the DRYLAB is adequate method for daily repetitive training
of basic surgical skills. However. an alternative is needed for
self-training in the DRYLAB stage instead of the supervisors

[1. OBJECTIVE

The purpose of this study is a development of the

self-training system for surgical technique. The first stage of’

the study. our group develops the self-training system for
anastomotic technique of CABG, which is used in the
DRYLAB then differentiates surgical skills of expert and
trainee surgeon by using newly developed evaluation system.

1.

The self-training system consists of following portions. 1)
“YOUCAN?", coronary and graft vascular silicone model. 2)
“BEAT?", a device, simulating stabilized myocardial surface.
and 3) Quantitative evaluation system based on in vitro mock
circulatory system.

DEVELOPMENT

A. Coronary artery and grafi model "YOUCAN’

These models provide repetitive anastomotic training under
static condition as shown in tig.3. An anastomosis between
Left Anterior Descending coronary artery (LAD) as recipient
and Left Internal Thoracic Artery (LITA) as graft has been
simulated by these models, because it is the most common
combination for CABG. Inner diameter of the model is
2.0mm and the models are made of silicone rubber (KE1603
A/B. Shin-Etsu chemical co. Itd). Elasticity of the models was
controlled to satisfy the surgeons’ tactile feeling reasonably,
by the ratio of compounded silicone oil [2]. Tethering. a
self-expandable function of incised part was reproduced by
remaining stress in myocardial model. Therefore surgeon
could handle a surgical needle and strings as if under the
clinical condition.

B Off-Pump CAB training device "BEAT"

Fig.4 shows Off-Pump CAB training device named BEAT.
Off-Pump CAB is CABG under on-beating condition
avoiding the invasiveness derived from extracorporeal
circulation. The BEAT adds pulsatile up-and-down uniaxial
motion of stabilized myocardial surface onto the coronary
model [3]. Biometal, shaped memory alloy developed by
TOKI Corp. has been employed as the actuator because of the
compactness and controllability. The heart rate and amplitude
were adjustable between 50100 bpm (0.83~1.67 Hz) and
0~3mm as a trainee surgeon desired by the controller. Various
coronary arterial positions, including LMT, LAD, RCA. and
Cx, could be set by the attitude adjuster. which is flexible ball
joint. The surgical field was simulated by cavity unit. By the
development of above portions. our group could provide a
DRYLAB environment to train the anastomotic technigue
under the fixed condition.

C. invitro Coronary Circulatory System

Fig.5 shows the evaluation system for anastomosed model
based on in vitro Coronary Circulatory System (CCS). CCS
had been originally developed by Kawai et. al. in 2004[4]. Tt
is composed of the systemic circulatory system and the CCS.
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Fig.3. Coronary arterial model” YOUCAN" and graft
model of silicone rubber, which elasticity had been

3) Attitude adjuster

Fig.4. Off-Pump CAB training device “BEAT™
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The CCS. driven by linear actuator composed of stepping
motor, has been designed to reproduce natural coronary
hemodynamics. Pressure and tlow rate were measured at the
inlet and outlet of the test section. Differential manometer
(AP-125, KEYENCE) was installed to measure pressure loss
of vicinity of the anastomosis.

V. EVALUATION

Our group has conducted the experiment to clarify the
difference among expert and trainee surgeon’s skills by using
above newly developed self-training system as shown in
Fig.5. A registered cardiac surgeon was selected as the expert
surgeon. And a cardiac surgeon, who has never been an
operator in clinical has been selected as the trainee surgeon.
The both expert and trainee surgeon anastomosed the
coronary artery and graft model. which was set onto the
BEAT under non beating condition. The anastomosed model
of the CCS. Identical
waveforms in coronary artery were applied into the inlet of
the  anastomosis  under  the  following  conditions,
120/80mmlHg of pressure (normotension), 53ml/min of mean

s were set onto the test section

flow rate. Pressure and flow rate were measured at proximal
and distal ends of the anastomosis. Then energy loss was
calculated by equation (1), using the following parameters:
pressure gradient A / and flow rate O,

E *%(AP‘Q”)Q’{ (1)

“luss

V. RESULT AND DISCUSSION

Our group considered the experimental results in terms of

relevance  between  morphological and  hydrodynamics
characteristics of the bypass grafting anastomosis.
A Morphological characteristics

