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where A¥V: change of pulsed wave volume, AP: change
of pulsed wave pressure, R: radius of vessel, k: thckness
of vessel wall, E: Young's elastic modulus, o Poisson's
ratio, respectively. If the changes of R, h, E and o
before and after occlusion were considered very small,
the relative change of radius of the vessel is expressed
as equation. (3),
R_-R
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where AV,: change of pulsed wave volume at control,
AP,. change of pulsed wave pressure at control, R.:
radius of vessel at control, AV,: change of pulsed wave
volume after hyperemia, AP,: change of pulsed wave
pressure after hyperemia, R,: radius of vessel after
hyperemia, respectively.

Results

None of the subjects was injured nor felt sick in the
experiment. Figure 2 shows a result of one of the
volunteers (44 years old. male) showing the relation
between %FMDus (relative FMD measured by
ultrasound) and %FMDimp (relative FMD calculated by
the proposed method).

%FMDus
-
#

EEEEERE
%NFMDemp

Time (sec)
2 %FMDus = %FMDwmp

Figure 2: The Result of One of the Volunteers

Biphasic peaks at 120 and 190 sec were observed
in %FMDimp while a single peak response was
observed at 60 sec after occlusion in %FMDus. The
peak was 25% in %FMDimp while it was 8%

in %FMDus as reported as normal in the previous
studies.

Discussion

Relative FMD (%FMDimp) was successfully
obtained by the fully automatic measurement system
proposed in the present study. Checking the calculated
values beat by beat, the values were robust throughout
the measurement. The discrepancy of %FMDimp
from %FMDus may be explained that the blood volume
of brachial artery alone was not measured by pulsed
wave volume. The blood volume of whole vascular
system in the forearm including arteries, capillaries,
arterioles and veins, may be calculated by pulsed wave
volume method. Originally, FMD was caused from the
release of NO from occluded region where shear stress
was strongly applied. In the sense whole vascular
system was affected by NO release, %FMDimp may
have its own important meanings in assessment of
vascular endothelial function. Also, %FMDimp has a
great advantage to conventional FMD measurement
because it can be obtained fully automatically.

Conclusions

Relative FMD  change  (%FMDimp) was
automatically measured by analyzing pulsed wave
pressure and pulsed wave volume relationship. The
result of the calculation was robust and %FMDimp was
successfully obtained automatically. Although the peak
time and percentage were different from those obtained
by conventional ultrasound measurement, %FMDimp
may have its own importance in the assessment of
vascular endothelial function.
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Abstract—We have proposed a new method for two-dimensional
acoustic impedance imaging for biological tissue that can per-
form micro-scale cbservation without slicing the specimen. A
tissue was placed on a plastic plate of 0.5 mm in thickness. An
acoustic pulse with a frequency range up to 100 MHz was trans-
mitted from the "rear side"” of the plate, the acoustic beam being
focused at the boundary between the tissue and plate. The reflec-
tion intensity was interpreted into local acoustic impedance of the
target tissue. An acoustic impedance microscopy with 200 x 200
pixels, its field of view being 2 x 2 mm, was obtained by mechani-
cally scanning the transducer. Quantification of acoustic imped-
ance was performed using water or an appropriate material as a
reference. The accuracy was evaluated using saline with various
NaCl content. A rat cerebellum was employed as the specimen.
The development of parallel fiber in cerebella cultures was
clearly observed as the contrast in acoustic impedance. The pro-
posed technigue is believed to be a powerful tool for biological
tissue characterization, as neither staining nor slicing is required.

Keywords: biological tissue; acoustic impedanc; micro-scale
imaging.

L INTRODUCTION

Tn most of optical observation of biological tissue, the
specimen is sliced into several micrometers in thickness, and
fixed on a glass substrate. The microscopy is obtained by
transmitted light through the specimen. As it is normally not
easy to get a good contrast by local difference in refraction
and/or transmission spectrum, the specimen is usually stained
before being observed. It can be classified as a kind of chemi-
cal imaging, since only a portion that has a specific chemical
property can be stained by selecting an appropriate staining
material. However, the staining has some disadvantages. It
normally takes from several hours to several days to finish the
process. Furthermore, the tissue, after being stained, often
completely loses its biological functions; i.c., the observation
with staining process is chemically destructive.

On the other hand, acoustic imaging can be performed
without staining process; i.e., it is chemically non-destructive.
The observation can be finished in a very short time, as it does
not need the staining process. The idea of ultrasonic micros-
copy for biological tissue is based on this advantage, and it is
considered to become a powerful tool for tissue characteriza-
tion that can image elastic parameters. Most of ultrasonic mi-
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croscopes are scanning type, in which the response to a focused
acoustic signal is successively acquired as the beam is me-
chanically scanned [1-2]:

The authors previously proposed a pulse driven ultrasonic
sound speed microscopy that can obtain sound speed image in
a short time [3-4]. Although a small roughness of the specimen
was approved in this type of microscope, slicing the specimen
into several micrometers was still required for the observation.
However it is often required that the observation can be per-
formed without slicing process, as slicing may damage some
functions of the tissue.

Based on the above background, the authors have newly
proposed the acoustic impedance microscopy that can image
the local distribution of cross sectional acoustic impedance of
tissue. As acoustic impedance is given as a product of sound
speed and density, it would have a good correlation with sound
speed, when the variance in density was not significant. In this
paper, the methodology of micro-scale imaging of cross sec-
tional acoustic impedance and its accuracy will be described.
As one of the applications, the paper will deal with the obser-
vation of cerebellar tissue of a rat.

II. SAMPLE PREPARATION

The cerebellum tissue of a rat was employed as the speci-
men to be observed. Rats were dissected, and their whole
brains were removed. The isolated cerebellums were thickly
sliced for both acoustic and optical observations. The 200 pm-
thick slices were incubated in oxygenated phosphate buffer
solution (PBS) on ice for one hour. They were chemically fixed
with 4% formaldehyde fixative, for 20 minutes. For optical
observation, some slices were subjected to immunohistochemi-
cal staining against calbindin D-28k. The slices were rinsed
and observed in same PBS.

The substrate was a flat plastic plate made of polymethyl-
metacrylate (PMMA), its thickness being 0.5 mm. A reference
material, of which acoustic impedance was known, was placed
on the same substrate. In many cases, the target tissue was ob-
served together with the reference, in the same field of view.

In this report, a silicone rubber, distilled water or agar was
employed as a reference material, choosing one of them de-
pending on the convenience of the measurement. In case of
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using silicone rubber, the observation was performed after hav-
ing waited for more than 24 hours since the rubber had been
hardened, in order to retain the stability of the material.

