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3. Results
3.1. Surface modification and radiolabeling

The average diameter of vesicles was controlled to
270 nm by the stepwise extrusion through cellulose acetate
membrane filters with a final pore size of 0.22 pm as shown
in Table 1. The surface of the vesicles were modified during
spontaneous incorporation of PEG conjugated to 1,2-
distearoyl-sn-glycero-3-phosphoethanolamine (DSPE) into
the lipid bilayer of preformed vesicles. The incorporation
efficiency of PEG-DSPE was approximately 85%, inde-
pendent of the added amount. Theoretically, the surface of
PEG (0.3)-[SA-Ve] is not fully covered with PEG chains in
mushroom conformation (theoretically calculated covered
surface area: 85%), and surface coverage is completed with
>0.6mol% of PEG-DSPE. The **™Tc-labeling efficiency
was approximately 84%, independent of the vesicular
formulation. Since the **™Tc was located in the inner
aqueous phase of vesicles encapsulating glutathione, the
surface properties would not have been altered by the
labeling procedure. The incubation of labeled 9mTc.
vesicles in rabbit serum for 48 h revealed that more than
95% of the incorporated 9mTc remained in the prepared
vesicles, regardless of the composition of the vesicles. Also
in human plasma, 98% of incorporated 9MTc remained
with PEG(0.6)-[SA-Ve] at 24 h. These data indicate that the
labeling procedure results in a stably labeled vesicle
preparation and maintains the 9mTc within vesicles, even
during incubation in plasma at 37 °C.

3.2. Circulation kinetics and biodistribution

First, the circulation kinetics and organ distribution of
several formulations were compared to determine the
optimized component for targeting bone marrow. For this
purpose, scintigraphy was superior to other methods
because it was possible to quantitatively determine the
organ distribution of the injected vesicles in whole body.
The elimination rate of SA-Ve from circulating blood was
much faster compared with that of control vesicles (Ve):
the circulating half-life times (#,,s) of the SA-Ve and Ve

were 0.6 and 9.4h at injection dose of 15mg/kg b.w.
(Fig. 1(A)). Incorporation of as little as 0.3 mol% of PEG-
DSPE did not affect the circulation time of SA-Ve.
Incorporation of above 0.6mol% of PEG-DSPE pro-
longed the circulation time of SA-Ve and the ¢, increased
with increasing amounts of PEG-DSPE incorporation as
summarized in Table 1. The incorporation of 2.6 mol% of
PEG-DSPE also gave a remarkable improvement in
circulation time for control Ve (¢,,: 24.8h). At 24h post
injection, the radioactivity of excised organs was counted
using a scintillation counter. Major organs exhibiting the
uptake of vesicles were bone marrow and liver for SA-Ve
(Figs. 1(B) and (C)), while liver and spleen were the organs
with the highest accumulation of control Ve (Figs. 1(C) and
(D)). PEG modification clearly inhibited hepatic uptake of
both SA-Ve and control Ve, and this effect became
significant as the amount of PEG-DSPE incorporated
increased (Fig. 1(C)). While a maximum amount of SA-Ve
was observed in bone marrow when the SA-Ve contained
0.6mol% PEG-DSPE, further incorporation of PEG-
DSPE led to a decrease in the distribution of SA-Ve in
bone marrow (Fig. 1(B)). Other organs apart from kidney
and muscle for PEG(2.6)-[SA-Ve] exhibited only a small
amount of activity (<1%ID, Supplementary Table 1
online). Injection in rabbits of a mixed solution of 9mre.
HMPAO and glutathione in a similar ratio as would be
found within ®™Tc-vesicles served as a control study of the
radiolabeling agents without encapsulation within the
vesicles. As shown in Fig. 2(A), injection of 99mTe.
HMPAO)/glutathione was rapidly eliminated from blood
circulation (f122 3min), and gamma camera images
indicated that the labeling agents were rapidly excreted in
urine through the kidney (Fig. 2(B)). Region of interest
analysis showed that 67.1+0.8% of injected radioactivity
was detected in bladder within 1h after injection
(Fig. 2(C)). At 6h, biodistribution data also showed
significant radioactivity in the urine (76.91+4.80%ID)
and kidney (6.11+0.53%ID), but other organs including
bone marrow had only minimal %ID dose uptake as
summarized in Table 2. This control study shows that a
mixture of *™Tc-HMPAO and glutathione is rapidly
removed from the blood by renal excretion, which is

Table 1

Specification of prepared vesicles

Sample® Mean diameter + SD (nm) PEG-DSPE (mol%) ti2 (h)b
SA-Ve 269+11 0 0.6
PEG(0.3)-[SA-Ve] 276 +13 0.3 0.6
PEG(0.6)-[SA-Ve] 273+12 0.6 1.0
PEG(1.4)-[SA-Ve] 275+ 12 1.4 3.9
PEG(2.6)-{SA-Ve] 274+ 12 2.6 5.4

Ve 262+43 0 94
PEG(2.6)-Ve 259+74 2.6 24.8

28A-Ve is based on DPPC/CH/SA (molar ratio, 1:1:0.2), and Ve is DPPC/CH (molar ratio, 1:1) as a control sample. PEG-modified samples were
prepared using the spontaneous incorporation of PEG-DSPE into the prepared SA-Ve or Ve.

