® Technical Note

Ultrasound in Med. & Biol.. Vol. 34. No. 1. pp. 160-165. 2008

Copyright © 2007 World Federaton for Ultrasound in Medicine & Biology
Printed in the USA. All rights reserved

0301-5629/08/%—see front matter

doi:10.1016/j.ultrasmedbio.2007.06.025

DETECTION AND QUANTIFICATION OF CALCIFICATIONS IN
INTRAVASCULAR ULTRASOUND IMAGES BY AUTOMATIC
THRESHOLDING

E. SanTOs FiLHO,* Y. SAD0,* A. Tanaka,” and M. YosHizawa®
*Department of Medical Engineering and Cardiology, Institute of Development, Aging, and Cancer, Tohoku
University, Sendai; "Faculty of Symbiotic Systems Science, Fukushima University, Fukushima; and “Information
Synergy Center, Tohoku University, Sendai, Japan

(Received 18 January 2007, revised 18 May 2007, in final form 26 June 2007)

Abstract—An innovative application of automatic thresholding is used for the detection of calcification regions
in intravascular ultrasound images. A priori knowledge of the acoustic shadow that usually accompanies
calcification regions is used to discriminate these from other bright regions in the image. A method for the
calculation of the angle of calcification has also been developed. The proposed algorithms are applied to in-vivo
images obtained from left anterior descending coronary arteries during percutaneous transluminal coronary
angioplasty (n = 14). The resulting specificity is 72% and the sensitivity 84%. The receiver operating charac-
teristic curve, the area under the curve being equal to 0.91, is plotted to evaluate the algorithm performance.
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INTRODUCTION

It is estimated that cardiovascular diseases cause one-
third of all deaths globally. Coronary artery disease is a
chronic disease in which the coronary arteries gradually
harden and narrow in a process called atherosclerosis. As
the heart muscle is fed with oxygen-rich blood delivered
by the coronary arteries, a blockage in these arteries can
cause a heart attack (WHO 2005).

Currently, several imaging modalities are available
to support the diagnosis of coronary artery diseases.
X-ray coronary angiography and intravascular ultra-
sound (IVUS) are examples of the most commonly used
diagnostic tools. Intravascular ultrasound has several im-
portant advantages over angiography and provides new
diagnostic and therapeutic insights into coronary discase.
The tomographic orientation of ultrasound enables visu-
alization of the entire circumference of the vessel wall
and provides information about the tissues beneath the
luminal border (Kaneda et al. 2003).

As presented in the work of Rao et al. (2005), the
knowledge about the origin and progression of athero-
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sclerosis has advanced greatly in the last years. However,
the factors that determine atheromatous plaque instabil-
ity are not well understood. New diagnostic and thera-
peutic methods would have to be developed if an accu-
rate and reliable prediction of plaque vulnerability were
available. Based on histologic analysis of aortas with
areas of gross atherosclerosis, Rao et al. (2005) observed
that plaque instability is highly correlated with in-
traplaque hemorrhage, lipid content and plaque size.
Calcification does not seem to be a significant indicator
of plaque instability.

However, the amount of coronary calcium has been
shown to be very important for physicians. Shaw et al.
(2006) have conducted a study that confirms the prior
findings that the prevalence of coronary calcification
increases with age. They evaluated a unique method
whereby estimates of the extent of coronary calcification
may be used to adjust a patient’s age. It was revealed by
their study that for elderly patients with low-risk calcium
scores, survival is equivalent to that for patients 1 to 10
years younger. On the other hand, for younger patients
with moderate- to high-risk calcium scores, survival is
equivalent to that for patients approximately 20 years
older. Thus, a score that includes coronary calcium and
age may be useful for prevention strategies.
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The presence or absence of calcium demonstrated
by IVUS has been shown to be an important determinant
of transcatheter interventional success (Scott et al. 2000).
In theory, there may be a critical quantity of calcium that
1s predictive of an unsatisfactory outcome with balloon
angioplasty, but without an accurate method to quantify
coronary calcification, that critical calcium content can-
not be determined.

Several studies on IVUS image segmentation have
been published that aim to automate this process (Saijo et
al. 2004, 2006a; Sonka et al. 1995; Brusseau et al. 2004,
Vince et al. 2000).