Fig.6  shows visual inspection ol the
anastomosis. which has been done by the expert and the
trainee surgeon. The both models were anastomosed by
continuous suture using PROLENE 7-0 (Ethicon Inc.). [n the
overhead view of anastomosis. it was observed that intervals
of each stitch were regular in expert surgeon’s anastomosis.
Moreover, a length ol each stitch was nearly equal and its
direction was almost normal to the suture line. Tn contrast, the
orientation of ecach stitch was irregular in the trainee’s
anastomosis. The irregular stitch was caused to configuration
of the collapsed orifice area. which is pointed with dotted line
in Fig.6. In the frontal view of the anastomosis, expert model
has an outline of the graft model, which straightly and
smoothly connected to the coronary artery. On the other hand.
an outline of the graft model in trainee model was formed as
downhill in part. [t was observed that a cross-stitch was on the
suture line in collapsed orifice area in trainee’s anastomosis.
The cross-stitch may cause to stenotic pattern of an inner
lumen. In order to investigate a shape of inner lumen, wax
injection melding has done as shown in Fig.7. Then, Effective
Orifice Area (EOA) has been quantified by image analysis on
cross-sectional surface of the anastomosis. As the result.
which was shown in TABLE 1. an EOA of the trainee model

comparative

has been calculated as 19.4% of the expert model. The effect
of this difference of EOA 1o hydrodynamics in the
anastomosis has been considered in next section

B Hvdrodyvnamic effect to an anastomosis

Fig.8 shows natural wavetorms of pressure and flow rate in a
coronary artery. It was confirmed that the typical
double-peaked waveforms of flow rate and single-peaked
waveforms in coronary artery were reproduced by CCS as
shown in Fig.9. Pressure loss could be found from the
difference between waveforms of inlet and outlet pressure in
the both expert and trainee models. Then, energy loss was
calculated as 41.30 £ 3.08ml for the expert and 67.28 =
1.75mJ for the trainee surgeon as shown in Fig.10. The
energy loss of the expert surgeon was 38.6% less than the
trainee surgeon. [t we discuss the anastomotic models as
bended tubular shaped elastic model, a drastic change of the
EOA may be cause of a significant pressure gradient on
tubular axis between inlet and outlet of the tube. 1t was
inferred that this pressure gradient affects to separate the local
flow of near vascular wall. Thus, it was thought as that energy
loss of the trainee model was higher than the expert model.

Expert surgeon

suture line

Fig.6. Appearance of anastomosed model of the expert
and the trainee.

(b) Trainee model
Inner geometry of anastomosed model. fabricated
by wax injection molding.

(a) Expert model

Fig.7.

TABLEI
EFFECTIVE ORIFICE AREA OF EXPERT AND TRAINEE MODEL
. EOA
Class 5
(mm~)
Expert surgeon 2.73
Irainee surgeon 0.53
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This experimental result implies that the technique of

controlling EOA is relevant to improve the hydrodynamic
characteristics of the anastomosis. The further study is
required to clarify the characteristics of these local flows by
using flow visualization technology such as Particle Image
Velocimetry.

VL
In this study. a selt-training system for the anastomotic
technique in CABG has been developed. The selected expert
and trainee surgeon’s anastomotic skill has been
differentiated by using the coronary circulatory system.

CONCLUSION

Throughout the visual inspection, it was observed that the
orientation of the trainee surgeon’s each stitch was irregular.
comparing to expert surgeon. This has caused to narrow EOA.
and then the higher energy loss has been induced in the
trainee anastomosis. In conclusion, it has been suggested that
an expert and a trainee surgeon’s anastomosis could be
differentiated by using in vitro mock circulatory system. We
will continue studying to reveal an essence of expert
surgeons” skills by following approaches. The one is statistic
analysis of the anastomotic technique to find typical pattern
among expert and trainee surgeons. The other is considering
the relation between configuration of the EOA in an
anastomosis and the hydrodynamic characteristics by
analyzing local flow. 1t is expected that these study will
contribute to the establishment of an evaluative criteria for
human surgeons and robot surgeons in the future.
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Nanotechnology in Artificial Organ Development
and its Application in Diagnosis Methodology
in Baroreflex Sensitivity of Patients with Hypertension
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Space in the human body 1s so limited that nanotechnology and micromachining technology
are important for development of the internal artificial organs. Based on nanolechnology,
development of various kinds of artificial organ has been conducted in Tohoku University,
including artificial myocardium, artificial heart, rotary blood pump, artificial esophagus
and artificial sphincter. Furthermore, automatic control algorithm for the artificial heart
and assisted circulation was applied in the invention of the new diagnosis methodology for
the baroreflex sensitivity of patients with hypertension. A successful clinical application of
this new invention was made. Technical application of the large range of the developments
is expectable in artificial internal-organs development.

