Case

Router

Stainless steel
guide

Fig. 1. Overall view of the implant, which consists of router, electrode housing,
and tip. The electrodes are attached to stainless steel guides, which move like
pistons through their housing by hydraulic fluid pressure. The router selects
which channel to move.

a central point, to achieve fine spacing at the cusp. Two holes
are kept as empty channels for the purpose of initializing the
hydraulic fluid; the other 22 are used as electrode channels. This
device can be used for any electrode type and material, as long
as it fits in the stainless steel guides.

The router is consists of a cylinder, case, and cover. By rotat-
ing the cylinder, the hydraulic fluid flows from the pump to
selected channels (i.e., the holes drilled in the electrode hous-
ing). In each channel, an O-ring between the cylinder and the
casing seals the channels when they are not selected. This gas-
ket also prevents further motion of the electrode after it has been
positioned. At the end of the positioning procedure, the router
is lined up with the empty channels and any hydraulic fluid left
in the path is vacuumed out.

Stainless Steel Guide

~Electrode housing

' Electrode

Fig. 2. Schematic figure of a piston-like driver. O-rings set into the grooved,
stainless steel guide prevent fluid leakage and provide for smooth locomo-
tion. Signals from the electrode are transferred to the circuit via the conductive
hydraulic fluid, at any electrode position.
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Connecting electrodes to a circuit is always a challenge, espe-
cially in multi-channel and drivable devices. To resolve this
problem, conductive hydraulic fluid was used so that it could
partially complete the circuit. As shown in Fig. 2, the connec-
tion between the electrode and the circuit will be maintained
via the conductive fluid for any electrode position. Electronic
insulation is ensured because the structure is leakproof. We can
therefore sandwich a 2D circuit between the router and the elec-
trode housing, a solution which is much simpler than wiring
each connection. The circuit board is flexible (Sanhayato 1K),
and coated with gold to prevent rust,

2.2, Implant assembly

We aligned the electrode tip and the electrode housing using a
specially made fixture clamp. Each electrode wires was inserted
through its guides tube, tip-first, then into the electrode housing
until a sufficient length of wire emerged. The wires were then
attached to the stainless steel guide, and pushed back into the
electrode housing. Silicon grease was applied to the stainless
steel guides as a sealant before they were pushed back.

After all electrodes were set into the device, fluid was supplied
to the electrode housing (avoiding bubbles). The electrode tip,
housing, flexible circuit board, and router were clamped together
with screws, forming a tight seal. Finally, the device was cleaned,
and the tip of each electrode wire was cut with fine scissors
and prepared for implanting. The microdrive was 23.5 mm in
diameter, 37 mm in height, and 15 g in weight. Photographs of
the fabricated device are displayed in Fig. 3.

2.3. Pump and electrode position control system

Gears and lead screws, which are commonly used, can often
introduce a significant amount of imprecision in such drives
due to gearing backlash. The use of hydraulics involves a sim-
ilar problem, which arises from fluid compression and friction
between the electrode and the electrode housing. This suggests
that the electrode position cannot be estimated accurately by
measuring the amount of fluid supplied by the pump. One way
to avoid this problem is to use a pre-pressurized system, which

Smm

Tube

is not affected by friction instability. This kind of structure,
however, usually needs to be larger. To achieve high precision
movements, we measured the fluid pressure continuously and
used this information to control the amount of fluid supplied.
Assuming that the electrode position can be calculated simply
from the pressure and volume of fluid, we obtain the equation
below:

x=aV +bP 15

where x is the electrode position, V the quantity of supplied, P
the fluid pressure, and a, b are constants. While a is invariant, b
depends on many factors such as micro-bubbles contaminating
in the fluid. We can calculaie & during thie iuitial phase of fiuid
supply, when the pressure is increasing but the electrodes are
fixed in place by friction.

To introduce very small amounts of fluid, we use a stage
and a hand-made syringe pump (# 1 mm). The minimum step
rate of this pump is 0.004 mm? (or 2.8 pm in terms of electrode
movement). The stage is controlled by a computer (National
Instrument DAQ), which is also used to record neural activ-
ity (sampling interval 10kHz, bandpass 500 Hz to 3 kHz). The
hydraulic fluid used was physiological saline solution, (0 mini-
mize harm to the animal in case of leakage.