In this paper, we present an algorithm based on
automatic thresholding for the automatic detection of the
calcification regions in IVUS images, which may be used
for the automation of the method proposed by Scott et al.
(2000).

MATERIALS AND METHODS

Intravascular ultrasound data were acquired with an
IVUS console (Clear View Ultra, Boston Scientific Inc.,
Natick, MA, USA) and a 40-MHz mechanically rotating
IVUS catheter (Atlantis SR Plus, Boston Scientific Inc.).
Radiofrequency (RF) data were digitized and stored on a
personal computer (Dell Precision Workstation 330, Dell
Inc., Round Rock, TX, USA) using an A/D board
(GAGE Compuscope 8500, 500 Msamples/s, 8-bit reso-
lution, Gage Applied Inc., Montreal, Quebec, Canada)
for off-line analysis. The images used were of the Win-
dows bitmap type and the algorithms were developed
using MATLAB (The Mathworks, Inc., Natick, MA,
USA).

Subsequently, the RF signal was preprocessed and
converted to a conventional B-mode IVUS image
through a software developed by our group. Using this
procedure we could remove the influence of the control
settings of the IVUS console that usually affect algo-
rithms based on image gray levels.

Radiofrequency signal data were acquired in vivo
from 14 human left anterior descending (LAD) coronary
arteries during percutaneous transluminal coronary an-
gioplasty (PTCA). This process was approved by a local
investigation review board and was performed in accor-
dance with the ethical principles for medical research
involving human subjects. We obtained written informed
consent from all subjects.

Multithresholding segmentation

Calcification regions are usually very bright regions
in IVUS images. Tests using speed of sound microscopy
(Saijo et al. 2006b) have confirmed that the strongest
echo is produced between calcium and lumen or calcium
and media. where the difference in the specific acoustic
impedance is large.

Thus, it is natural to consider thresholding as a
simple method to segment calcification regions. How-
ever, in spite of being brighter compared with normal
tissue, the gray levels of the calcified regions and normal
tissue usually change from image to image. This fact
makes it very difficult to determine a single threshold
value capable of accurately segmenting a series of im-
ages.

Thus, it is necessary to adapt the threshold level for
each input image. In this work, we used the Otsu method
(Otsu 1979) to automatically find the optimal threshold
for each image. However, in our tests, applying thresh-
olding only once was not sufficient to obtain segmented
regions that were reasonably close to the regions of
calcification.

To solve this problem, a multithresholding method
was applied, using successive applications of the Otsu
method as summarized in the following algorithm. The
Otsu method is summarized in the Appendix.

Algorithm 1. Step 1: Compute the histogram.

Step 2: Compute the optimal threshold k# that max-
imizes the between-class variance (k).

o3(k*) = maxog(k)

Step 3: Compute a new histogram for i = k.

Step 4: Go to step 2.

After several tests, it was observed that three itera-
tions of the above algorithm were sufficient to obtain
segmentation sufficiently close to the regions of
calcification.

However, often normal tissue, parts of the catheter
and artifacts also form very bright regions and may be
wrongly segmented. For this reason, it is necessary to
develop a method to ignore segmented bright regions
that are not calcifications.

Identification of calcification from the regions-of-interest

Another characteristic of calcification regions is that
they are usually accompanied by an acoustic shadow as
a result of the high reflection of the ultrasound beam at
such sites. Thus, an effective way to detect whether a
given segmented bright region, hereafter called a region-
of-interest (ROI), is a calcification region, is through the
analysis of the region behind the ROL. In Fig. 1, there is
an example of an IVUS image with a calcification region
and a graph of the median gray level of the pixels in each
column of the corresponding polar coordinate system
image.

We can observe in Fig. | that the region of calcifi-
cation i1s accompanied by an acoustic shadow, and the
corresponding region in the graph presents a lower me-
dian level.
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Fig. 1. Example of an IVUS image with a calcification and its corresponding graph of median gray level of the pixels
in each column of the rectangular coordinates system corresponding to the original polar system of IVUS images.

Detection of acoustic shadow

To detect the acoustic shadow and then determine
whether a given ROI is a calcification, the following
algorithm is used:

Algorithm 2. Step |: Determine the centroid of the
segmented ROI.