Keywords: nanotechnology, artificial myocardium, rotary blood pump, baroreflex
sensitivity, hypertension

1. Introduction

From the historical point of view, miniaturization of artificial internal organs has been
one of the most important factors until now. Space in the human body is so limited
that nanotechnology and micromachining technology are important in development
of the internal artificial organs. Based on nanotechnology, various artificial organs
have been p developed in Tohoku University, the including artificial myocardium, the
artificial heart, the rotary blood pump, the artificial esophagus and artificial sphincter.
These various artificial internal organs are based on the common base technology.
Biocompatible nano materials are important. Transcutaneous energy transmission
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- 218 -



66 T. Yambe et al.

systems using nanotechnology are also an important factor. In this paper, the recent
progress of the artificial internal organ development is reported. Furthermore, auto-
matic control algorithm for the artificial heart and assisted circulation was applied
to the invention of the new diagnosis methodology for the baroreflex sensitivity of
patients with hypertension. A successful climical application of this new invention
was performed. Technical application of the artificial internal-organ developments
is expectable.

2. Artificial Internal Organs Using Nanotechnology

Based on nanotechnology, development various artificial organs has been performed
in Tohoku University, the including artificial myocardium, the artificial heart, the
rotary blood pump, the artificial esophagus and artificial sphincter.

2.1. Artificial Esophagus

Everybody knows that surgery of esophageal cancer is difficult because of the re-
construction of the esophagus after the resection of the carcinoma tissue. If there
is an artificial esophagus, surgery will be simple and easy. Surgery with artificial
esophagus will be feasible with only fiberscope.

In Tohoku University, the project on the artificial esophagus is ongoing [1].
Based on the achievements of the project, invention of the therapeutic stent, which
has a therapeutic effect on the carcinoma tissue and the drinking function, 1s now
under development. This therapeutic and drinking stent is easily inserted into the
esophagus without any invasion. So this therapeutic and drinking stent was easily
used for patients with the end stage esophageal cancer, which is not respectable.

Hyperthemia therapy
to cancer tissue

Drinking function
with Nano SMA actuator

2nd coll in
Stomach
;/ (implanted by FBS)
L o
i
1st coil
for transcutaneous Control unit

energy transmission system

Fig. 1. Therapeutic and drinking stent for the end stage esophageal cancer
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2.2, Artificial Myocardium

The final place which should be assisted is the myocardial contraction afler a complete
surgical repair. Even after complete revasculanization of the coronary artery and a
complete repair of the heart valve, cardiac output cannot be maintained when the
confraction power 1s insufficient. An artificial myocardium system was invented in
Tohoku University by the use of nanotechnology [2]. This system consists of various
kinds of nanotechnology units, including the surface finishing technology, several
kinds of nano sensors, .nano mictotip PC, and TETS with nano tech.
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Fig. 2. Artificial myocardium

2.3, Artificial Heart

By the use of nanotechnology, an artificial heart system using the Undulation Pump
system has been developed in Tohoku University. This system consists of various kinds
of nanotechnelogy items, the including surface finishing technology, several kinds of
nano sensors, .nano mictotip PC, and TETS with nano tech. The control logic for the
artificial heart and the artificial myocardium needed the system identification, so this
logic might be useful for the diagnosis of the circulatory condition of the patients.

3. Baroreflex Sensitivity of the Artery in the Patients
with Hypertension

A system identification 1s required for the automatic control of the artificial heart
and the artificial myocardium. The systemn identification 1s useful for the diagnosis
of patients with circulatory diseases.
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Metabolic syndrome attracts attention as an important pathophysiology item in
Japan [3]. Hypertension is one of the important elements which constitute the Metabolic
syndrome. In a healthy human body, even if the blood pressure rises, the heartbeat de-
creases reflectively, the blood vessel relaxes and the blood pressure is lowered. However,
this reflective function fails in the hypertensive patient [4-5]. It is known that the baroreflex
function is insufficient or weak especially in the case of youth hypertension [6-7].