1. EXPERIMENTAL SETUP

Fig. 1 illustrates the outline of the acoustic impedance mi-
croscope. Distilled water was used for the coupling medium
between the substrate and transducer. A sharp electric pulse of
about 40 V in peak voltage and 2 ns in width was generated by
the pulse generator (AVTEC, AVP-AV-HV3-C). The maxi-
mum repetition rate of the pulse was as high as 10 kHz. The
transducer was PVDF-TrFE type. It was 1.5 mm in aperture
diameter, and 3.0 mm in focal length. An acoustic wave with a
wide frequency component was generated by applying the
voltage pulse. The acoustic wave, being focused on the inter-
face between the substrate and tissue, was transmitted and re-
ceived by the same transducer.

The reflection was detected and digitized by the oscillo-
scope (Tektronix, TDS-7145B). Considering the focal distance
and the sectional area of the transducer. the diameter of the
focal spot was cstimated to be about 50 z m at 80 MHz. The
distance between the nearest two points was typically set at 10
u m. Two-dimensional profile of acoustic impedance was ob-
tained by mechanically scanning the transducer using the stage
driver, keeping the focal point on the rear surface of the sub-
strate. A typical field of view of 2 mm x 2 mm was covered
with 200 x 200 pixels. It took typically 2 - 3 minutes for one
observation. In order to save the time for data transfer from the
oscilloscope to computer, the waveforms through cach X-scan
were once stored in the oscilloscope using its fast-frame mode
before being transferred through the LAN interface. In order to
reduce random noise, three times of responses at the same
point were averaged. All the measurements were performed at
room temperature,

IV. RESULTS

4. Waveforms

Figure 2 shows the acoustic signal from the reference mate-
rial. A water droplet was used as the reference. The signal from
the target tissue was very similar in waveform but slightly
smaller than that from the reference, suggesting the acoustic
impedance of the tissue was slightly higher than that of water
(1.5 x10° N/m”). Frequency domain analysis showed that the
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Fig. 1. Schematic diagram of the system.
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spectrum was widely spread between 30 - 100 MHz within -12
dB.

B. Calibration

Figure 3 illustrates the calibration of acoustic impedance.
The target signal is compared with the reference signal. Hereaf-
ter, the signal component at an arbitrary frequency will be
symbolized by S. Considering the reflection coefficient, the
targel signal Sz« can be described as

Z -Z
Sm’gﬂ = targel sub SD (1).
Ztarger =+ Z.\'u}l
where S is the transmitted signal, Zape and Zyy, are the acous-
tic impedances of the target and substrate, respectively. On the
other hand, the reference signal can be described as

Zre}f - Za‘uh

S, = S, (2),

Zre,f EE Zsub
where 7. is the acoustic impedance of the reference material.
We can measure Surgee and Zer. however, cannot dircctly meas-
ure S The acoustic impedance of the target is subsequently
calculated as a solution of the simultancous equations for Z, e
and S, as

1 Srurgﬂ = S.'arger i th - Zre[
7 _ So Z _ Sn'f Zmb i erf z
target sub T 7 = A sub
] — largel ] 4o target " su ref
0 Sf?f' Zwb ik Zn-',f
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assuming that S; is constant throughout the observation proc-
€ss.

In case of using water as the reference. its acoustic imped-
ance was assumed to be 1.5 x 10° Ns/m’. On the other hand, in
case of using silicon rubber, the acoustic impedance of itself
was calibrated, by using water as the standard reference mate-
rial. Tn this report, 0.985 x 10° Ns/m’ was used. The acoustic
impedance of agar was calibrated in the same manner short
time }jaeforc the observation. It was calculated to be 1.65 x 10°
Ns/m”.

As the sound speed of the substrate at 80 MHz at 25 °C and
its density at 25 °C were 2,78 km/s and 1.16 mg/mm’, respec-
tively, its acoustic impedance was calculated to be 3.22 x 10°
Ns/m”.

C.  Evaluation of accuracy

In order to evaluate the accuracy of acoustic impedance,
droplets of saline with different NaCl contents were prepared.
Their acoustic impedance was measured using a droplet of dis-
tilled water as the reference.

The intensity of the reflected signal was lower with higher
acoustic impedance, as the acoustic impedance of the droplets
was lower than that of the substrate. The lower signal intensity
was subsequently converted into higher acoustic impedance.

Figure 4 shows the result. Each plot represents the average
of 600 points, the length of error bar indicating twice the stan-
dard deviation. It is seen that the acoustic impedance gradually
increases with increasing NaCl content. The dotted curve
represents the acoustic impedance as the product of sound
speed and density. It agrees well with the measured result.
Considering that the acoustic impedance of most of soft bio-
logical tissues is distributed between 1.5 - 1.8 x 10° Ns/m’, the
result suggests that the accuracy satisfies the requirement for
tissue characterization.

D.  Observation of cerebellar cortex of a rat

Figure 5 illustrates the development of cerebellar cortex [5-
6]. Parallel fibers in molecular layer are axons of granule cells
and play an important role in cerebella neuronal connections.
Migrating granule cells elongate them horizontally and form
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Fig. 4 Acoustic impedance of salt water as a function of
NaCl content. Dotted curve indicates the product of sound
speed and density.

many excitatory synapses to dendrites of Purkinje cells. These
are major neuronal circuits of cerebellum so that parallel fibers
are expected to construct rich molecular layer with develop-
ment. However, it was hard to evaluate a degree of parallel
fiber development with over molecular layer. We have little
suflicient histochemical tools to visualize the developing paral-
lel fibers.

Figure 6 shows the observed images of cerebellar cortex of
a rat at immature (P1; postnatal | day), transient (P7), and ma-
ture (P20) stages. All the specimens in Fig. 6 had been chemi-

Immature

_ (b)P7

Fig. 6 Two-dimensional profiles of acoustic impedance (x
10°Ns/m®) of cerebellar cortex (left) and optical micros-
copy (right). Specimen: rat, sagittal cross section, chemi-
cally fixed. Frequency range: 60-100 MHz.
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cally fixed.

In the immature cerebellar cortex (P1), the external granu-
lar layer (EGL), the outer layer of the cortex, showed higher
impedance compared to the inner layer. The area indicated by
the rectangle in the acoustic image is morphologically corre-
sponding to the immunohistochemical observation, although
the scale is not completely corresponded because the tissue was
somehow subjected to compression during the acoustic obser-
vation. At this stage, as myelin is not yet generated, the exis-
tence of white matter (WM) is not clearly observed.

In the wransient stage, four different layers, the WM, inter-
nal granular layer (IGL), Purkinje layer (PL) and EGL become
to be comprehensive. The EGL and IGL showed higher im-
pedance than the PL and WM. Morphological correspondence
between acoustic and immunohistochemical observation is
however not clear in these images.

In the mature stage, the EGL, which is composed of small
neuronal cell bodies, has developed into the molecular layer
(ML), which is composed of elongated axon (neurite), called
parallel fibers. The four layers, WM, IGL, PL and ML are
more clearly observed in acoustic image. The correspondence
with immunohistological observation is also clearly seen.

It should be noted that very similar images were observed
by simply contacting a cross section of the whole tissue with
the substrate, without performing chemical fixation.