Step 2: From the centroid of the ROI to the bottom
of the image (pixels of the yellow line in Fig. 2), calcu-
late the median gray-level value, Med.

Med -
Step 3: It M = T,.. then classify the ROI as a
cent

calcification. Otherwise, classify the ROI as a noncalci-
fication region. M_,,,, denotes the gray level of the pixel
at the centroid of the ROL

T,..q Was chosen based on tests using several im-

catheter zone

Fig. 2. Example of identification of calcification due to acoustic

shadow. The ROI 1 and ROI 2 were not classified as calcifi-

cation (indicated by the red X). The ROI 2 was classified as

calcification (indicated by the red circle). The criterion for

classification was the presence of acoustic shadow detected

through analysis of the pixels in the yellow line. ROI = region
of interest; C = centroid.

ages. As illustrated in Fig. 2, only ROI 2 was selected as
a calcification region because of its detected acoustic
shadow.

The true-positive rate and the false-positive rate de-
pend on the threshold value 7,,,,; used to define positive and
negative test results. As we shift T,,,, in the range of the

Med

possible values of M found in our tests (from 0.3 to
cent

0.98), the true-positive rate and false-positive rate also
present increasing values, which are used to construct the
ROC curve. Some values are shown in Fig. 5 as examples.

Fig. 3. Example of determination of the angle of calcification.
(A) and (B) are the extreme points of the calcification region.
(C) is the center of the catheter.
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(G)

V)

Fig. 4. Example of calcification regions automatically segmented. (A, B, C) Original images. (D. E, F) Corresponding
automatically segmented images. (G, H, I) Corresponding manually segmented images. The outlined areas are the
calcification regions.

Quantification of calcification regions

Usually, the method used to quantify calcium
through IVUS images is based on the arc of calcium
measured in a single frame of the IVUS movie of the site
of the calcification. However, the accuracy of this
method would be increased if it could take into account
the extent of the total epicardial coronary calcium (Scott
et al. 2000).

Scott et al. (2000) have proposed a method for
calcification quantification similar to Simpson’s rule,
which is used in calculus to determine volumes. As a
sequence of known areas separated by a known distance
can be used to calculate volume, a sequence of known
circumferences separated by a known distance can be
used to calculate the surface area.

As the manual measurement of calcification across
a sequence of frames is a tedious and time-consuming
task, we developed an algorithm for the measurement of
the angle of the calcification regions detected through the
automatic thresholding. This method is summarized in
the following algorithm:

Algorithm 3. Step 1: Determine the extreme points
of the calcification region denoted by the letters A and B,
as shown in Fig. 3.

Step 2: Determine the center of the image (center of
the catheter), denoted by the letter C, and then calculate
the length of the sides of the triangle determined by
points A, B and C.

Step 3: Using the sine and cosine rules, calculate the
angle whose vertex is at point C; this will be considered
as the calcification angle.

Intravascular ultrasound sequences containing cal-
cification regions were selected by an expert medical
doctor, and from each calcification region sequence, one
representative frame was selected for the tests. Then, the
selected images were manually segmented by the expert
medical doctor and used as our gold standard.

RESULTS

Using the algorithms for automatic thresholding and
acoustic shadow detection. tests were performed and
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Fig. 5. Receiver operating characteristic curve. The AUC is equal to 0.91. TPR = true-positive rate; FPR =
false-positive rate.

some of the results are shown in Fig. 4. We observe that
in these images, the regions of calcification are seg-
mented accurately. The threshold level used for the me-
dian values is empirically determined as 7,,,, = 0.45.
Table 1 summarizes the results of the tests, and the ROC
curve is plotted in Fig. 5. The area under the curve
(AUCQ) is equal to 0.91. The resulting specificity is 72%
and the sensitivity 84%.

DISCUSSION

The analysis of the images in the rectangular coor-
dinate system (demodulate RF line) corresponding to the
originally polar system of the IVUS images facilitates
the process of acoustic shadow detection because in the
rectangular images, the shadow region is confined to a
given number of columns, forming a rectangular area
that can be scanned easily.