In order to diagnose the function of baroreflex, there are some diagnostic methods.
For example, there is the method of calculating from the reaction of the heartbeat to
blood-pressure change. No method of diagnosing the baroreflex function of a blood
vessel existed at all.

We invented the first method of diagnosing the baroreflex function of a blood
vessel. This new diagnostic method is outlined in this paper. The equipment which
diagnoses the baroreflex function of a blood vessel does not exist in all in the world.
This is because the method of measuring the elasticity of a blood vessel by the nonin-
vasive method is difficult. Then, we paid our attention to the pulse wave transmission
time (PTT) and the pulse wave velocity (PWV).

PTT and PWV are dependent on the elasticity of the arterial wall. According
to the increase of the arterial wall elasticity, PWV will become increased. This phe-
nomenon was applied, and the methodology which measures the baroreflex function
of a blood vessel was invented from PWV information. The conceptual diagram of

the system is shown below.
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Fig. 3. Baroreflex sensitivity evaluating system

In this system, the measurement parts are only the pulse wave and the electrocar-
diogram. Cardiophonogram may be used for substitution of the electrocardiogram. The
arm, the wrist, or the ankle are sufficient as the measurement part of the pulse wave.
The data will become exact if loads, such as conversion of the posture and injection of
the medicine, are added. Diagnostic measurement is possible even if there is no load.
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The acquired time series information is input into a personal computer through an
AD converter. Quantification and statistics processing are calculated. The time series
of the cardiac contraction 1s measured from the R wave of the electrocardiogram or
two sound of the cardiophonogram. The RR interval i1s changed into the Y-axis. The
wave by which the smoothing was carried out by the Spline interpolation is re-sampled
in 200 ms. As for the digital data, by which the discrete sampling was carried out, the
frequency analysis is performed. Fluctuation of each time series curve is calculated.
The delay time with the greatest correlation 1s calculated from the cross-correlation of
the obtamned time series. By this means, the influence that a change of blood pressure
produces on the elasticity of the blood vessel will be calculated. The X axis is set as
the change of the blood pressure, and the Y-axis is set as PWV or PTT after the delay
time with the greatest correlation. The regression straight line is computed using the
method of the least square. The methodology which adds a band pass filter to the time
series curve and enables to observe the Mayer wave around 0.1 Hz is sufficient.

An example of the cross-correlation of the systolic blood pressure time series
and the pulse wave transmission time series 1s shown in Fig.4.
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Fig. 4. Cross corrclation of the SBP and PTT
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In this example, the greatest cross-corrclation in the delay time around about 6.0
seconds 1s observed. Then the pulse wave transmission time after the blood-pressure
change and the delay time of the maximum correlation was plotted.
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Fig. 5. Baroreflex sensitivity of the artery



70 T. Yambe et al.

The result by which a significant correlation was observed showed that blood-
pressure change changed the blood vessel elasticity, reflectively. The regression
straight line was calculated by the method of the least square. The sensitivity of
the baroreflex function of the blood vessel can be calculated from this result. In the
case in which the blood pressure 1s high, the baroreflex function of the blood vessel
showed a falling tendency.

Previously the method of calculation of the baroreflex function of'a blood vessel
did not exist. We invented the method of calculation of the baroreflex function of the
blood vessel from information processing of the blood pressure and the pulse-wave
propagation time. The correlation analysis showed a changing PTT according to the
blood-pressure change after several seconds.

From the regression straight line, it is expected that the sensitivity of the reflective
function of the blood pressure is calculable. From now on, collection of cases can be
performed after their examination by the Ethics Committee of the appropriate hospital.
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Background and objectives

Recently, the ventricular assist devices are widely applied for a surgical treatment of the final stage of
severe heart failure as the bridge to heart transplantation or the destination therapy. However, it was
anticipated that the artificial components in the ventricular assist devices might cause the problems
concerning thrombosis and infection. As heart failure involves the decrease in myocardial contractile
function, the mechanical assistance by using an artificial myocardium might be effective. The authors
have been developing a mechano-electric artificial myocardial assist system (artificial myocardium),
which is capable of supporting natural contractile function from the outside of the ventricle. The system
was originally designed by using sophisticated covalent shape memory alloy fibres (Toki Corp.,
Biometal®), and no special surface modification of the device was not applied for enhancing blood
compatibility. The purpose of the project on the development of an ‘intelligent artificial myocardium’ was
to design a sophisticated myocardial assist device, which could represent direct mechanical

myocardial assistance in response to physiological demand.