V. DISCUSSION

Considering the precision of the calibration, the reference
material should be stable in both physical and chemical proper-
ties, and should strongly adhere to the substrate. It is recom-
mended that the acoustic impedance of the reference be close
to that of the target. Furthermore, as for the substrate, most of
available materials have higher acoustic impedance than bio-
logical tissues. In such cases, the phase of the transmitted sig-
nal is reversed at the interface. The acoustic impedance of the
substrate should be sufficiently high compared to that of the
target, in order to retain a strong reflection. However extremely
high acoustic impedance of the substrate may increase the re-
flection coefficient at the interface between the coupling me-
dium and substrate, and reduce the intensity of transmitted sig-
nal to the target. This would obviously reduce the S/N ratio.
Therefore, in order to obtain a good S/N ratio, the materials
should be carefully selected considering their accordance.

As the transducer was designed for usage with water as the
coupling medium, the existence of the plastic plate between the
transducer and focal point may bring an aberration. This will
be significant if the thickness of the substrate is very thick, and
the convergence angle is very large. In this experiment, how-
ever, the angle was as small as 4.4 degrees, suggesting the error
brought by the aberration would be small. Nevertheless, a
quantitative analysis is needed in order to precisely assess the
acoustic impedance, especially when a thick substrate is em-
ployed.
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As the WM is rich with fat, its acoustic impedance would
be lower than the IGL. The ML is composed of axon, which
has many actin fibers with high elasticity [7]. It would lead to
high acoustic impedance. The reason why the Purkinje layer
has low impedance is, however, not clear. Further pharmacol-
ogical investigation is required.

VL. SUMMARY

A new method for two-dimensional acoustic impedance
imaging for biological tissue characterization with micro-scale
resolution was proposed. Calibration was performed using a
reference material of which acoustic impedance was known.
Quantitative imaging of acoustic impedance was made possi-
ble. Acoustic impedance microscopy with 200 x 200 pixels, its
typical field of view being 2 x 2 mm, was obtained by scanning
the transducer. Its accuracy, evaluated using saline with vari-
ous NaCl content, was of satisfactory for characterization of
soft tissues. The development of cerebella cultures of a rat was
clearly observed as the contrast in acoustic impedance, without
staining the specimen. The technique is believed to be a power-
ful tool for biological tissue characterization, as neither staining
nor slicing is required.
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Abstract — We have been developing a scanning acoustic
microscope (SAM) system for medicine and biology featuring
quantitative measurement of ultrasonic speed and attenuation of
soft tissues. In the present study, we will propose a new concept
ultrasonic speed microscopy that can measure the thickness and
ultrasonic speed using fast Fourier transform of a single pulsed
wave instead of continuous waves used in conventional SAM
systems. Six coronary arteries were frozen and sectioned
approximately 10 pm in thickness. They were mounted on glass
slides without cover slips. The scanning time of a frame with
300%300 pixels was 90 s and two-dimensional distribution of
speed of sound was obtained. The speed of sound was 1720 m/s in
the thickened intima with collagen fiber, 1520 m/s in lipid
deposition underlying fibrous cap and 1830m/s in calcified lesion
in the intima. These basic measurements will help understanding
echo intensity and pattern in intravascular ultrasound (IVUS)
images.

Keywords; acoustic microscopy, ultrasonic speed, coronary
artery, atherosclerosis

I.

We have been developing a scanning acoustic microscope
(SAM) system for biomedical use since 1985. We have been
investigating the acoustic properties of various organs and
disease states by using this SAM system. In the areas of
medicine and biology, scanning acoustic microscopy (SAM)
has three main objectives. The first, SAM is useful for
intraoperative pathological examination because it doesn’t
require a special staining. The second, SAM provides basic
data for understanding lower frequency medical ultrasound
images such as echocardiography or intravascular ultrasound.

INTRODUCTION

0-7803-9383-X/05/$20.00 (c) 2005 IEEE

The third, SAM can be used to assess biomechanics of tissues
and cells at a microscopic level. The originality of the previous
SAM system of Tohoku University lies in providing
quantitative values of attenuation and speed of sound in thin
slices of soft tissue. Although the system may be currently in
use, it was constructed using precise hand-crafted technologies
and analog signal acquisition circuits. Besides, the previous
system needed repeated acquisitions for calculation of
quantitative values because it used continuous waves of
different frequencies.

Recently, we have proposed a prototype of speed of sound
microscopy using a single pulsed wave instead of continuous
waves used in conventional SAM systems. In the present study,
we construct a compact, commercially available speed of
sound microscopy and evaluate the system performance by
measuring normal and atherosclerotic coronary arteries.

1. METHODS

A. Tissue Preparation

423

Normal and atherosclerotic human coronary arteries were
obtained from autopsy. The specimens were rinsed in PBS
(phosphate buffer saline) and immersed in 10% to 30% sucrose
solutions. Then the specimens were embedded in OCT
(optimal cutting temperature) compound and rapidly frozen by
liquid nitrogen at —20°C. The specimens were sliced
approximately 10 microns by a cryostat and mounted on a
silane-coated glass slides.
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B. Speed of Sound Microscopy

Fig. 1 shows a block diagram of speed of sound microscopy
for biological tissue characterization. A single ultrasound pulse
with a pulse width of 6 ns was emitted and received by the
same transducer above the specimen. The aperture diameter of
the transducer was 1.2 mm, and the focal length was 1.5 mm.
The central frequency was 80 MHz, the bandwidth was 40-150
MHz, and the pulse repetition rate was 10 kHz. The diameter
of the focal spot was estimated to be 20 um at 80 MHz by
taking into account the focal distance and sectional area of the
transducer. Distilled water was used as the coupling medium
between the transducer and the specimen. The reflections from
the tissue surface and those from the interface between the
tissue and glass were received by the transducer and were
introduced into a Windows-based PC (Pentium 4, 2.8 GHz,
1GB RAM, 80GB HDD) via an analogue-digital converter
(Acqiris DP-210, Geneva, Switzerland). The frequency range
was 500 MHz, and the sampling rate was 2 GS/s. Eight values
of the time taken for a pulse response at the same point were
averaged in order to reduce random noise.

The transducer was mounted on an X-Y stage with a
microcomputer board that was driven by the PC through
RS232C. The Both X-scan and Y-scan were driven by linear
servo motors. Finally, two-dimensional distributions of
ultrasonic intensity, speed of sound, attenuation coefficient and
thickness of a specimen measuring 2.4%2.4 mm  were
visualized using 300<300 pixels. The total scanning time was
90 s.
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Figure 1.

Block diagram of speed of sound microscopy.

Fig. 2 shows the appearance of the speed of sound
microscopy. Whole system are on the desktop.

Figure 2. Apperance of the speed of sound microscopy.