®The t,/, values were calculated from Fig. 1(A) data.
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Fig. 1. Effect of surface modification with SA and PEG-DSPE on
circulation kinetics and organ distribution of phospholipid vesicles. (A)
Circulation kinetics of SA-vesicles (SA-Ve) and control vesicles (Ve)
containing various amounts of PEG-DSPE after i.v. infusion (lipids:
I5mg/kg b.w.) in rabbits. *™Tc radioactivity was quantitated by
scintillation counting of blood samples with time. The percentage of
injected dose was calculated as a percentage of baseline radioactivity in a
blood sample withdrawn just after injection. (B}~(E) Distribution of SA-
vesicles (SA-Ve) and control vesicles (Ve) containing various amounts of
PEG-DSPE as a percentage of the injected dose in bone marrow (B), liver
(C), spleen (D), and blood (E) at 24h after i.v. infusion in rabbits.
*, Statistical significance (p<0.01), ', statistical significance (p<0.05).

typical of small molecules. These results indicate that the
SA-Ve were clearly directed to bone marrow, and the
process of accumulation of SA-Ve into bone marrow is
correlated with competitive trapping by liver. Surface
modification of SA-Ve with the proper amount of PEG-
lipids inhibits the trapping of SA-Ve in liver and directs
SA-Ve to bone marrow, a process which could be regarded
as a combination of active and passive targeting. Conven-
tional anionic vesicles containing phosphatidyl glycerol
(PG) were inactive for targeting of bone marrow (Supple-
mentary Table 2 online). The injected PEG(0.6)-[SA-Ve],
which was the formulation showing the highest persistence
in bone marrow at 24h, were almost removed from
circulation within 6h (as little as 6.4+0.5%ID of
PEG(0.6)-[SA-Ve] was circulating in blood at 6h). There-
fore, the initial distribution kinetics of PEG(0.6)-[SA-Ve]
was studied in detail.

3.3. Distribution kinetics of PEG(0.6)-[SA-Ve]

Scintigraphic images clearly showed the injected radio-
activity of PEG(0.6)-[SA-Ve] to be redirected from heart
and liver, both organs having large blood pool contribu-
tions, and increasingly deposited in the bone marrow over
time (Fig. 3(A)). The distribution kinetics in bone marrow,
liver, and spleen, analyzed from the scintigraphic images,
quantitatively indicated that significantly higher doses had
accumulated in bone marrow, reaching 68.5+3.3%ID by
6h after injection (Fig. 3(B)). The biodistribution data
calculated from the radioactivity of excised organs also
showed that 69.74+0.3%ID of PEG(0.6)-[SA-Ve] had
accumulated in bone marrow, as shown in Table 2. At the
same time point, liver and spleen had much smaller
amounts of 11.51+2.88 and 5.00+1.19%ID, respectively.
When “"Tc-HMPAO)/glutathione was injected without
encapsulation into PEG(0.6)-[SA-Ve], bone marrow, liver,
and spleen had only 1.134+0.24, 1.52+0.14, and
0.01£0.00%ID, respectively. The isolated femur was
further separated into soft bone marrow, joint bone
(sponge bone), and skeleton and each separate tissue
counted for radioactivity. As shown in Fig. 3(C),
66.5+1.1% of radioactivity in one femur was detected in
soft bone marrow. The joint bone including soft bone
marrow had 28.84+1.3% of radioactivity, and less radio-
activity was detected in the separated skeleton (4.7 +0.3%).
These results indicate that the intravenously injected
PEG(0.6)-[SA-Ve] mostly accumulates into soft bone
marrow. The gamma camera images clearly show that the
bone marrow uptake was evenly distributed over whole
bone (Fig. 4), and the localization of radioactivity
representing the distribution of PEG(0.6)-[SA-Ve] in these
images was analyzed for separate regions. The spine and
pelvis had 21.234+0.42% and 18.09 +0.60%, values which
were much higher than other regions. The right and left
femurs had equal radioactivity of 7.97+0.05% and
8.34+0.18%; these values are in agreement with a report
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Fig. 2. Circulation and distribution kinetics of mixture of #MTe.HMPAO and glutathione without encapsulation in vesicles after i.v. infusion in rabbits.
(A) Circulation kinetics (B) Gamma camera images of rabbits acquired at various times after infusion. H: heart, K: kidney, B: bladder. (C) Distribution
profiles as a percentage of the injected dose analyzed from the gamma camera images.

describing the relationship of 12 times that of a femur as
being equivalent to whole bone in rabbits [28].

3.4. Microscopic localization of PEG(0.6)-[SA-Ve] in bone
marrow

The initial studies were designed to demonstrate that
PEG(0.6)-[SA-Ve] functions as a nanoparticulate carrier as
well as identify their microscopic localization in tissues. We
used PEG(0.6)-[SA-Ve] double-labeled by encapsulating
water-soluble TR-SOD in an aqueous phase and embed-
ding lipid-soluble C,-BODIPY C,, in bilayer membrane
(Fig. 5(A)). As shown in Fig. 5(B), the bone marrow
sections have fluorescence from both the TR-SOD and C;-
BODIPY C,;,. The fluorescence was locally concentrated,
and larger fluorescent domain was 30 pm in size along the
long axis. Fluorescent distribution in red pulp of spleen
was dense, whereas it was sparse in liver. An important

finding from this observation is that the fluorescence from
membrane probes and encapsulated probes are co-localized
in bone marrow. These images clearly indicate that
PEG(0.6)-[SA-Ve] functions as a nanoparticle-carrier to
deliver the encapsulated agents to bone marrow tissues. A
second study was performed to identify the histological
location of PEG(0.6)-[SA-Ve] in bone marrow. Femoral
bone marrow tissue was taken from rabbit at 6 h after i.v.
injection of PEG(0.6)-[SA-Ve] and examined using TEM.
TEM observation clearly demonstrated the location of
PEG(0.6)-[SA-Ve] in bone marrow (Figs. 6(A) and (B)). A
massive number of vesicles were trapped in endosomes and
lysosomes of BMM¢, but no vesicles were observed in
cytoplasm and cell nucleus (Fig. 6(B)). The diameter of
these vesicles averaged 270nm which was the original
diameter of the intravenously administered PEG(0.6)-[SA-
Ve]. Several similar BMM ¢ with vesicles in endosomes and
lysosomes were observed, while no vesicles were observed
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Table 2