Structural design for functional improvement

Some methodologies using novel devices other than the artificial hearts are proposed so far with severe
heart disease. However, it was also anticipated that the decrease in cardiac functions owing to the
diastolic disability might be caused by using those ‘static’ devices. Then, this study was focused on an
artificial myocardium using shape memory alloy fibres with a diameter of 100 um, and moreover the
structural design was examined for its functional improvement. The authors investigated the myocardial
structure in native hearts, and fabricated several types of myocardial assist device based on these results;
the circumferential type, and the oblique types which were three-dimensionally constructed. Their
hydrodynamic or hemodynamic functions were also examined in a mock circulatory system as well as in
amimal experiments using goats.

Results

The structure of myocardial fibers of a goat’s heart could be represented by a single muscular band [1].
The oblique design of the myocardial assist device was made to form the contractile streamlines from the
apex to ascending aorta. Basic characteristics and hemodynamic effects of the circumferential or oblique
types were examined in goat experiments (n=4) as well as in the mock circulatory system. The results
were as follows:

a) In the hydrodynamic test using the mock circulatory system, the volume assisted which was elevated
by 39% by morphological design.

b) Hemodynamic data obtained in goats indicated the more effective volumetric assistance by the oblique
design, and on the other hand there was no significant difference in systolic assisted pressure.

Therefore, it was suggested that the morphological design of artificial myocardial support system could
be more effective for the functional improvement of artificial myocardium as well as its control system
design.

Figure: Oblique type of artificial myocardium (bottom right), which was girdling the goat’s ventricle
designed from the native myocardial structure (bottom left), might be more effective.

Reference:

[1] Torrent-Guasp F, et al, ] Thorac Cardiovasc Surg. 2001 Aug;122(2):389-92
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Abstract

The authors have been developing a mechano-electric artificial myocardial assist system (artificial
myocardium), which is capable of supporting natural contractile function from the outside of the ventricle. Some
methodologies using novel devices other than the artificial hearts are proposed so far with severe heart disease.
However, it was also anticipated that the decrease in cardiac functions owing to the diastolic disability might be
caused by using those ‘static’ devices. Then, this study was focused on an artificial myocardium using shape
memory alloy fibres with a diameter of 100 um, and moreover the structural design was examined for its
functional improvement. The authors investigated the myocardial structure in native hearts, and fabricated
several types of myocardial assist device based on these results; the circumferential type, and the oblique types
which were three-dimensionally constructed. Their hydrodynamic or hemodynamic functions were also

examined in a mock circulatory system as well as in animal experiments using goats.

F—0—F . LERSE, MREESERE ATOR, EREL TR
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Fig. 2 A goat's heart showing the ventricular

myocardial band dissection which was unfolded by

Torrent-Guasp's procedure
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Fig. 3
from the data measured by MDCT, the white-coloured

Numerical reconstruction of the goat's heart

plastic markers indicated the centre and the edges at

each portion of myocardial band unfolded
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Fig. 3 Three different types of prototype models for the

artificial myocardial support, which were attached on

the silicone left ventricular model
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circumferential and oblique-type myocardial assistance

obtained in a goat.
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plastic modelling sculptured (bottom) for the preparation

of ventriculoplasty.
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Mechanical simulation for myocardial contractile assistance
based on controllability of a sophisticated shape memory alloy fibre
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Tablel Strain and tensile force test condition under the
different duration energized for each duty ratio
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Mechanical analysis of morphological structure of a heart for more sophisticated

design of the artificial myocardium
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A shape memory alloy fibred artificial myocardium
left

Fig. 1

presented, which was attached onto a silicone rubber

ventricle.
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Fig. 3 Reconstruction and 3D representation by a MDCT of

3 BRLELD the goat's heart with plastic markers
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20 Fig. 4 Two different types of the artificial myocardial assist

Aortic Characteristic Impedance

devices applied in the healthy goats’ cardiac support.
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Fig. 5 Changes in characteristic impedance obtained in the
goat by using two different types of myocardial assist devices.

434 —
- 235 -



