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our results. We tried to keep other ac-
quisition equivalent be-
tween 3.0- and 1.5-T imaging, but the
bandwidth was higher at 3.0 T. Higher
bandwidth results in a reduced signal-
to-noise ratio and reduced image distor-
tion. DT imaging at 3.0 T yields a higher
signal-to-noise ratio and causes greater
magnet susceptibility artifacts owing to
the higher static magnetic field strength.
We adjusted parameters so that we
could use a bandwidth of 1502 Hz per
pixel for 3.0-T imaging, which is up to
50% higher than the bandwidth used for
1.5-T imaging. Further optimization of
3.0-T imaging to improve the quality of
DT images may be required in the fu-
ture.

Second, the development of imaging
methods to reduce the effects of the
crossing-fiber problem, such as high an-
gular DT imaging with high b values (38)
and diffusion-spectrum imaging (36), is
progressing. Other fiber-tracking meth-
ods, such as probabilistic tractography
to estimate the probability of fiber con-
nections through the data field (39),
also are advancing. These advanced
methods will affect the results of both
3.0-T and 1.5-T tractography.

In conclusion, DT tractography at
3.0 T enables improved visualization of
the corticospinal tract compared with
DT tractography at 1.5 T, and 3.0-T
tractography of the superior longitudi-
nal fasciculus, corpus callosum, and for-
nix has some advantages over 1.5-T
tractography. Advances in efficient MR
sequences are needed to improve the
image quality and reliability of 3.0-T DT
tractography.

parameters
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THE VISUAL PATHWAY

OBJECTIVE: To evaluate of the role of magnetic resonance (MR) tractography on the
optic radiation with a 3-T MR unit in the surgery of cerebral arteriovenous malforma-
tion (AVM) in and around the visual pathway.

METHODS: Of the 322 patients with cerebral AVMs admitted to our clinic between
1978 and 2005, a study of MR tractography was made on 29 patients. Ten of those
patients had AVMs in and around the visual pathway and were included in this
study. There were two men and eight women ranging in age from 15 to 64 years
(mean age, 34.5 * 14.8 yr). All of the patients underwent 3-T tractography of optic
radiation (OR) and neuro-ophthalmologic evaluation. Four of the 10 patients
underwent surgical resection of the AVM. A postoperative 3-T MR study and a
neuro-ophthalmologic evaluation was performed 1 month after surgery in most
patients.

RESULTS: The preoperative patients for whom tractography demonstrated a con-
tinuous bundle of OR from the medial temporal region to the primary visual cortex
had minimal or no visual field loss, whereas the patients for whom the tractography
did not show a continuous bundle of OR had significant visual loss. The patients
for whom tractography in the postoperative study demonstrated a bundle of OR
experienced no postoperative deterioration of the visual field loss, whereas the
patients for whom tractography did not demonstrate a bundle of OR exhibited
significant visual field loss.

CONCLUSION: This technique is thought to be useful in confirming the integrity of
and localizing deviated tract and in evaluating the surgical risk, especially for non-
hemorrhagic AVMs in and around the visual pathways, taking some limitations of this
method into consideration.

KEY WORDS: Arteriovenous malformation, Diffusion tensor tractography, Optic radiation, Surgical
indication, 3-Tesla magnetic resonance imaging

Neurosurgery 58:331-337, 2006 DOI: 10.1227/01.NEU.0000195017.82776.90 www.neurosurgery-online.com

formations (AVMs), there is an inverse in-

crease in the risk of bleeding (12). Thus, in
the surgery of AVMs, complete resection of the
nidus is always required even if other intraaxial
lesions do not allow complete resection to avoid
postoperative deficits. Surgical indication for
AVMs usually is determined according to the
risk of postoperative deficits when complete re-
section is accomplished. Surgical indication for
AVMs is usually determined according to the

I n palliative treatment of arteriovenous mal-

=122=

risk of postoperative deficits when complete re-
section is accomplished.