Biodistribution of PEG(0.6)-[SA-Ve] and **™Tc-HMPAO/glutathione as a percent of the injected dose (%ID) and %ID per gram of tissue at 6 h after i.v.
infusion in rabbits

Organs PEG(0.6)-[SA-Ve] #¥mTe.HMPAO/glutathione
%ID +SEM (% %ID/g tissue + SEM (%/g) %ID +SEM (%) %ID/g tissue + SEM (%/g)
Blood 6.58+2.91 0.065+0.028 3.34+1.68 0.025+0.013
Bone marrow 69.74+0.86 0.806+0.048 1.1340.24 0.010+0.001
Liver 11.51+2.88 0.237+0.067 1.52+0.14 0.022+0.001
Spleen 5.00+1.19 5.387+0.807 0.01+0.00 0.01140.001
Bowel 5.85+0.31 0.014+0.000 4.414+0.19 0.009+40.000
Skin 1.57+0.21 0.009 +0.001 2.3440.30 0.0104+0.001
Kidney 2.40+40.10 0.148+0.011 6.11+0.53 0.440 +0.066
Muscle 1.864+0.17 0.003 +0.000 2.60+0.63 0.002+0.001
Lung 0.1940.03 0.024 +0.006 0.1240.03 0.0104+0.001
Heart 0.03+0.01 0.01040.002 0.03+0.01 0.006+0.001
Brain 0.014+0.00 0.002 +0.000 0.01+0.00 0.001 £0.000
Testis 0.034+0.01 0.024 +0.005 0.02+0.00 0.008 +0.002
Urine 3.57+1.74 - 76.914+4.80 —
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Fig. 3. Initial distribution kinetics of PEG(0.6)-[SA-Ve] after i.v. infusion (lipids: 15mg/kg b.w.) in rabbits. (A) Gamma camera images of rabbits acquired
at various times after infusion. H: heart, L: liver, S: spleen, F: femur. (B) Distribution profiles as a percentage of the injected dose analyzed from the
gamma camera images. The total bone marrow was estimated to be 12 times that of one femur. (C) Distribution of radioactivity of PEG(0.6)-[SA-Ve] in
separated soft bone marrow (BM), joint bone (sponge bone) (JB), and skeleton (SK) of one femur collected at 6 h after i.v. infusion. Three panels show the
fraction of radioactivity, percent of injected dose (%ID), and %ID/g tissue, respectively.
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Fig. 4. Gamma camera images of rabbit receiving PEG(0.6)-[SA-Ve], acquired from various angles at 6h after i.v. infusion. Bone marrow is clearly
displayed in these images throughout the rabbit body. Relative radioactivity in separated bone parts were calculated to 1; head (8.41 +1.58%), 2; neck
(1.10+0.11%), 3; right arm (5.7240.33%), 4; left arm (5.54+0.40%), 5; shoulder (3.62+0.69%), 6; sternum (4.11+ 1.35%), 7; spine (21.234+0.42%), §;
pelvis (18.09+0.60%), 9; right femur (7.9740.05%), 10; left femur (8.34+0.18%), 11; distal right foot (7.88+0.25%), and 12; distal left foot

(7.9840.33%) as percentages to radioactivity of whole bone + SEM.

in other types of cell such as granular leukocytes,
erythroblasts, and endothelial cells in observed section.
These microscopic localization studies demonstrate that
BMM¢ are the cellular components responsible for
clearance of vesicles from the circulation and their uptake
by the bone marrow.

4. Discussion

These studies demonstrate that PEG-[SA-Ve] are effi-
cient carriers for targeting the BMMg¢. These vesicles
should be useful in the development of bone marrow
targeted agents for therapeutic applications. Additionally,
this in vive model appears to be an ideal model with which
to investigate the role of BMM¢ in the hematopoietic
environment. The radiolabeling method for the vesicles
encapsulating glutathione with 9mTc.HMPAO has pre-
viously been established for imaging studies [14,23,24]. In
the present vesicle formulation, we confirmed the stability
of the *™Tc radiolabeled-vesicles during incubation in
serum and plasma at 37°C for 48h (more than 95%
remaining with vesicles), and we also determined that the
free labeling agent is not specifically distributed into organs
such as bone marrow, liver, and spleen, but rapidly
eliminated through renal excretion as shown in Fig. 2
and Table 2. This evidence provides strong support that the
radioisotope distribution reflects the true biodistribution of
vesicles. As shown in Fig. 1, comparative data showing the
organ distribution of several formulations clearly demon-