C. Signal Analysis [10]

The reflected waveforms are shown in Fig. 3. The
waveform at the glass surface without the tissue is shown in
(a). This signal was used as a reference waveform. The decline
of the glass surface was compensaled by measuring three
different points in the glass arca surrounding the tissue. The
waveform from the tissue area is shown in (b). Although the
waveform contains two reflections at the surface and at the
interface of the tissue and glass. the two components cannot be
separated in time domain analysis. Thus, frequency domain
analysis was performed by analyzing the interference between
the two reflections. Intensity and phase spectra were
calculated by Fourier transforming the waveform. The spectra
were normalized by the reference waveform. Fig. 4 shows the
frequency domain analysis of the interfered waveform.
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Reflected waveforms (a) from the glass surface without tissue, and
(b) from the tissue area

Figure 3.
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Figure 4  Frequency domain analysis of interfered waveform fui: the
minimum point in the intensity spectrum, @mia: corresponding phase angle

Denoting the minimum point in the intensity spectrum by
foin and the corresponding phase angle by @ the phase
difference between the two reflections at the minimum point is
(2n-1)x. which yields

27 f sin x£=¢m +(2n-1)x
c

n

(M
where d, ¢, and n are the tissue thickness, speed of sound in
water. and a non-negative integer, respectively.
The phase angles @mm can be expressed by
1 1
27 [ omin % 2d| — =~ |= Ppin (2)
e;

o

Since @Pwin is the phase difference between the wave that
travels the distance 2d with speed of sound ¢ and the wave that
travels a corresponding distance with speed of sound c¢,. By
solving equations (1) and (2),

__ % I -
e {8,in + (2n -1}

is obtained for the minimum point.

3)

Finally. the speed of sound at each frequency is calculated

as
(tdea) o
cﬂ

After determination of the thickness, attenuation of
ultrasound was then calculated by dividing amplitude by the
thickness and frequency.

¢m|'n
A7 [ pund
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Fig. 5 shows a PC window of our ultrasonic speed
microscopy. The upper left is an amplitude image. the upper
right is an ultrasonic speed image, the lower left is an
attenuation image and thc lower right is the thickness
distribution of the normal coronary artery. The intima is thin
and speed of sound is 1600 m/s in the intima, 1560 m/s in the
media and 1590 m/s in the adventitia, respectively.

RESULTS

AR

=

Figure 5. PC window of speed of sound microscopy showing a normal
coronary artery. Upper left: amplitude image. upper right: speed of sound
image. lower left attenuation image and lower right: thickness

Fig. 6 is an atherosclerotic coronary artery. The speed of
sound is 1680 m/s in the thickened intima with collagen fiber,
1520 m/s in lipid deposition underlying fibrous cap and
1810m/s in calcified lesion in the intima.

:
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Figure 6 PC window of speed of sound microscopy showing an
atherosclerotic coronary artery. Upper left: amplitude image, upper right
speed of sound 1mage, lower left: attenuation image and lower right: thickness.

425

2005 TEEE Ultrasonics Symposium



V. DIsCUSSION

In the present study, speed of sound in the excised human
coronary arteries was measured with the ultrasonic speed
microscopy. The results would become basic data base for
interpretation of clinical IVUS images and novel IVUS
imaging technologies.

The results showed that the speed of sound in the intima
and adventitia, mainly consisted of collagen fiber, had higher
values than those of media, mainly consisted of vascular
smooth muscle. The different of acoustic properties may lead
to the classical three-layered appearance of normal coronary
artery in clinical IVUS imaging. The findings indicate that the
echo intensity is not determined by the difference of acoustic
impedance between neighboring layers. The distribution and
the structure of materials with different acoustic properties may
also contribute to the echo pattern in TVUS.

The plaque with a thick fibrous cap consisted of collagen
fiber, considered showed higher value of speed of sound than
those of normal media. Generally, absorption and scattering are
the two main factors of attenuation of ultrasound. Thus, the
high scattering within the thickened intima may lead to the
high intensity echo in the “hard plaque”. Lipid showed speed
of sound. These values explain the low echo in the “soft
plaque” in the same manner of renal cysts containing water like
fluid. Besides its absolute low values, the homogeneity of
acoustic properties within the lipid pool may contribute to the
low scattering and consequently a lipid pool shows low
intensity echo.

V. CONCLUSIONS

An acoustic microscope system that can measure the speed
of sound of thin slices of biological material was developed. Tt
was a unique acoustic microscope because it used a single
pulse and the Fourier transform to calculate the speed of sound
at all measuring points. Although the data acquisition time of a
single frame was greater than that in conventional SAM, the
total time required for calculation was significantly shorter.
The acoustic microscope system can be applied to
intraoperative pathological examination..
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Abstract— Tntravascular ultrasound (TVUS) is an important
clinical tool in the assessment of atherosclerotic plaque in
coronary artery diseases. Using TVUS, we can obtain high
resolution echo image of cross-sections of the coronary artery.
However, it is difficult to accurately classify plaques by using the
echogram only. We propose a methed of IVUS Radiofrequency
(RF) signal classification using self-organizing map (SOM).
Characteristic ROTs (region of interest) of the TVUS echogram of
patients with coronary lesions were selected by an expert medical
doctor, and the SOM learned from these ROIs. The SOM could
classify the RF signals with accuracies of 95.9% for fibrous
plaque, 99.5% for blood, 96.2% for calcified plaque and 16.3%
for media regions. This result suggests that the proposed
technique is useful for automatic characterization of plaque in
coronary artery.

Keywords-; Intravascular ultrasound, Self organizing map,
tissue characterization, Spectrum analysis

1. INTRODUCTION

Rupture of vulnerable atherosclerotic plaque is the cause of
most acute coronary syndromes.

Accurate in vivo identification of plaque components may
allow the detection of vulnerable atheroma before rupture.
IVUS allows the visualization of cross-sections of coronary
artery with atherosclerotic plaques in vivo [1]-[5]. In standard
IVUS gray-scale images, calcified plaque regions and dense
fibrous components generally reflect ultrasound energy well
and thus appear bright and homogeneous in TVUS images.
They are usually labeled as "hard" plaque. Conversely, regions
of low echo reflectance in IVUS images are usually labeled as
"soft" plaque [6]. However, the visual interpretation is limited
in the assessment of quantitative plaque composition. But,
spectral analysis of the radiofrequency (RF) ultrasound signals
may allows detailed assessment of plaque composition.

Therefore, the goal of this study was to compare real-time
determination of plaque components, using easily accessible
IVUS backscattered signals. With the use of a combination of
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spectral parameters, classification schemes were developed for
the analysis of IVUS data, and the RF spectral information was
used to reconstruct tissue maps. '

II.  METHOD
RF Signal data were acquired from 14 human left anterior
descending (LAD) coronary arteries at PTCA (percutaneous
transluminal coronary angioplasty). The average age was 72 +
12 years.