Recent advances in magnetic resonance
(MR) technology have made it possible to de-
scribe major neural tracts in the white matter
by diffusion tensor tractography (2, 4, 13, 14,
21), including the visual pathways in the oc-
cipitotemporal connections (10). Diffusion
corresponds to the random motion of water
molecules. Although the tissue exhibits the
property of anisotropy in the region where
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diffusion of water varies significantly with direction, it shows
low anisotropy (expressed as isotropic) in the regions where
diffusion is similar in all directions (11, 20). Anisotropy can be
quantified by one of several indices, including fractional an-
isotropy (FA). These indices are derived from a full descrip-
tion in the region of interest (the diffusion tensor) obtained by
measuring changes in the nuclear MR signal with diffusion
sensitization along at least six noncollinear directions. In an
axonal cylinder, water diffusion is faster along the axon than
across it, probably because of the presence of structures, in-
cluding the axonal membrane and the neurofilamentary cy-
toskeleton, which behave as barriers to diffusion. Because
fiber tracts are composed of collections of similarly oriented
axons that generally exhibit high anisotropy values, FA re-
flects the integrity of fiber tracts. Diffusion within each voxel
can be described by three mutually perpendicular eigenvec-
tors, whose magnitude is given by three corresponding eigen-
values. The eigenvalues are the three principal diffusion coef-
ficients measured along the three eigenvector directions that
define the local fiber frame of references for that voxel. The
direction of fiber is thus given by the eigenvector of the largest
eigenvatue of the diffusion tensor (11, 20).

We reported that a 3-T MR unit can describe most of neural
tracts more clearly than a 1.5-T unit (8, 15). Tractography of
the four neural tracts (corticospinal tract, superior longitudi-
nal fasciculus, corpus callosum, and fornix) described by a 3-T
unit was compared with that by a 1.5-T unit in the degree of
inspective recognition by the observers, in the quantitative
number of fiber bundles, and in the right-left asymmetry of
the number of bundles. The 3-T unit showed significant better
performance in all three aspects in describing the corticospinal
tract, and in at least one of the three aspects in describing other
three neural tracts (15). This study provides the results of early
experiences using 3-T MR tractography in the surgery of ce-
rebral AVMs in and around the visual pathway.

PATIENTS AND METHODS

Patients

Of the 322 patients with AVMs admitted to our clinic be-
tween 1978 and 2005, 29 underwent 3-T MR tractography. Ten
of those patients had AVMs in and around the visual pathway
and were included in this study. There were two men and
eight women ranging in age from 15 to 64 years (mean age,
34.5 * 14.8 yr). Three patients experienced hemorrhagic onset.
Four had migraine-like episodes and four exhibited some
visual field loss. The location of the AVMs was the occipital
pole in three patients, the medial portion of the occipital lobe
in one, the lateral portion of the occipital lobe in two, the
posterior portion of the temporal lobe in three, and the thal-
amus in one. The Spetzler-Martin grade of the AVMs was I in
two patients, II in three patients, IIl in three patients, and IV in
two patients. The characteristics of the patients are shown in
Figure 1. Four of the 10 patients (Patients 1-4) underwent
surgical treatment. Surgical resection alone was performed in
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Patients 1, 2, and 4, and surgery after embolization was per-
formed in Patients 3. The characteristics of the patients who
had surgical treatment are shown in Figure 2. Complete oblit-
eration of the lesion was confirmed in all surgical cases by
postoperative angiography.

Neuro-ophthalmologic Evaluation

A Goldmann perimetry was performed in all 10 patients to
assess visual field loss. Postoperative examinations were per-
formed once 1 month after surgery in two patients, twice in
one patient 1 week and 1 month after surgery, and twice in
one patient 1 month and 5 months after surgery. Visual field
defects of the patients were classified into five grades (normal,
incomplete quadrantanopia, complete quadrantanopia, in-
complete hemianopia, complete hemianopia) according to the
amount of loss reported previously (6, 7) (Figs. 1 and 2).