The electrodes are controlled automatically using the follow-
ing procedure. The selected electrode is advanced until it reaches
a set range (for example, from 500 pm to 1500 pm inside the
cerebral cortex). Once the device is positioned over the desired
recording region and the electrodes are extended to roughly the
desired depth, control proceeds to an automatic search mode. In
the search mode, the electrode is moved in constant increments,
In our experiments, the electrode was stopped every 50 wm and
the insertion speed was 5 pm/s. Silence should be maintained
for 20 s at each step, to avoid tissue dimpling and stabilize the
electrode state. After each such pause, the electrode records data
for 20 s, and a spike detection algorithm is applied to the signal.
If there is a spike detection that exceeds a given threshold (in
our case, SNR > 3 and spikes/s > 5), the electrode is fixed to that
position and the hydraulic fluid pressure is reset to atmospheric
pressure.

Housing Circuit
‘ , board

Router

lip

Connector

Fig. 3. Photographs of our microdrive. (a) Bottom view: The guide tube array is extended about 1.5 mm from the housing tip to make contact with the dura, (b) Side
view: The router, flexible circuit board, housing, and tip are fixed together with screws. A pump connected to the tube moves the electrodes by hydraulic pressure.

Its diameter 1s 23.5 mm, its height is 37 mm, and its weight is 15 g.
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2.4. Electrode implantation

The devices were implanted in Wistar rats. We used them
to record activity in the cerebral cortex, so each device was
implanted on a rat’s M1 area. The animals were anesthetized
using isoflurane (2-3%) and maintained in a reflexive state
throughout the surgical procedure. Each animal was attached
o a standard stereotaxic frame, and three stainless steel bone
screws were inserted into the skull. A craniotomy (approxi-
mately 3 mm) was performed over the target cortical area, and
the dura was scarred using a 30-G needle. The assembled device
was carefully lowered, until the electrode tip was in contact with
the dura. The rest of the hole was covered by a spongel®, and
the device was fixed to the skull with dental cement.

All experiments were performed in accordance with guide-
lines provided by the Animal Experiment Committee of the
University of Tokyo.

3. Result
3.1. Basic performance evaluation

We first checked for possible deformations of the signal due
to the use of hydraulic fluid as part of the electrical circuit. The
impedance of the hydraulic fluid is between 10k€2 and 25 k€2
at 1kHz. We then recorded neural signals from the rat’s MI
area, using typical acute recording techniques. The signal from
a single electrode was branched into two different circuits. One
passed directly from the electrode to the amplifier, and the other
was connected to our microdrive before being amplified (Fig. 4).
By comparing these two signals, we could evaluate the defor-
mation of the waveform caused by using conductive fluid used
as part of the electrical circuit.

Next, we evaluated the accuracy of our electrode position cal-
culation. The electrode was inserted into a model “brain” made
from agar, which imitates the brain’s elasticity. Fig. 5 depicts
the trajectory of the electrode tip in terms of its measured and
calculated positions at each 50 pm step. The position of each
electrode was measured using a laser sensor, and its estimated
position was calculated using Eq. (1). It can be seen that the
calculated position traces the measured position with an error of
only 50 pm. We also attempted to control the electrode’s back-
ward motion, but due to the nonlinear behavior of the pressure
the electrode sometimes leapt back and the position calculation
failed. We were able to pull back the electrode by more than
250 pm, however.

3.2, Recording

All experiments were performed on rats (Wister males with
weights between 280 g and 320g). We began recording two
days after the surgical procedure. Prior to recording, a connector
and hydraulic tube were attached to the device. In general, the
presence of the device and recording apparatus did not have any
ill effects on the behavior of the rats. Positioning of the electrode
was automatically carried out as described in Section 2.3. The
researcher thus did not need to touch the rats, and all recording
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Fig. 4. The signal from a single electrode, branched into two different circuits.
One was directly connected to an amplifier, and the other was amplified only
after the signal passed through the hydraulic fluid. Both signals were recorded
simultaneously and compared. The degree of correlation between the two signals
was 0.98.

was done while the rats were awake. On each experimental
day, the automated positioning procedure was applied to 5-8
channels and we could find neural signals in most cases. How-
ever due to reasons such as electrode drift or neuronal death,
occasionally signals were lost. When this happened we were
generally able to record signals from another neuron by moving
the electrode tip, as depicted in Fig. 6. In one remarkable trial,
we recorded good signals from 10 separate channels, although
at the beginning of the day we started with recording data from
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Fig. 5. The accuracy of electrode positioning. As the electrode tip is slowly
driven forward, its calculated position (x-axis) is compared to its directly mea-
sured position (y-axis) at each stopping point. The calculated position traces the
measured position with an error of only 50 pm.
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Fig. 6. (a) The S/N ratio of recorded spikes is plotted against the depth of the
measuring electrode. By inserting an electrode deeper into the brain, we were
usually able to find another neuron and restore the neural signal. Spikes with
a S/N ratio less than 3 were neglected, (b) A clustered spike wave form, after
automatic positioning.