strated that the uptake of vesicles by bone marrow is
induced by the incorporation of SA (p <0.01); furthermore,
the incorporation of a small amount of PEG-DSPE on the
surface of SA-Ve prolongs its circulation time and tends to
enhance the bone marrow selectivity by preventing hepatic
uptake. Thus, maximum distribution to bone marrow was
observed at 0.6 mol% PEG-DSPE (Fig. 1(B)). The degree
of hepatic uptake was reduced as the PEG-DSPE content
increased, and this effect became significant above
1.4 mol% (p<0.05). Bone marrow uptake was also reduced
above 1.4mol%. In general, 5-10mol% of PEG-lipids is
incorporated into most of the long circulating vesicle
formulations for passive targeting [8,9]. In the present
study, prolonged circulation time of vesicles was observed
above 0.6 mol% of PEG-DSPE, and the circulation times
were prolonged more in vesicles with higher PEG-DSPE
content. For the effective targeting of bone marrow,
however, higher concentrations of PEG blocked the active
targeting of the vesicles to bone marrow. These results
indicate that the dense PEG layer on the vesicular surface
covers the surface properties having the character of SA
and depress uptake by BMM¢. Therefore, the optimal
amount of PEG incorporation was found to be 0.6 mol%,
as this concentration passively enhances active targeting.
Theoretically, approximately 0.4mol% of PEG (Mw
5000)-lipids is estimated to be the critical content required
to fully cover the vesicle surface which consists of DPPC
and CH (1:1 molar ratio) with the mushroom conforma-
tion of PEG chains from Egs. (1) to (3). Thus, it is
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Fig. 5. Histological examination of fluorescence delivered into bone marrow tissues using PEG(0.6)-[SA-Ve] as carriers. (A) Fluorescence localization in
double fluorescence-labeled large multilamellar PEG(0.6)-[SA-Ve] with diameter of ca. 10 um. This observation was performed before extrusion to
submicron size to enable observation of the structure within resolution of a confocal microscope. This image indicates that red fluorescence comes from
TR-SOD which is encapsulated in inner aqueous phase and green fluorescence comes from C;-BODIPY C,; which is embedded in bilayer membrane.
(B) Confocal scanning images of femoral bone marrow (BM), spleen (S), and liver (L) taken from rabbit at 6 h after i.v. injection of double fluorescence-
labeled PEG(0.6)-[SA-Ve] with size of 247+22 nm in diameter (lipids: 15mg/kg b.w.). The scale bars represent 20 pm.

estimated that the optimal incorporation amount of PEG-
lipids is slightly higher than that required to fully cover the
vesicular surface. This finding provides useful information
for the design of vesicle surface to passively enhance the
active targeting with PEG-modification in vivo.

To examine the participation of the anionic properties of
vesicles in BMM¢ uptake, we investigated the organ
distribution of conventional anionic vesicles containing PG
with same protocol. These PG-vesicles do not distribute to
the bone marrow (Supplementary Table 2 online, only
5.36+0.65%ID of PG-vesicles were taken up by the bone
marrow at 24 h after i.v. injection). Comparative data for
Ve and SA-Ve are shown in Fig. 1(B) and Supplementary
Table 1. Previous publications have also supported the
observation that PG-vesicles do not distribute to the bone

marrow [33], and neutral vesicles with various sizes in the
range of 136.2-318nm do not distribute to the bone
marrow [34]. These results indicated that the targeting of
bone marrow is not general for neutral vesicles and is
achieved not only by the anionic surface of vesicles. The
results suggest that SA is specifically responsible for the
bone marrow targeting.

Histological observations showed that the vesicles and
encapsulated agents are distributed at the same locations
into bone marrow tissues, clearly indicating that the
encapsulated agents were delivered to the bone marrow
tissues by the vesicles (Fig. 5). Higher magnification TEM
observations have demonstrated that a massive number of
vesicles are trapped in the endosomes and lysosomes of the
BMMg¢ (Fig. 6). These observations indicated that the
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Fig. 6. Transmission electron micrographs of femoral bone marrow tissue
section, taken from rabbit at 6h after i.v. injection of PEG(0.6)-[SA-Ve]
(lipids: 15mg/kg b.w.). (A) Low magnified micrograph representing the
bone marrow tissue including macrophage and various bone marrow cells.
(B) High magnified micrograph of framed region in panel (A). A massive
number of vesicles with original diameter (average 270 nm) are trapped in
several endosomes or lysosomes of macrophage. Some are indicated by
arrows, which shows same position in (A) and (B).

uptake of PEG(0.6)-[SA-Ve] by bone marrow was
responded by the endocytosis of BMM¢. One potent

trigger to accelerate the cellular endocytosis for vesicles is -

an interaction with the receptors on the surface of cells,
that are known as a receptor-mediated endocytosis which is
investigated as a potent pathway for drug targeting to
specific cell including macrophage [2,10,11]. Scavenger
receptors are membrane glycoproteins that are present
mainly on cells of the macrophage lineage [35,36]. Various
polyanionic compounds such as dextran sulfate, polyino-
sinic acid, and acetylated low density lipoproteins have
been reported as ligands for this receptor [37,38]. These
compounds are taken at high levels by macrophages via a
scavenger receptor-mediated mechanism. On the other
hand, many polyanions such as chondroitin sulfate, poly(p-
glutamic) acid, and polycytidylic acid are not ligands for
scavenger receptors [37,38]. Previous investigations indi-