A. Data Acquisition

IVUS data were acquired with an TVUS console “Clear
View Ultra” (Boston Scientific Inc, USA) and 40MHz,
mechanically rotating IVUS catheter “Atlantis SR Plus”
(Boston Scientific Inc, USA).

RF data were digitized and stored in a PC (Dell Precision
Workstation 330, Dell Inc, USA) using an A/D board “GAGE
compuscope 8500” (500Msamples/sec., with 8 bits of
resolution, Gage Applied Inc, Montreal, Canada) for off-line
analysis.

B.  IVUS Data Analysis

IVUS RF signal from the ROIs sclected by the expert
medical doctor were processed in MATLAB 6.5 (The
MathWorks Inc, USA) as follows.

Initially, a band-pass filter (15MHz-105MHz) was applied
to the TVUS RF signal data. Then each line in the ROI is
scanned by a 128-points width hamming window. The
frequency spectrum is calculated for each position of the
hamming window using a mathematical autoregressive (AR)
model

AR processes are known to be more appropriate for short
data records, such as TVUS signals, than discrete Fourier
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transforms and have been shown to result in high resolution
spectral estimates [7].

Preliminary tests in this study estimated the optimum AR
model order (order 15 via Akaike’s final prediction error
method [8]) for characterizing plague components, after tests
with several models.

Further, the optimized AR spectra were used to compute 18
spectral shape parameters for each ROI. These parameters
were: fundamental wave power, frequency of fundamental
wave power, second harmonic wave power, frequency of
harmonic wave power, local minimum power between
fundamental wave power and second harmonic wave power,
frequency of local minimum power, maximum power,
frequency of maximum power, slope from power at frequency
15MHz to fundamental wave power, corresponding y-intercept,
slope from fundamental wave power to local minimum power,
corresponding y-intercept, slope from local minimum power to
second harmonics power, corresponding y-intercept, slope
100MHz power,
corresponding y-intercept, mean of integrated backscatter, ROI

from second harmonics power to

position at line.

C. Training data and test data

ROIs for training data and test data were selected from
IVUS B-mode images by an expert medical doctor. These
IVUS B-mode images were reconstructed from the RF data by
software written by our group. Then three plaque types
(fibrous, calcified and other plaque) and four structure types
(catheter, shade of guide-wire, blood, and media) were defined.
75% of these data were used as training data of the SOM
classifier. The rest of these data was used as test data of the
SOM classifier.

D. SOM

After the training, the SOM classifier was used to classify
IVUS REF signals.

The SOM is a neural network based on unsupervised
learning proposed by T. Kohonen [9]. It is a vector
quantization method which places the prototype vectors on a
regular low-dimensional grid in an ordered fashion. This makes
the SOM a powerful visualization tool. A SOM consists of
neurons organized on a regular low-dimensional grid. Each
neuron is a d-dimensional weight vector (prototype vector,
codebook vector) where d is equal to the dimension of the
input vectors.

2055

The neurons are connected to adjacent neurons by a
neighborhood relation, which dictates the topology, or
structure, of the map.

E.  SOM Training Settings
The SOM training settings were as follows.
Map size was 25 X 17 of hexagonal lattice (numbers of

neuron was 425). Training phase was 20,000 times. A batch
training algorithm was used, the data set were presented to the
SOM as a whole, and the new weight vectors were weighted
averages of the data vectors [10].

F. Labeling Each neuron at SOM

After training, the neurons of the SOM were labeled in
accordance with the representatives vectors of the training data.
Each label was decided based on the major component of the
group.

Using this labeled SOM, the ROIs were classified.

G. Plaque Classification

The SOM classifier learned the plaque component type by
using spectral parameters.

At each line in ROIs, frequency spectra of samples within
the window were calculated, and spectral shape parameters
were derived. The plaque types were classified based on these

parameters.

The window was then moved by one sample, and data were
reanalyzed.

Hence, each sample was given a particular value

corresponding to one of the 7 components (catheter, shade of
guide-wire, blood, calcified plaque, fibrous plaque, media, and
other).

The results were validated through classifying data that
were used in the SOM training to determine predictive
accuracy, sensitivity, and specificity from widely accepted
equations in biomedical literature [11].

Color codes were assigned to the plaque component values,
and the tissue maps were reconstructed on IVUS B-mode
images by our algorithm.

These tissue maps were then checked by an expert medical
doctor to assess the plaque characterization.

III.  RESULTS
Twenty-three plaque ROIs were identified in a group of 14
vessel images.
ROIs were selected by an expert medical doctor for catheter
(n=21), shade of guide-wire (n=18), blood (n=15), fibrous
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plaque (n=11), calcified plaque (n=31), and media (n=27)
areas.

75% of these data are used as training data for the SOM,
and the rest of these data are used as test data. The SOM
learned from the AR spectrum parameters of training data. And
the SOM was validated by classification of training data and
test data.

The SOM learned from training data and each neuron of the
SOM labeled from training data are showed in Figure 1. As
shown figure 1, each kinds of training data are organizing one
area. This result suggests the setting of training data was
reasonable.

Catheter

Figure 1. leaned SOM and labeld SOM

The sensitivity and specificity of classified training data by
the SOM were showed in table I. There are high sensitivity and
Specificity except media.

TABLEI. SENSITIVITY AND SPECIFICITY OF
CLASSIFIED ROIS BY THE SOM(TRAINING DATA)
Kinds Sensitivity | Specificity
Blood 100.0% 99.9%
Calcium 98.2% 100.0%
Catheter 99.8% 99.65%
Fibrous 94.2% 98.6%
Media 85.9% 08.4%
Others 97.0% 98.9%
Shade 89.8% 98.5%

The results of test data are showed in table II. Test data were
not used as training data of SOM. So, classification of test data
is the validation of the SOM classifier.

TABLEIL SENSITIVITY AND SPECIFICITY OF
CLASSIFIED ROIS BY THE SOM(TEST DATA)
Kinds Sensitivity | Specificity
Blood 100.0% 99.8%
Calcium 88.5% 99.8%
Catheter 99.2% 99.8%
Fibrous 88.3% 98.8%
Media 74.4% 96.7%
Others 92.8% 98.6%
Shade 88.3% 96.8%

Color-code map that classified whole echogram by the
SOM is showed in figure 2 and figure 3. On the left hand side
of figures 2 and 3 are the original echograms, and on the right
hand side are color-code maps with the classification of each
area of these echogram by the SOM.

In the figure 2, numbers of color bar are as follow: 1 is
others, 2 is blood, 3 is fibrous plaque, 4 is shade of guide wire,
5 is blood, 6 is calcified plaque, 7 is media, and 8 is catheter. In
the figure 3, numbers of color bar are as follow: 1 is catheter, 2
is others, 3 is shade of guide wire, 4 is blood, 5 is fibrous
plaque, 6 is media, and 7 is calcified plaque.

The SOM classified well the inner lumen of figure 2, but
not classified the outside of lumen. Because the SOM was not
trained with data of outside of lumen.