Imaging Methods

All patients were studied before surgery with the same 3-T
MR scanner (Magnetom Trio; Siemens, Erlangen, Germany).
In four surgical patients, a postoperative MR study was car-
ried out once 1 month after surgery in three patients and twice
in one patient 1 month and 5 months after surgery. Images
were obtained with axial T2-weighted turbo spin echo se-
quences (TR/TE = 8400/108 ms; flip angle, 150°; matrix, 512
X 448; field of view, 22 cm; 40 slices; slice thickness, 2.3 mm;
interslice gap, 0.7 mm and twice averaging) and with axial
T1-weighted three-dimensional magnetization-prepared rapid
acquisition gradient-echo (MPRAGE) sequences (TR/TE/TI =
2000/4.4/990 ms; flip angle, 8% matrix, 256 X 240; field of
view, 24 cm; 208 slices; slice thickness, 1 mm, no interslice gap
and single averaging). At the same time, thin-section
diffusion-tensor imaging was performed. The diffusion-tensor
imaging acquisition time was 4 minutes and 24 seconds. A
single-shot spin echo echo-planar imaging technique was used
(repetition time/echo time = 5300/79 ms) with a motion-
probing gradient in 12 orientations, a b value of 700 seconds/
mm?, and four times averaging. The generalized autocalibrat-
ing partially parallel acquisitions algorithm was applied for
parallel imaging, with a reduction factor of 2 and 24 additional
autocalibrating phase-encoding steps in the center of k space.
The reconstructed images had a 128 X 128 matrix. A total of 40
sections were obtained with a thickness of 3 mm without
interslice gaps. The imaging field center for T2-weighted im-
ages, MPRAGE, and diffusion tensor imaging were adjusted
to the same location.

Data Processing

We transferred the diffusion-tensor imaging data to an off-
line workstation for data analysis. DTI studio software version
2.03 (H. Jiang, S. Mori; Department of Radiology, Johns Hop-
kins University) was used for tensor calculations (11, 20). After
calculating the six independent elements of the 3 X 3 tensor
and diagonalization, three eigenvalues and eigenvectors were

www.neurosurgery-onilne.com
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case 1 2 3 4 5 6 7 8 9 10
age 38 27 29 28 15 37 55 64 25 27
gender F F F F F F F M M F
headache, headache, headache, headache,
onset scintilating hemorrhage  scintilating hemorrhage  scintilating hemorrhage scintilating incidental headache vertigo
scottoma scottoma scottoma scottoma
size (cm) 2 2 4 4 4 4 4 2 4 5
side L R R R R R R R R L
. - . temporal, occpital, temporal, occipital, occipital occipital temporal, occipital pole
Roxaen accioitel. medial posterior lateral posterior lateral thalamus pole pole posterior  and thalamus
S-M grade | | Il L] L] v v I} L} n
incomplete complete complete complete
visual field loss| homonimous homonimous none none none honomimous none none none homonimous
quadrantanopia hemianopia quadrantanopia hemianopia

3-tesla MR
tractgraphy of
OR
Grade Il Grade V Grade I Grade | Grade 11 Grade IV Grade Il Grade I1 Grade | Grade V
State of OR running just running just c;unnmng passing fairly described passing running just c(:runnnl'aﬂty
besidesthe  disrupted  besidesthe 7 d"'fm“’*"f through the on the through the  besides the spm‘: ron disrupted
nidus nidus the nidus nidus tractgraphy nidus nidus ho s

FIGURE 1. Diagram summarizing the 10 patients with AVMs in and
around the optic radiation who underwent a 3-T MR study. It gives
the age, sex, type of onset, side, location, Spetzler-Martin grade of the

obtained. The eigenvector associated with the largest eigen-
value was assumed to represent the intravoxel fiber orienta-
tion. An FA map and a directional color-coded map were
synthesized. Starting from a particular region of interest, one
can follow the direction of the principal eigenvector, thus
following the corresponding fiber. Translation of eigenvectors
into neuronal trajectories was achieved by a technique known
as the fiber assignment by continuous tracking method, which
was initially described by Mori et al. (11). The procedure for
mapping neural connections is performed by designating two
regions of interest in the three-dimensional space on DTI
studio software. Region of interest segmentation was per-
formed by one author (TO). The region of interest placement
starts at the lateral geniculate ganglion in bilateral mesial
temporal region on coronal b = 0 images. Then a secondary
region of interest was added at the bilateral occipital lobe on
the coronal images. The optic radiation (OR) was identified as
a green color area abutting the trigone of lateral ventricle in
the temporo-occipital deep white matter on a coronal color-
coded map (17, 20). The secondary regions of interest were
placed at the area as described on a coronal color-coded map.
This method was useful when the AVMs were situated close