cated that the scavenger receptors on macrophages
contribute to the recognition of polyanionic structures,
resulting in selective uptake. Enhanced uptake of succiny-
lated proteins has been investigated in cultured brain
microvessel endothelial cells. Endothelial cells also express
the scavenger receptor on their surface. Large succinylated
proteins such as catalase (Mw 227 kDa) and bovine serum
albumin (Mw 70kDa) were taken up by the cells via a
scavenger receptor-mediated mechanism, whereas signifi-
cant uptake was not observed for native proteins and small
succinylated proteins such as SOD (Mw 34kDa) and
soybean trypsin inhibitor (Mw 21 kDa) [39]. This indicates
that succinylation of large molecules is involved in the
uptake via a scavenger receptor-mediated mechanism.
Recently, Szabo et al. reported the uptake of branched
polypeptides by bone marrow culture-derived murine
macrophages. They indicated that the succinylation of
branched polypeptides significantly enhanced the uptake
by macrophages, and the uptake was inhibited by blocking
of the class-A scavenger receptors [40]. Because the
terminal hydrophilic head group of SA is corresponding
to the succinylated structure, we speculate that the
interaction between PEG-[SA-Ve] and the scavenger
receptors on BMM¢ might participate in the selective
uptake. However, further mechanistic investigation on
uptake of PEG-[SA-Ve] by BMM¢, splenic macrophages,
and hepatic Kupffer cells is necessary to clarify the
mechanism of organ selective macrophage uptake.
Previous pharmacokinetic studies have been performed
using vesicles containing SA that have the same lipid
composition as in the present study with PEG(0.3)-[SA-
Ve], but a significantly higher dose was employed (lipids:
680 mg/kg b.w.) [17]. In these studies, the bone marrow-
selective distribution was not observed, so it appears that
the bone marrow selectivity is limited by the injection
dosage in certain applications. As the vesicle dosage
increases, the MPS in the bone marrow becomes saturated;
as a result, liver and spleen uptake is increased. In our
previous organ distribution study in rabbits, >50%ID of
the vesicles were still in circulation at 48 h after infusion of
a massive dose of vesicles, while the bone marrow had
7.36 +0.34% of 680 mg/kg b.w. at the same time point [17].
This value is equivalent to 50.0mg/kg b.w., and it can be
used to estimate the maximum uptake capacity of MPS for
vesicles. When vesicle dosage increases above 50.0mg/kg
b.w., the bone marrow is the first organ to become
saturated, and the accumulation of vesicles then increases
in the liver and spleen. Such sequential saturation of the
MPS eliminates organ selectivity. Therefore, the bone
marrow targeting of SA-Ve becomes striking when the dose
of vesicles is below the saturation dosage for bone marrow,
as observed in the present study (15mg/kg b.w.). The
ability of vesicular nanoparticles to encapsulate a wide
variety of agents provides significant opportunities for
bone marrow delivery applications. In the present study,
we have demonstrated the delivery of scintigraphic and
fluorescence imaging agents to bone marrow by using the
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SA-Ve vesicles. This method has advantages in delivering
the therapeutic agents to treat bone marrow disorders.

5. Conclusion

This is the first report to show the organ distribution of
PEG-[SA-Ve] at small dose injection. Organ distributions
of several vesicular formulations were quantitatively
compared to determine the component to induce the
significant distribution into bone marrow. Our data have
indicated that surface modification of phospholipid vesicles
with two compounds, SA and PEG-DSPE, cooperatively
induces the significant bone marrow targeting properties to
vesicles. In this system, BMM¢ participated in the uptake
of PEG-[SA-Ve], and the efficient delivery of the vesicles as
encapsulating agents into the bone marrow was achieved
within 6 h after injection. These results indicated that the
PEG-[SA-Ve] is a potent carrier for drug delivery into
BMM¢ in vivo and may be useful for delivering a wide
range of therapeutic agents to bone marrow.
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SUMMARY

Hemoglobin vesicles (HbV), or liposome-encapsulated hemoglobins, are
developed as artificial oxygen carriers for the use as a transfusion
alternative. The safety and efficacy of HbV have been clarified in detail:
HbV can overcome the side effects of hemoglobin (Hb) molecules
(stroma-free, and intra- or intermolecularly crosslinked) such as vaso-
constriction, hypertension and possible vascular damage induced by
direct contact of the vascular surface with Hb. On the other hand, intrinsic
issues related to the suspension of HbV as a molecular assembly have to
be considered: blood compatibility, structural and dispersion stabilities of
the vesicles, and the requirement of prompt degradation in the reticu-
loendothelial system. Having overcome these issues, the results make us
confident in advancing further development of HbV. Easy manipulation
of physicochemical parameters of HbV provides possibilities for various
clinical applications in addition to their use as a transfusion alternative.

PHYSIOLOGICAL IMPORTANCE OF THE RED
BLOOD CELL CELLULAR STRUCTURE FOR
ENCAPSULATED HEMOGLOBIN DESIGN

reduced tissue oxygenation at microcirculatory levels'*;
neurological disturbances; malfunction of esophageal
motor function®; and myocardial lesions.®” These side
effects of Hb molecules imply the importance of the

It has been well documented during the long history of
the development of hemoglobin (Hb)-based oxygen car-
riers (HBOCs, Figure 1) that many side effects of stroma-
free Hb and chemically modified Hbs exist: renal
toxicity; entrapment of gaseous messenger molecules
[nitric oxide (NO) and carbon monoxide (CO)] inducing
vasoconstriction, hypertension, reduced blood flow, and

226

cellular structure of red blood cells (RBCs). From the
retrospective and recent observations, the main justifi-
cations for Hb encapsulation in RBCs are: (i) a decreased
high colloidal osmotic pressure?®; (ii) prevention of the
removal of Hb from blood circulation; (iii) prevention of
direct contact of toxic Hb molecules and endothelial
lining?®; (iv) preservation of the chemical environment in
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cells, such as the concentration of phosphates [2,3-
diphosphoglycerate (2,3-DPG), adenosine triphosphate,
etc.] and other electrolytes; (v) RBCs are the major
component that renders blood as non-Newtonian and
viscous, which is necessary to pressurize the peripheral
artery for homogeneous blood distribution and for
maintenance of blood circulation™; and (vi) the cellular
structure of RBCs retards oxygen release in comparison
to acellular Hb solutions,"'? thereby retaining oxygen to
peripheral tissues where oxygen is required.