The SOM did not classify well the image in the figure 3. In
this image, the SOM classified area of inner lumen, media as
fibrous plaque.

Figure 2.

echogram and color-code map
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echogram and color-code map

Figure 3.

IV. CONCLUSIONS

In this study, we classified TVUS RF data of coronary
tissues using a SOM classifier based on multiple spectrum
parameters.

The accuracies for classification of IVUS RF data were
95.9% for fibrous plaque region, 99.5% for blood region, 96.2
% for calcified plaque region, and 16.3 % for media regions.
These results showed that the SOM classifier has potential for
characterization of coronary tissues.

In future studies, with further data collection, we plan to
develop statistically stable and robust classification rules for
prediction of atherosclerotic plaque formation.
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Abstract: A system for luminal contour segmentation in intravascular ultrasound images is proposed.
Moment based texture features together with the radial distance feature are used for clustering of the
input image pixels. After the clustering, morphological smoothing and boundary detection process are
applied and the final image is obtained. The proposed method was applied to 15 images of different
patients and a correlation coefficient equal to 0.86 was obtained between the areas of lumen

automatically and manually defined.

Keywords: image segmentation, texture, ultrasound.

1. Introduction

Cardiovascular pathologies are one of the main causes of
mortality in the Western world. Atherosclerosis, disease of
intima layer of the artery, represents the essential
characteristic of arterial pathologies”. Atherosclerosis
consists of lipids, complex carbohydrates, blood cells,
fibrous tissues and calcified deposits, forming a plaque that
occludes progressively the lumen of the artery. A number
of imaging modalities exist to help diagnosis coronary
artery diseases. Among them, X-ray coronary angiography
and intravascular ultrasound (IVUS) represent the most
commonly used diagnostic tools.

Segmentation of deformable structures is a common
processing problem in medical imaging. For example,
coronary artery atherosclerosis severity is mainly deduced
from the degree of wvessel stenosis induced by the
atherosclerotic plaque formation. It is generally estimated,
from IVUS images, by segmenting and measuring the
lumen area, and by referencing it to the total cross-sectional
area of the vessel. With the majority of IVUS systems, this
work is generally performed manually. However, due to
tedious nature of manual tracing, many research groups
have worked on developing semi-automatic and automatic
segmentation and analysis methods in IVUS images as well
as angiography.

Brusseau et al.? developed a fully automatic method for
luminal contour that evolves until it optimally separates
regions with different statistical properties. Their system
used a phase array transducer and achieved a high level of
accuracy. However, no mention was made of the widely
used rotating systems.

Bovenkamp et al.” developed an automatic multi-agent-
based system for luminal contour segmentation. Each agent
cooperates with other agents to come to a consistent overall
image segmentation. However, the complexity of this

system may lead to time delays when there is a conflict
among the agents.

Tuceryan” proposed a method for obtaining texture
features directly from gray-level images by computing the
moments of the image in local regions. The results of his
segmentation algorithm show that the image moments
computed over local regions provide a powerful set of
features that reflect certain textural properties in images.

In this papers, like those by Brusseau® and Bovenkamp®),
we proposed a system for automatic luminal contour
segmentation. Unlike the Brusseau system,” our system is
applied to images obtained from a rotating IVUS system
due to the fact that these systems are widely used in clinical
settings. Instead of a multi-agent system, as proposed by
Bovenkamp®”, we used the simpler and more powerful set
of features proposed by Tuceryan® to achieve our goal of
luminal contour segmentation.

Our strategy to achieve this goal is to extract local
moment based texture features and a pixel position feature
from IVUS images to perform a clustering on the basis of
these features. Once we obtain the clustered image, a
smoothing filter is applied to reduce the irregularities of the
boundary and then the final segmentation is carried out.
This process is illustrated in Fig.1.

£

FEATURE == cLUSTERING —> MORPHOLOGICAL — BOUNDARY

EXTRACTION SMOOTHING DETECTION
INPUT . QUTPUT
IMAGE IMAGE

Fig.1 — Block diagram of the proposed system for luminal contour
segmentation
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2. Materials and Methods

Our texture segmentation algorithm is based on Tuceryan’s
work" and consists of the following steps: (a) compute the
image moments within a small window around each pixel
as well as the radial distance of each pixel, (b) compute the
texture features from these moments by applying a
nonlinear transformation followed by an averaging
operation, (c) perform a fuzzy clustering of the pixels of the
input image on the basis of these features, and (d) classify
every pixel in the image according to the minimum distance
from the centers of the clusters found in step (c).

In this system the input image is the original image
obtained from the IVUS system. We used a commercial
available IVUS system (Clear View Ultra, Boston
Scientific, USA). The central frequency of the rotating
IVUS probe (Atlantis SR Pro, Boston Scientific, USA) was
40 MHz.

2.1 Moments

Our algorithm uses the moments of an image to compute
texture features. The (p+g)-th order moment m,, of a
function of two variables ffx,y) with respect to the origin
(0,0) is defined as™:

m, = nﬁf (x. y)x"y* dxdy (1)

where pg = 0,12, . Normally the moments are
computed over some bounded region. If the function is
equal to unity within the region and zero outside the region,
the lower order moments (small values of p and g) have
well defined interpretations. For example, my, is the area of
the region, mj; / mg, and my; / mg, give the x and y
coordinates of the centroid for the region, respectively. The
ms, m;; and my, can be used to derive the amount of
elongation o the region, and the orientation of its major
axis. The higher order moments give even more detailed
shape characteristics of the polygons such as symmetry, etc.

In this paper, as in Tuceryan’s work®, we regard the
intensity image as a function of two variables, f{x,y). We
compute a fixed number of lower order moments for each
pixel in the image (we use p+g<2). The moments are

computed within a small local window around each pixel.

Given a window size W, the coordinates are normalized
to the range of [-0.5 , 0.5] and the pixel is located at the
center. The moments are computed with respect to this
normalized coordinate system. This permits us to compare
the set of moments computed for each pixel. We always
choose the window width W to be odd so that the pixel (i,
J) is centered on a grid point.

Let (i, j) be the pixel coordinates for which the moments
are computed. For a pixel with coordinates (k , /) that fall
within the window, the normalized coordinates (x, .y, ) are

given by:

k—i I—j
X = . = J (2)
/4 W

Then the moment m, (i, j) within a window centered at
pixel (i, j] is computed by a discrete sum approximation of
Equation (1) that uses the normalized coordinates (x,.3,):

W Wiz

my(i.))= 2 XStk j+Ix[y ()

k=—W [2]=-W /2

(=]

This discrete computation of the set of moments for a
given pixel over a finite rectangular window corresponds to
a neighbor operation, and, therefore, it can be interpreted as
a convolution of the image with a mask®.