NEUROSURGERY

lesion, surgical indication, amount of preoperative visual field defect,
MR tractography of OR, and interpretation of the findings of tractog-
raphy.

to the primary visual cortex and the primary visual cortex was
difficult to identify based on the sulcal patterns. Tracking was
terminated when it reached a pixel with low FA (<0.2) or a
predetermined trajectory curvature between two contiguous
vectors (inner product, <0.75). Fiber tracts that passed
through both regions of interest were designed to be the final
tract of interest. The traced fiber tracts in this study included
OR and temporal part of inferior occipito-frontal fasciculi.
There are the arcuate fibers and the fibers with downward
projection from the splenium of corpus callosum (tapetum)
that courses near the OR/inferior occipitofrontal fasciculus
(IOFF) complex in the temporal lobe. These fibers are the
structures localized lateral to the OR/IOFF complex and along
with the z axis of MRI scanner, whereas the OR/IOFF complex
exists mainly along with the y axis. Therefore, their presenta-
tion and orientation apparently can be discriminated from
those of the OR/IOFF complex on the FA map and can be
deleted selectively on the software (7, 15). A typical tract
reconstruction by using a two-region of interest method re-
quired approximately 1 minute by using a 3.2-GHz Pentium
IV workstation (Dell, Austin, TX). The entire data postprocess-
ing time for ORs on both hemispheres took approximately 10

VOLUME 58 | NUMBER 2 | FEBRUARY 2006 | 333
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Preopeartive study Postoperative status
case| age | gender | intervention .
’ - visual field loss
|
state of the OR | visual field loss state of the OR (timing of the study) (Giming of the shudy)
complete
preserved quadrantanopia
i (1 mo. after surgery)
running just esEiEts (1 wk. after surgery)
1] 38 F surgery lateral to the poe
: quadrantanopia )
nidus incomplete
quadrantanopia
(1 mo. affter surgery)
running apart preserved no defect
o F surgery from the nidus no defect (1mo. after surgery ) (1mo. after surgery )
running just 2 incomplete
3|29| F :‘;’gz;?z:t?:; inferomedial to | nodefect | . d;r:f:"f’ hemianopia
the nidus ( ’ urgery ) (1mo. after surgery )
remained disrupted conplete hemianopia
(1mo. after surgery ) (1mo. after surgery )
4 | 27 F surgery disrupted oonplete_
hemianopia appeared to be ,
F A incomplete
running just benieth y
e s ol
(5 mo. after surgery) ) rgery
FIGURE 2. Diagram summarizing four patients who received surgical erative and postoperative visual field defect, postoperative MR tractography

treatment for AVMs. It provides the age, sex, type of onset, amount of preop-

to 15 minutes after completion of the examination, including
the data transfer to the off-line workstation.

Evaluation of the State of OR on Tractography and the
Geometrical Relationship between the Nidus and the OR

When the OR could be described as a continuous bundle, the
geometrical relationship between the nidus and the OR was
evaluated by fusing the images of tractography and those of
MPRAGE or T2-weighted images. The field center for T2-
weighted image, MPRAGE, and diffusion tensor imaging were
adjusted, and a fusion image was obtained using DTI studio by
simple overlay. Our diffusion tensor imaging obtained with a
Siemens MR scanner had low eddy current geometric distortion
(1), and the parallel imaging technique also contributed to the
lower magnetic susceptibility related artifact. A simple overlay is
enough for creating fusion images with the same field center. OR
tractography was classified into five grades as described: Grade
I, the OR was running completely apart from the nidus; Grade II,
the OR was running just beside the nidus; Grade III, the OR was
passing through the nidus or projecting into the nidus. When the
OR could not be described clearly, the state of OR description
was graded as follows: Grade IV, the OR was fairly described on
the tractography; Grade V, the OR cannot be described com-
pletely (disrupted).