For those reasons, the optimal structure of HBOCs
might be to mimic the RBC cellular structure. The
pioneering work of Hb encapsulation to mimic the
cellular structure of RBCs was performed in 1957 by
Chang,"” who prepared microcapsules (5um) made of
nylon, collodion and other materials. Toyoda'* in 1965
and the Kambara-Kimoto group' in 1968 also inves-
tigated encapsulation of Hbs with gelatin, gum arabic,
silicone, etc. Nevertheless, results emphasized the
extreme difficulty in regulating the particle size to be
appropriate for blood flow in the capillaries and to
obtain sufficient biocompatibility. After Bangham and
Horne'® reported in 1964 that phospholipids assemble
to form vesicles in aqueous media, and that they
encapsulate water-soluble materials in their inner
aqueous interior, it seemed reasonable to use such

© 2007 The Authors

vesicles for Hb encapsulation. Djordjevich and Miller"”
in 1977 prepared liposome-encapsulated Hb (LEH)
composed of phospholipids, cholesterol, fatty acids,
etc. The US Naval Research Laboratories showed
remarkable progress in the use of LEH."™** Terumo
Corporation (Tokyo) developed a different LEH called
Neo Red Cells (Table 1).2"-%

However, some intrinsic issues of encapsulated Hbs
remained, which were mainly related to the nature of
molecular assembly and particle dispersion. What we
call HbV, with their high-efficiency production pro-
cesses and improved properties, were established by our
group based on technologies of molecular assembly in
concert with precise analyses of pharmacological and
physiological aspects (Table 2).2"** We use stable carbo-
nylhemoglobin (HbCO) for purification with pasteuriza-
tion at 60°C for 10 hours. The purity of the obtained Hb
solution is extremely high.”** Utilization of the stable
and purified HbCO enables higher concentrations than
40 g/dL. using ultrafiltration and easy handling of
encapsulation by the extrusion method without causing
protein denaturation. It has been confirmed that HbV
encapsulates nearly 35 g/dL with a thin bilayer mem-
brane. In the final process, HbCO in HbV is photodisso-
ciated by irradiation of visible light under an oxygen
atmosphere to convert Hb0,.?

Journal Compilation © 2007 LMS Group ® Transfusion Alternatives in Transfusion Medicine 9, 226-236
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Product Name Group Characteristics Current status

Hb-vesicles (HbV) Waseda University and Keio University 1. Pasteurization of HbCO at 60°C for Preclinical
virus inactivation, and high purity
and concentration of encapsulated
Hb
2. Lipid composition to improve blood
compatibility
3. PEG modification and deoxygenation
for 2 years storage
4. (Hb)=10g/dL
Neo Red Cells (NRC) Terumo Corporation 1. Inositol hexaphosphate to regulate Preclinical
P (= 40-50 torr)
2. Lipids: HSPC/cholesterol/fatty acid/
PEG-lipid
3. Storage in a refrigerator for
6 months
4. (Hb)=6g/dL
. Polymerized lipids (DODPC) for Suspended
stabilization
. Storage in powdered or frozen state
. Difficulty in degradation in RES
. Freeze-dried powder with trehalose Suspended
. Low Hb encapsulation efficiency
. Thrombocytopenia, complement
activation
Synthetic erythrocytes Rush-Presbyterian-St. Luke’s Medical 1. The first attempt of LEH Suspended
Center, University [llinois

Artificial Red Cells (ARC) NOF Corporation and Waseda University

LEH US Naval Research Laboratory

W ot = W

DODPC, 1,2-dioctadecadienoyl-sn-glycero-3-phosphatidylcholine; Hb, hemoglobin; HbCO, carbonylhemoglobin; HSPC, hydroge-
nated soy phosphatidylcholine; LEH, liposome-encapsulated Hbs.

Parameter

Particle diameter 240-280 nm

Pso 25-28 torr

(Hb) 10 g/dL

Suspending medium Physiologic saline solution (0.9% NaCl)
Colloid osmotic pressure 0 torr

Intracellular Hb concentration ca. 35 g/dL

Lipid composition DPPC/cholesterol/DHSG/DSPE-PEG so00
Weight ratio of Hb to lipids 1.6-1.9 (w/w)

Stability for storage at room temperature 2 years

Circulation half-life 32 hours (rats)

DHSG,  1,5-0-dihexadecyl-N-succinyl-L-glutamate; DPPC, 1,2,dipalmitoyl-sn-
glycero-3-phosphatidylcholine; DSPE-PEG, 1,2-distearoyl-sn-glycero-3-
phosphatidyethanolamine-N-polyethyleneglycol; Hb, hemoglobin.

© 2007 The Authors
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The oxygen-bound HbV can provide oxygen-
transport capacity that is both sufficient and compa-
rable to that of RBCs in experiments related to extreme
blood exchange?®* and fluid resuscitation from hemor-
rhagic shock.’®* A recent experiment of HbV as a
priming solution for cardiopulmonary bypass in a rat
model showed that HbV protects neurocognitive func-
tion by transporting oxygen to brain tissue even when
the hematocrit is markedly reduced.”® Other studies
investigating HbV suspension as a possible perfusate for
organ transplantation are also underway for the heart,
liver, intestine, etc.