When we examine the masks, we see that they can be
interpreted as local features detectors. For example, the
mask for my, corresponds to a box-averaging window, and
thus it can be interpreted as computing the total energy
within that box. The masks for m;, and m,; take the form of
edge detectors. They would respond to sudden intensity
changes in the x and y directions, respectively. The second
order moments are not easy to interpret; the only exception
being m,,, which looks like a cross detector”,

The set of values for each moment over the entire image
can be regarded as a feature image. Let M, be the k-th such
image. If we use n moments, then there will be »n such
moments images. In our experiments, we used mgs Mgy,
myg My, mg> and ms,, which result in the images M, M,
M;, M, Ms, and Mg, respectively.

2.2 Radial distance

In this work, we define the radial distance R as the distance
from the central pixel of the image to the position of the
pixel P under consideration. This distance R is the seventh
feature (together with mgg, mg;, M5 m;;, mg2, and m,) used
in the following clustering of the input image pixels. Based
on these features, the pixels were clustered in the clustering
block using the Fuzzy C Means algorithm®’,

Adventitia

Lumen

Intima

Catheter zone

Fig.2 — [llustration of a cross-section of a blood vessel

The number of clusters chosen was four: one cluster for
the external region, one for the region between the
adventitia and intima, one for the lumen and another one
for the catheter zone. After the clustering the image could
have its boundaries easily detected by any boundary
detection method. However, in order to reduce the
irregularities of the borders as well as some small regions
around the borders, a
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(A) (B)

Fig.3 — Effect of the radial distance feature R as one of the
components of the feature vector. (A) and (B) are the same images
obtained from patient A. (A) Clustered image without using the
radial distance feature R. (B) Clustered image using the radial
distance feature R.

morphological filtering was done prior to the boundary
detection.

2.3 Morphological contour smoothing

Mathematical morphology is a technique of image
processing whose value for each pixel in the output image
is based on a comparison of the corresponding pixel in the
input image with its neighbors. By choosing the size and
shape of the neighborhood, we can define a morphological
operation that is sensitive to specific shapes in the input
image. The neighborhood size and shape are determined by
the size and shape of a second, usually much smaller, image
called structuring element, which together with the input
image is regarded as a set. Thus, basic operations of the set
theory like union, subtraction and compliment can be
carried out with both images. These basic operations can be
used to compose other operations like opening and closing,
for example. Opening generally smoothes the contour of an
object, breaks narrow isthmuses, and eliminates thin
protrusions. Closing also tends to smooth sections of
contour, but, as opposed to opening, it generally fuses
narrow breaks and long thin gulfs, eliminates small holes

and fills gaps in the contour®.

(A) B

Fig4 — (A) Result of the clustering; (B) Result of the
morphological contour smoothing

In order to reduce the irregularities of the borders as well
as some small regions around the borders, morphological
filtering is done prior to boundary detection. This filtering
is performed through the application of opening and closing
morphological operations with a disk structuring element of
size 3. An example of the result of the luminal contour
obtained from the clustering process without any contour

smoothing can be seen in Fig. 4(A). An example of the
luminal contour obtained when the morphological filter is
applied after the clustering is shown in Fig.4(B).

3. Analysis of results

Using the system presented above, tests were done with 15
IVUS images of different patients. We can observe in Fig.6
that the boundaries automatically drawn by the proposed
system closely resemble the ones drawn manually by an
expert medical doctor. In Fig.5 is shown the correlation
between the areas of the automatically defined lumen and
manually defined lumen. The correlation coefficient was
equal to 0.86.

Automatically defined lumen area (mm?)

5 10 15 20
Manually defined lumen area (mm?)

Fig.5 — Correspondence between the lumen area manually defined
and the area automatically defined.

The transition between the lumen and the vessel wall as
well as the transition between the vessel layers is quite
smooth. This makes the boundaries detection based on local
features a hard task. However, due to the ability of the local
moments in characterization of textured regions, together
with the radial distance, it was possible to identify the
pixels that belong to the lumen region and those that do not
belong. With this method only the lumen boundary
detection achieved a reasonable level of accuracy. The
outer vessel border was not accurately detected so far,
mainly, due to the much more smooth transition from the
vessel wall to surrounding tissues. To overcome this
difficulty, it seems that more global features should be
added to the system as has been studied by Brusseau” and
Bovenkamp”.

The effectiveness of the proposed radial distance feature
R can be observed in Fig.3. In Fig.3(A) we can see an
example of segmentation without using the feature R. We
can see that in this case the resulting segmentation is more
irregular and contains some sub-regions segmented inside
the lumen region. This over-segmentation occurs mainly
because of some texture and gray level changes inside the
lumen region. When the radial distance feature is added to
the clustering process, the differences among these segmen-
ted sub-regions are overcome because they acquire a
feature that is similar in most of them, and then this
strongly influences the clustering results.
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(D)

(F)

Fig. 6 - Example of luminal contour detection. (A),(B) and (C) are images manually segmented. (D),(E) and (F) are the corresponding ima-

ges automatically segmented.

Thus, we can obtain a more regular and compact segmen-
tation of the lumen region, as shown in Fig.3(B).

4. Conclusion

Based on our tests, we can conclude that the moment-
based texture features together with the radial distance are
feasible components for a feature vector in IVUS image
segmentation when the aim is to find the luminal contour.

The process was improved when the morphological
smoothing filtering was carried out after the clustering and
before the boundary detection process. Tests performed
with 15 images from different patients resulted in a
correlation coefficient of 0.86 between the lumen areas
automatically detected and lumen areas manually detected.

Only the segmentation of the luminal contour has been
considered. As future work, we plan to extend this method
to detection of the vessel contour, which is necessary for
assessment of the degree of vessel stenosis. In pratical
terms, once having determined the position of the blood-
tissue interface, the luminal area will be excluded and the
second contour will be searched in the remaining region.
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Detection of Luminal Contour Using Fuzzy Clustering and
Mathematical Morphology in Intravascular Ultrasound Images

Esmeraldo dos Santos Filho, Makoto Yoshizawa, Akira Tanaka, Yoshifumi Saijo and Takahiro Iwamoto

Abstract— An innovative application of fuzzy clustering and
mathematical morphology for the problem of luminal contour
detection in intravascular ultrasound images is presented.
Median and standard deviation are used as features for segmen-
tation process. Comparison was made with gold standard seg-
mented images obtained from the average of images segmented
by experienced medical doctors. Tests were carried out with
20 in vivo coronary images obtained from different patients.
High correlation coefficients were found between lumen regions
manually and automatically defined when area, mean gray level,
and standard deviation of the lumen regions were compared.

I. INTRODUCTION

Cardiovascular pathologies are one of the main causes of
mortality in the Western world. Atherosclerosis is a disease
in which the arteries are hardened and narrowed due to the
gradual build-up of plaque on their inner wall.