334 | VOLUME 58 | NUMBER 2 | FEBRUARY 2006

of OR, and interpretation of preoperative and postoperative tractography.

RESULTS

Relationship between the Findings of Tractography and
the Amount of Visual Field Loss before Surgery

The OR could be described as a continuous bundle on
preoperative tractography in seven patients. The OR coursed
apart from the nidus in two patients and just beside the nidus
in three patients and passed through the nidus in two patients.
In the remaining three patients, the OR was fairly described on
the tractography in one patient and was disrupted by the
hematoma or the huge nidus in two patients. The first seven
patients had no or minimal visual field loss at presentation,
whereas the remaining three patients exhibited severe visual
field loss at presentation. As for the four patients with
migraine-like episodes at presentation, the OR coursed just
beside the nidus or passed through the nidus.

Relationship between the Findings of Tractography and
the Amount of Visual Field Loss after Surgery

Among the four patients who underwent surgical treat-
ment, the OR was preserved in the postoperative study 1
month after surgery in two patients (Patients 1, 2) (Fig. 2). The
two patients exhibited no deterioration of visual field loss 1
month after surgery. In Patient 1, transient worsening of visual
field loss occurred within 1 week of surgery, but the deficits

www.neurosurgery-online.com
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were improved to preoperative status by 1 month after sur-
gery. In Patient 3, a large part of the occipital lobe had to be
removed because of intraoperative normal perfusion pressure
breakthrough. The OR could not be described on the postop-
erative study 1 month after surgery, and deterioration of
visual field loss occurred after surgery. In Patient 4, the OR
was disrupted by a hematoma both in the preoperative study
and in the study 1 month after surgery. However, the OR
seemed to be described in the study at 5 months after surgery
in accordance with the shrinkage of the hematoma. The
amount of visual field loss of the patient was unchanged 1
month after surgery, but was much reduced 5 months after
surgery (Fig. 2).

Preoperative and Postoperative FA Maps and
Quantitative FA Values in the Representative Patients

In Patient 1, ORs on both sides in the preoperative (Fig. 3A)
and the postoperative OR tractography (Fig. 3B) were well
visualized on the three-dimensional view of OR tractography,
the two-dimensional view of OR tractography overlaid on

FIGURE 3. A, preoperative and (B) postoperative images of Patient 1,
who had a left occipital AVM: (left) Three-dimensional view of OR trac-
tography, (middle) two-dimensional view of OR tractography overlaid on
axial FA map, and (right) axial MPRAGE images. Both preoperative and
postoperative OR tractography are well visualized on both sides, and post-
operative FA values (mean * standard deviation) along the tract on the
affected side do not differ from preoperative values.
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axial FA map, and on axial MPRAGE images. Postoperative
FA values along the tract did not differ from preoperative
ones. In Patient 3, preoperative and postoperative left OR
tractography were well visualized, but postoperative right OR
tractography seemed to be damaged (Fig. 4). Patient 3 exhib-
ited lower FA values in postoperative tractography than pre-
operative tractography in the affected hemisphere.

DISCUSSION

In the surgery of cerebral AVMs, complete obliteration is
always required because palliative treatment inversely in-
creases the risk of bleeding (12). We previously reported that
a dissection technique with minimal coagulation that pre-
serves the intranidal venous drainage is important for avoid-
ing postoperative neurological deterioration (3). In addition,
one of the most important factors of a favorable surgical
outcome is that surgical indication is determined according to
the risk of postoperative neurological aggravation when com-
plete resection is accomplished.