only one or two channels. By the end of this recording period,
electrolysis between the electrode guides and the flexible circuit
could be observed in four of these channels. In addition, some
of the electrodes appeared to have become stuck due to tissue
fluid entering the guide tubes and solidifying. Nonetheless, for
about two weeks we were able to record well-isolated signals
from an average of five channels per device.

4. Discussion

We have described a microdrive which is capable of simul-
taneously recording signals from a large number of neurons
in the cerebral cortex of waking animals (rats). The size and
weight of the device did not affect the behavior of the rats. Some
novel techniques were implemented in the design of our multi-
electrode array. each such technique is examined in turn below.

4.1. Conductive fluid as a circuit element

Conductive fluid was used as a part of the electrical circuit
connecting the electrodes. As seen in Fig. 4, this caused a neg-
ligible amount of signal distortion, A high degree of correlation
was obtained between the direct recordings and those record-
ings which passed through the fluid. The signal was sufficient
for spike detection in both cases.

Furthermore, our results have demonstrated that certain com-
mon wiring problems can be resolved by using conductive fluid
in the electrical circuit. This is important because as the num-
ber of channels increases, and the implants diminish in size, it
becomes more and more difficult to wire all the electrodes to a
single connector.

Some problems remain for the long-term use of this tech-
nique, however, such as electrolysis and the relatively high
impedance of fluid compared to wire. The high impedance did
not cause any major problems in our experiments, but in some

noisy situations it could be problematic. This could be resolved
by attaching an amplifier to the head or shielding the whole
device. Electrolysis was observed in some of the channels, but it
was found to be due to cracks in the gold coating. Thus, plating
the electrodes with gold or some other metal should eliminate
the problem.

4.2, Electrode placement

The amount of fluid and the supplied fluid pressure were
used to estimate the position of the electrodes. The parameters
used to estimate the position were calculated from the pressure
prior to the onset of electrode movement. By recalculating these
paraineiers al each session, any diiferences due 1o the channei
and fluid state could be alleviated. As a result, we achieved
an error of only 50 pm on our position estimates. The biggest
portion of this error was due to offsets in the parameters of the
calculation. In other words, the relative positioning error (which
is more important) is smaller than the absolute positioning error.
Thus, while the calculation is not perfect, we believe that this
device is sufficiently accurate and precise.

Al the moment, the most significant disadvantage of our
microdrive is that it cannot pull the electrode back with enough
control. When we applied suction to the hydraulic fluid, the elec-
trode leapt back and its position became unmeasurable. In this
case, however, we were still able to search for and find a signal
even though the position of the electrode had become ambigu-
ous. This sudden motion may be due to bubbles in the hydraulic
fluid, or to friction between the stainless steel guide and the
electrode housing, especially at the O-ring. This problem could
be rectified by changing the hydraulic fluid to another conduc-
tive fluid, for example hydrargyrum, which will prevent bubble
contamination. One could also use fluorine-coated O-rings o
decrease friction. However, the risk of leakage and the cost of
the driver should be considered in such design changes.

4.3. Recording quality

When controlling an electrode, in most cases we were able
to detect a signal before the electrode overran its desired depth
range. Nonetheless, under simultaneous recording only a small
number of channels were functional at any given time. This may
be due to mechanical interactions between the closely spaced
electrodes (the tip separation is about 350 pm). Another pos-
sibility is that recordable neurons are dragged away by the
movement of nearby electrodes. Also note that our microdrive
uses scissor-cut electrodes, which cause more mechanical stress
than finely tapered electrodes. In fact, it was observed that repo-
sitioning one electrode often degraded or destroyed the signal
in other channels. This mechanical interaction can usually be
rectified by precise control, but our microdrive is clearly lack-
ing in precise backwards control. Our proportion of recordable
channels was therefore relatively low compared to the result
of Wilson and McNaughton (1993), although differences of
the target brain area should also be considered (for exam-
ple, the hippocampus has a higher density of neurons than the
cortex).