The intravascular ultrasound (IVUS) is a catheter-based
technique that generates cross-sectional images of the lu-
men, plaque and vessel wall. Coronary artery atheroscle-
rosis severity is mainly deduced from the degree of vessel
stenosis induced by the atherosclerotic plaque formation. It
is generally estimated, from IVUS images, by segmenting
and measuring the lumen area, and by referencing it to the
total cross-sectional area of the vessel. With the majority of
TVUS systems, this work is generally performed manually.
However, due to the tedious nature of manual tracing,
many research groups have worked on developing automatic
segmentation methods for IVUS images.

Brusseau et al [1] developed a fully automatic method for
luminal contour segmentation in IVUS images based on an
active contour that evolves until it optimally separate regions
with different statistical properties. Their system used a phase
array transducer and achieved high accuracy level. However,
no mention was done about the case of the largely used
rotating systems.

Bovenkamp et al [2] developed an automatic multi-agent
based system for luminal contour segmentation. Each agent
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Fig. 1. Block diagram of the proposed algorithm for luminal contour
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cooperates with other agents to come to a consistent overall
image segmentation. However, the complexity of this system
may lead to time delay in case of conflict among the agents.

In this paper, like those by Brusseau [1] and Bovenkamp
[2], we proposed a system for automatic luminal contour
segmentation. Unlike the Brusseau’s system [1] our system
is applied on images obtained from a rotating IVUS system
due to the fact that these systems are largely used in clinical
settings. Instead of a multi-agent system, as proposed by
Bovenkamp [2], we used a fuzzy clustering based in on
simple statistics, mean and standard deviation, obtained from
a sliding window that scans the entire input image.

II. MATERIALS AND METHODS

In this work, we used a commercial available IVUS system
(Clear View Ultra, Boston Scientific, USA). The central
frequency of the rotating IVUS probe (Atlantis SR Pro,
Boston Scientific, USA) was 40 MHz.

After the acquisition the RF signal was used to generate
polar coordinate system images to facilitate the search for the
lumen boundary. A block diagram of the proposed system is
shown in Fig.1

A. Feature extraction and fuzzy clustering

Using a 7 x 7 sliding window, the input polar coordinate
system image was scanned from the left to the right and from
top to bottom. For each position of this window the median
and standard deviation of the gray level of the pixels included
in the window were calculated and became the features used



to represent the pixel in the center of the window. This
process was repeated for every pixel of the input image.

The Fuzzy C-means algorithm [3] was used for clustering
of the pixels of the input image on basis of their median
and standard deviation features. The number of clusters was
defined equal to two: one for lumen region and one for the
vessel and external region. The catheter zone was ignored
during the clustering process.

One example of the clustering result can be seen in Fig.2.
In Fig2(A) we have an example of polar coordinate system
input image and in Fig.2(B) is shown the corresponding
clustered image.

B. Smoothing and boundary detection

After the clustering a morphological filter was applied
to eliminate some irregularities of the image and small
segmented regions as well. Thus, the clustered image was
first submitted to an operation of region filling followed
by closing with disk structuring element of size 5. This
filtering helped to obtain a more regular boundary as shown
in Fig.2(C).

After the morphological filtering the boundary between
lumen and vessel was detected by scanning the filtered
image from the left to the right until the transition from
black to white be found and then, immediately, jumping to
the next line. With this procedure was possible detect the
lumen boundary as shown in Fig.2(D). After that the lumen
boundary was converted to Cartesian system , as shown in
Fig.2(E), and superposed on the original image as shown in
Fig.2(F).

C. Evaluation method

In order to evaluate the accuracy of the performed segmen-
tation, the results should be compared with the real lumen
shape. Because the actual shape is not known, a gold standard
reference image is obtained from manual segmentations.

The manual segmentation results show variability between
different observers and sometimes also between the two

(A)

(F) (E)
Fig. 2. Example of automatically segmented image. (A) Polar coordinate
system input image. (B) Clustered image. (C) morphologically filtered

image. (D) Detected lumen boundary. (E) Lumen boundary converted to
Cartesian system. (F) Final output image.
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Fig. 3. Block diagram of gold standard generation procedure

traces of one observer, so a single manual segmentation
cannot act as a standard. We therefore derive a gold standard
reference image by calculating the average shape of the
manual segmentations using shape-based interpolation [5].
This technique uses the shapes of the binary object in each
manual segmentation to calculate so-called distance scenes.
In a distance scene, each pixel is given a value the represents
the nearest pixel of the object, i.e., the lumen contour. Pixels
inside the lumen are given negative distance values.

The average shape is then calculated by adding the dis-
tance scenes of all manual segmentations; the transition from
positive to negative values yields the average contour as has
been done in Bouma’s work [6]. In this work we used images
segmented by three experienced medical doctors to generate
the gold standard images as illustrated in Fig.3.

In order to obtain a reliable comparison, the automatically
segmented images as well as their corresponding gold stan-
dard were divided in four quadrants similarly as has been
proposed by Allonso’s work [7]. An example is shown in
Fig.4. For each quadrant the variance, mean gray level, and
area were calculated. The correlation between the features
extracted from the gold standard and the corresponding
features extracted from automatically segmented images are
shown in Fig.5,6, and 7.

III. RESULTS AND DISCUSSION

Using the system presented above, tests were done with
20 in vivo coronary IVUS images from different patients.
Fig.5,6, and 7 show the correlation between features of the
automatically defined lumen regions and manually defined
lumen region. The correlation coefficient was equal to 0.94

Fig. 4. Example of images divided in quadrants for comparison
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Fig. 7. Correspondence between the lumen area manually defined and the
arca automatically defined

for the feature mean gray-level, 0.96 for the feature standard
deviation, and 0.91 for the feature area.

Some examples of the results are shown in Fig.8 together
with the corresponding gold standard images comparison.
We can observe that the images segmented automatically by
the proposed algorithm closely resemble the gold standard
ones.

Some tests were also carried out using images obtained
from phantoms due to the fact that in the phantom images
the lumen contour is easily detected visually and then may
be used for asses the accuracy of the proposed segmentation
method. An example que be seen in Fig.9.

The morphological filtering together with the method for
search for boundary described in Section II-B were effective
in finding the lumen border. This process could be easily
performed in the polar coordinate system image but would
be not so easy to perform in the Cartesian system image
usually used.

The proposed algorithm cannot detect the external vessel
contour due to the much more smooth transition between
the external vessel wall and the surrounding tissues and the
lack of contrast. It seems that more high-level knowledge
should be added to the system to make it possible to detect
the vessel external contour.

IV. CONCLUSIONS

A system for automatic segmentation of luminal contour
was presented. The segmentation was performed through
fuzzy clustering using the median and standard deviation of
the pixels inside a sliding window as pixel features. After
the clustering a morphological filtering was done and the
lumen boundary was detected. This method presented high
level level of accuracy when compared with gold standard
segmented images. However, only the luminal contour was
detected. As future work, we plan to extend this method
to detection of the vessel contour, which is necessary for
assessment of the degree of vessel stenosis. In practical
terms, once having determined the position of the blood-
tissue interface, the luminal area will be excluded and the
second contour will be searched in the remaining region.
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