Left OR
0.44+0.14 048+0.17

Right OR

FIGURE 4. A, preoperative and (B) postoperative images of Patient 3,
who had a right occipital AVM: (left) Three-dimensional view of OR frac-
tography, (middle) two-dimensional view of OR tractography cverlaid on
axial FA map, and (right) axial MPRAGE images. Preoperative and post-
operative left OR tractography are well visualized, but the postoperative
right OR exhibits lower FA values in postoperative tractography than pre-
operative tractography in the affected hemisphere.
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MR tractography by diffusion tensor imaging has realized
visualization of the major neural tracts in the white matter
both in physiological and pathological conditions (2, 4, 10, 13,
14, 19). Prognosis of motor function in the patients with len-
ticulostriate infarcts was related to the geometrical relation-
ship between the lesion and motor fibers on the tractography
(13). MR tractography visualized sensorimotor fibers in the
patients with AVMs situated near sensorimotor cortices (19).
Use of a neuronavigation system combined with the tractog-
raphy of the corticospinal tract in tumor surgery also was
reported (4, 14).

In this study, we used a 3-T MR unit in the evaluation of the
surgical risk of AVMs situated near the OR, because a 3-T unit
can describe most of neural tracts more clearly than 1.5-T units
(8, 15). The patients exhibited minimal or no visual field loss
when the OR could be described as a continuous bundle. The
patient for which the OR was disrupted or fairly described on
the tractography exhibited severe visual field loss. The find-
ings of postoperative tractography also corresponded with the
amount of visual field loss. These findings suggest that esti-
mation of the state of OR and evaluation of the geometrical
relationship between the nidus and the OR are useful for
determining the surgical risk of AVMs in and around the
visual pathways. Currently, we exclude patients who exhibit
minimal or no preoperative visual field loss from the surgical
indication of AVMs in and around the visual pathways when
the OR is described as a bundle passing through or projecting
to the nidus.

Postoperative transient worsening of visual field loss was
observed in two patients. In one patient, transient worsening
occurred 1 week after surgery. The OR could be described at
1 month after surgery and visual field loss of the patient
recovered to the preoperative status. In this patient, transient
worsening might have been caused by mechanical injury by
surgical manipulation or by transient change of regional blood
flow around the OR. In three of the four patients who under-
went surgery, the amount of visual field loss correlated to the
state of OR in the study 1 month after surgery. Tractography
of the OR also may be useful to predict the prognosis of
postoperative visual field deficits and the optimal time for the
study to estimate the state of OR at 1 month after surgery.

Functional translocation sometimes occurs in the brain of
patients with cerebral AVMs (5, 9, 19). In this series, there
were two patients (Patients 2 and 8) exhibiting no visual field
loss such that the course of the OR was deviated by the nidus.
The OR passed through the nidus in two patients (Patients 5
and 7) who also exhibited visual field loss. Although further
investigation is necessary, tractography of the OR may indi-
cate whether the functions for vision remain in the neural
tissue within the nidus. That is critical in determining surgical
indication of AVMs.

There are three limitations in this study. Visual loss of the
patients with disruption of the OR by hematoma on the trac-
tography at presentation seemed to improve in accordance
with the shrinking of the hematoma. However, description of
the OR was less in all patients with hematoma (Patients 2, 4,
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and 6) than in patients without hematoma. These observations
show not only that the description of the OR in the tractogra-
phy corresponded to the visual functions, but also suggest the
possibility that the tractography in our method has less ability
to describe the tract under existence of hematoma. Our study
potentially has the technical concerns of a single-shot tech-
nique regarding possible susceptibility artifacts from the he-
matoma that may cause signal intensity drop-off around the
nidus on the source diffusion tensor images. Our method
should be feasible for most nonhemorrhagic AVMs, and eval-
uation of the tractography should be performed at least after
the hematoma has been completely absorbed in those with
hematoma.

Some investigators may recommend higher performance of
the tractography in a higher number of directions instead of 12
directions in describing the tracts with severely curved or
tortuous projection, such as motor fibers of hands in the
corticospinal tract and Meyer’s loop in the visual pathway.
Because we performed the tractography in 12 directions in this
study, it was possible that a part of the OR with a severely
curved course (Meyer’s loop) could not be estimated well.
Although we have preliminary data indicating that descrip-
tion of the OR by tractography in 40 and in 81 directions did
not significantly differ from by the tractography in 12 direc-
tions, this is another limitation of this study that should be
examined in the future.