Sometimes part of the catheter may appear very bright
and simultaneously present an acoustic shadow because of
the presence of the guide wire. In such cases, part of the
catheter may be wrongly segmented as a calcification. To
prevent this problem, a test is performed to determine
whether the centroid of the ROI is inside the 30-pixel-length
radius circle centered at the catheter center. This circle
corresponds, approximately, to the catheter region. Thus, if

Table 1. Table of results

ROIs ROIs
correctly wrongly Total number
classified classified of ROIs
Calcification 21 4 25
Normal tissue 13 5 18

ROI = Region-of-interest.

a ROI centroid falls inside this circle, it will not be consid-
ered as a candidate calcification region. However, because
of this constraint, an underestimation of the amount of
calcium may occur in the case of a highly concave calcifi-
cation region that is very close to the catheter, causing its
centroid to fall inside the catheter region. In this case, this
calcification will not be detected. However, in our tests we
did not find such a case.

The number of iterations of successive thresholding
was determined empirically. It was observed that after each
threshold, the value of the standard deviation of the gray
level in the remaining regions usually declines. This infor-
mation may be used to define a stopping criterion and then
improve the robustness of the proposed algorithm.

In frames without calcification regions, the ROIs
remaining after the third thresholding are usually very
few in number and very small in size. Furthermore, in
these images, the gray level declines smoothly away
from the ROIL Thus, the gray level at the centroid of
these ROIs and the gray levels in their neighborhood are
Med
Mcent
unity and cause the ROIs to be classified as noncalcifi-
cation regions.

The results were evaluated through visual inspec-
tion by the expert who also traced the manually seg-
mented contours. In spite of some differences between
the areas of the ROIs manually and automatically traced,
the results were considered accurate because the param-
eter to be quantified was the length of the arc of the
segmented calcification. The thickness of the segmented
region was ignored because the ultrasound beam is al-
most completely reflected at the surface of the calcifica-
tion regions and causes a shadow that makes it difficult
to assess the real thickness of the calcification.

usually very close; this makes the value approach
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The false positives were caused by the presence of
the guide-wire shadow. However, it is possible that re-
gions of fibrosis may also be sufficiently bright com-

d
=< 0.45 and be

cent
wrongly considered as calcifications. However, in our

tests we did not find such a case.

The center of the vessel is the point that should be
used for the calculation of the angle of the calcification.
However, to find this center, it would be necessary to
first accurately find the luminal contour. In our tests, the
center of the image was used as an approximation of the
center of the vessel.

As future work, the proposed algorithm may be com-
bined with other existing methods for luminal contour seg-
mentation, becoming an important step toward the full
automation of the method proposed by Scott et al. (2000).

pared with other tissues to cause
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APPENDIX

Automatic threshold estimator
Otsu (1979) developed an optimal threshold selection method
based on the maximization of the separability of the resultant classes.

His procedure is very effective and utilizes only the 0" and first-order
cumulative moments of the gray-level histogram. Thus, because of its
simplicity and effectiveness, the Otsu method was used as the threshold
estimator in this work.

Following Otsu’s formulation, let the pixels of a given image be
represented in L gray levels [1, 2, -, L). The number of pixels at gray
level i is denoted by n; and the total number of pixelsby N = n; + n,
+ « + n,. After normalization, the gray-level histogram may be
regarded as a probability distribution:

pi=n/N D

L

pi=0.2pi=1 @

We separate the pixels into two classes, C, and C, (background
and object or vice versa), by a threshold at gray level k; C, denotes
pixels with gray levels [1, -, k] and C, denotes pixels with levels [k +
1, -, L]. Then, the probabilities of class occurrence and the class mean
gray levels, respectively, are given by:

k
wy = Pr(Co) = X, p; = wik) 3
i=1
L
0, =Pr(C)= D, pi=1—w(k) @
i=k+1
and
k k
Ho= 2 iPr(iICo) = 2 ipi/wy = (k) w(k) ©)
i=1 i=1
L L
_ D _ . )
= % iPr(iIC,) = E] /o= T ©®
where
k
o) = X p; Q)
i=1
and
k
wk) = X p; ®)
i=1

are the 0" and first-order cumulative moments of the histogram up to
the k™ level, respectively, and

L

mr= L) = 2 ip; ©

The optimal threshold is defined (Otsu 1979) as the value that
maximizes the between-class variance

(k) — p®))

7 =" aort = o] a0
Thus, the optimal threshold k* is given by:
o3k *) = max o3(k) an

1sk<L
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