The third limitation is that the grading of the state of OR was
determined according to visualization of the tract. It is very
difficult to be certain if the tract is really destroyed or disrupted,
especially when the OR cannot be visualized on the tractography
(Grade V). There is a report of tumor cases suggesting that
disruption of the corticospinal tract (CST) on the tractography
does not always mean the functional disruption of the tract and
that location of CST probed by motor evoked potential often was
apart from the corresponding site where tractography is indi-
cated (14). However, we recently reported that location of the
CST indicated by intraoperative motor evoked potential corre-
sponded to the site where the tractography is indicated in most
patients of our series, mainly patients with nonneoplastic lesions
(16). There is a possibility that tractography in patients with
tumor cannot reflect the function of the tract so correctly as in
patients with AVMs because histopathological change, such as
perifocal edema or infiltration of the tumor, often exists in the
white matter of tumor patients. Quantitative FA values have a
potential to enable the functional evaluation of the tract (18), and
an FA value of approximately 0.20 has been reported to be the
optimal trackability threshold of the CST (6), which was the same
value of the threshold used in our study. This issue will be
resolved in the future by the accumulation of data regarding
correlation between the function of the tract and the quantitative
FA values.

CONCLUSION

In summary, this technique is thought to be useful in con-
firming the integrity and to localize deviated tract and in
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evaluating surgical risk, especially in patients with nonhem-
orrhagic AVMs in and around the visual pathways, taking
some limitations of this method into consideration.
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COMMENTS

his study investigates 10 patients with cerebral arteriovenous mal-

formations (AVMs) that were intimate with the optic radiations.
Three presented with hemorrhage, and four patients underwent sur-
gical excision. Using 3-T magnetic resonance tractography, the status
of the optic radiations was determined both at presentation and after
surgical resection in the four patients. There was excellent correlation
between the integrity of the optic radiations as imaged on the mag-
netic resonance studies and the status of the visual fields. Although
these results are not surprising, 3-T magnetic resonance tractography
may be a useful technique to predict which patients are likely to
experience visual field loss after surgical resection of AVMs that are
adjacent to the optic radiation or visual cortex.

Robert A. Solomon
New York, New York

Diffusion tensor imaging is a potentially valuable tool for preop-
erative planning, and may provide information that could be
clinically important and that is virtually impossible to obtain with
conventional anatomical techniques, such-as T1, T2 and flair imaging.
This method uses information obtained from anisotropic diffusibility
of the water in the white matter tracts. Nowadays, the diffusion tensor
technique is used increasingly, as it is present in most commercially
available magnetic resonance scanners. This study by Kikuta et al.
provides some interesting information, such as the good correlation
between the integrity of the odds ratio in the tractography and the
absence of important visual field defect, at least anecdotally. Other
than the good correlation between what they called disrupted tract
and the visual field defect, there are some technical limitations that
deserve comment, for instance the magnetic field distortion in the
hemorrhagic cases that could be responsible for misinterpretation of
the real odds ratio status. Also, we do not know for sure if the tract is
completely or only partially represented in the color-coded map. That
is why the role of the diffusion tensor imaging in planning and
postoperative follow-up still has to be defined. The fast technical
improvement in software and hardware will certainly shorten this
time and, in the near future, we will really be able to inform about the
real status of the white matter tracts.

Nelson F. Ferreira
Evandro P. de Oliveira
Sdo Paulo, Brazil

he authors have used a novel imaging technique which has proven

useful in both the preoperative prediction of visual loss associated
with resection of AVMs in and near the optic radiations and in the
postoperative differentiation between permanent deficits and those
likely to improve with time. Although their series is small, the find-
ings are compelling. If they are confirmed by other surgeons, magnetic
resonance tractography may be a very helpful addition to our evalu-
ation armamentarium in selected patients.

Duke S. Samson
Dallas, Texas
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