In fact, Hb encapsulation provides a unique opportu-
nity to add new functions to particles. Other regulators,
such as antioxidants and enzymes, can be embedded on
the capsule or coencapsulated to reduce methemoglobin
(metHb),***? as can allosteric effectors to modulate
oxygen affinity (Pso).”>** The Pso of HbV is regulated by
coencapsulation of pyridoxal 5’-phosphate (PLP) in place
of 2,3-DPG. The present HbV, being developed by Waseda
University, contains PLP at PLP/Hb=2.5 by mol; the
resulting Pso is about 25-28 torr, which shows sufficient
oxygen transporting capacity as a transfusion alterna-
tive. The Ps; of HbV without PLP and Cl" is 8-9 torr. This
formulation is effective for targeted oxygen delivery to
anoxic tissues caused by reduced blood flow.>**+*

In addition to HbV, new encapsulated Hbs without
liposomes have emerged with the use of recent advanced
nanotechnologies, such as polymersome,* polyethyl-
eneglycol (PEG)-poly(e-caprolactone) copolymer nano-
particles,” and in vivo evaluation of oxygen-carrying
capacities of these new materials is anticipated. Encap-
sulation of Hb can reduce the toxicity of cell-free Hbs.
However, many hurdles must be surmounted to realize
encapsulated Hbs because of the components of the
capsules themselves and their structural complexity as a
molecular assembly. It is also important to consider the
larger dosage requirement of encapsulated Hb for blood
substitution in comparison with those available with
conventional drug delivery systems, which require no
large dosage.

STRUCTURAL STABILIZATION OF
ENCAPSULATED HEMOGLOBIN
FOR STOCKPILING

Hb autoxidizes to form metHb and loses its oxygen-
binding ability during storage, as well as during blood

© 2007 The Authors
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circulation. Therefore, prevention of metHb formation is
necessary. A method exists to preserve deoxygenated
Hbs in a liquid state using well-known intrinsic char-
acteristics of Hb: the Hb oxidation rate in a solution
is dependent on the oxygen partial pressure; also,
deoxyHb is not autoxidized at ambient temperatures.*®
In the case of HbV, not only the encapsulated Hb but
also the capsular structure (liposome) must be physically
stabilized to prevent irreversible intervesicular aggrega-
tion, fusion and leakage of the encapsulated Hb.

Liposomes, as molecular assemblies, have been gen-
erally inferred to be structurally unstable. The US Naval
Research Laboratory tested the addition of cryopro-
tectants and lyoprotectants, such as trehalose, to LEH for
its preservation as a powder without causing hemolysis
after rehydration.**° In addition, many researchers have
developed stabilization methods for liposomes that use
polymer chains.*-** Polymerization of phospholipids
that contain two dienoyl groups (DODPC) was studied
extensively in our group. For example, gamma-ray
irradiation induces radiolysis of water molecules and
generates OH radicals that initiate intermolecular poly-
merization of dienoyl groups in DODPC. This method
produces enormously stable liposomes, resembling
rubber balls, which are resistant to freeze-thawing,
freeze-drying and rehydration.**** However, the poly-
merized liposomes were so stable that they were not
degraded easily in the macrophages, even 30 days after
injection.”” It became widely believed that polymerized
lipids are inappropriate for intravenous injection.
Subsequently, it was clarified that the selection of
appropriate lipids (phospholipid/cholesterol/negatively
charged lipid/PEG-lipid) and their composition are
important to enhance the stability of nonpolymerized
liposomes.*"*® Surface modification of liposomes with
PEG chains is sufficient for dispersion stability.*? In fact,
in comparison to RBCs, HbV is highly resistant to hypo-
tonic shock, freeze-thawing and enzymatic attack by
phospholipase A,.

We investigated the possibility of long-term preserva-
tion of HbV during storage for 2 years through a com-
bination of two techniques: deoxygenation and PEG
modification.”® The PEG chains on the vesicular surface
stabilize the dispersion state and prevent aggregation
and fusion for 2 years because of their steric hin-
drance.® The original metHb content (ca. 3%) before
preservation decreased gradually to less than 1% in all
samples after 1 month because of the presence of a

Journal Compilation © 2007 LMS Group ® Transfusion Alternatives in Transfusion Medicine 9, 226-236
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reductant, such as homocysteine, inside the vesicles that
consumed the residual oxygen and gradually reduced
the trace amount of metHb. The rate of metHb formation
was strongly dependent on the oxygen partial pressure:
a lack of increase in the metHb formation was observed
because of the intrinsic stability of the deoxygenated
Hb. In fact, the metHb content did not increase for 2
years. These results indicate the possibility that the HbV
suspension can be stored at room temperature for at
least 2 years, which would enable stockpiling of HbV for
any emergency.

BLOOD COMPATIBILITY OF LIPOSOMES AND
HEMOGLOBIN VESICLES

Liposome is not a solute but a particle in a suspension.
The surface of the particle may be recognized, interact
with blood components, including complements. The
so-called injection reaction, or pseudoallergy, is caused
by complement activation, giving rise to anaphylatox-
ins that trigger various hypersensitivity reactions. This
reaction is sometimes observed not only with liposomal
products,®’ but also with fat emulsions® and a perflu-
orocarbon emulsion.® Therefore, the examination of
blood compatibility of encapsulated Hbs is important
for clinical use. Transient thrombocytopenia and pul-
monary hypertension in relation to complement acti-
vation is an extremely important hematologic effect
observed in rodent models after infusion of LEH
(containing  DPPG:  1,2-dipalmitoyl-sn-glycero-3-
phosphatidyl glycerol) developed by the US Naval
Research Laboratory®*®> and of other products. In our
group, exchange transfusion with the proto-type HbV
(containing DPPG, no PEG modification) in anesthe-
tized rats engendered transient thrombocytopenia and
slight hypertension.*® Similar effects were also observed
for administration of negatively charged liposomes.®%’
The transient reduction in platelet counts caused by
complement-bound liposomes was also associated with
sequestration of platelets in the lung and liver. Such
nonphysiological platelet activation probably leads to
initiation and modulation of inflammatory responses as
platelets contain an array of potent proinflammatory
substances. However, it must be emphasized that the
present HbV formulation apparently does not induce
thrombocytopenia in animal experiments, probably
because the present HbV contains PEG-modification
and a different type of negatively charged lipid (DHSG:

1,5-0-dihexadecyl-N-succinyl-L-glutamate), not DPPG
or a fatty acid.%*-™ )

Detailed blood compatibility of HbV in relation to
negatively charged lipid was examined by Dr H. Ikeda at
the Hokkaido Red Cross Blood Center (Sapporo) and his
colleagues.®*7? The present PEG-modified HbV contain-
ing DHSG did not affect the extrinsic or intrinsic coagu-
lation activities of human plasma, although HbV
containing DPPG and no PEG modification tended to
shorten the intrinsic coagulation time. The kallikrein-
kinin cascade of the plasma was activated slightly by the
proto-type DPPG-HbV, but not by the present PEG-
DHSG-HbV. Moreover, the complement consumption in
the plasma was detected by incubation with DPPG-HbV,
but not with the present PEG-DHSG-HbV.” The expo-
sure of human platelets to high concentrations of the
present HbV (up to 40%) in vitro did not cause platelet
activation and did not adversely affect the formation
and secretion of prothrombotic substances or proinflam-
matory substances that are triggered by platelet ago-
nists. These results imply that HbV, at concentrations of
up to 40%, has no aberrant interactions with either
unstimulated or agonist-induced platelets. It can be con-
cluded that the present PEG-DHSG-HbV has a higher
blood compatibility.

BIODISTRIBUTION, METABOLISM AND
EXCRETION OF HEMOGLOBIN VESICLES

The dosage of blood substitutes should be considerably
larger than those of other drugs, while their circulation
time is considerably shorter than that of RBCs. There-
fore, their biodistribution, metabolism, excretion and
side effects must be characterized in detail, especially in
relation to the reticuloendothelial system, RES (or
termed the mononuclear phagocytic system).

Normally, free Hb released from RBC is bound rapidly
to haptoglobin and is consequently removed from cir-
culation by hepatocytes. However, when the Hb concen-
tration is greater than the haptoglobin binding capacity,
unbound Hb is filtered through the kidney, where it is
actively absorbed. Hemoglobinuria and eventual renal
failure occur when the reabsorption capacity of the
kidney is exceeded. The encapsulation of Hb in vesicles
completely suppresses renal excretion. However, HbV in
the bloodstream is ultimately captured by phagocytes in
the RES in much the same manner as senescent RBCs
are, as confirmed by radioisotope **™Tc-labelled HbV

© 2007 The Authors
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injection.'*®® The HbV are finally distributed mainly in
the liver, spleen and bone marrow. The circulation half-
life is dose-dependent; when the dose rate was 14 mL/
kg, the circulation half-life was 32 hours in rats. The
circulation time in the case of the human body can be
estimated as two or three times longer; or about 2 or 3
days at the same dose rate.

It is generally accepted that the liposome clearance by
RES at a small dosage is accelerated by opsonization
(absorption of plasma proteins such as antibodies
and complements on the liposomal surface); PEG-
modification prevents opsonization for prolonged circu-
lation times.”> However, considering the condition that
the dosage of HbV is extremely high and requires a
considerable amount of opsonins, and that HbV does
not induce complement activation,” then the opsonin-
dependent phagocytosis would not be a major compo-
nent in the case of HbV with a large dosage. Actually,
opsonin-independent phagocytosis, a direct recognition
by macrophages, has been clarified in some studies.”*”

Transmission electron microscopic analysis of the
spleen 1 day after infusion of HbV revealed the presence
of HbV particles in the phagosomes of macrophages.”
However, after 7 days, the HbV structure cannot be
observed. We confirmed transient splenomegaly with no
irreversible damage to the organs and complete metabo-
lism within a week. Immunochemical staining with a
polyclonal antihuman Hb antibody was used as the
marker of Hb in the HbV, clarifying that HbV almost
disappeared after 7 days in both the spleen and liver.

Bilirubin and iron are believed to be released during
metabolism of Hb, but our animal experiments of
topload infusion, daily repeated infusions and 40%
blood exchange showed that neither of those products
increased in the plasma within 14 days.””"”® The released
heme from Hb in HbV might be metabolized by the
inducible form of heme oxygenase-1 in the Kupffer cells
of the liver and the spleen macrophages. Bilirubin would
normally be excreted in the bile as a normal pathway;
no obstruction or stasis of the bile is expected to occur
in the biliary tree. Berlin blue staining revealed consid-
erable deposition of hemosiderin in the liver and spleen,
even after 14 days. Hemosiderosis often occurs in
patients who have received repeated blood transfusions
because of the shorter half-life of the stored RBCs.
Moderate splenomegaly and hemosiderin deposition
were also confirmed in the spleen after injection of
stored RBCs, partly because of the accumulation and

© 2007 The Authors
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degradation of stored RBCs with lowered membrane
deformability and shortened circulation half-life.”

As for membrane components of Hb-vesicles, phos-
pholipids are metabolized and reused as a component of
the cell membrane, or excreted in bile, especially as fatty
acids and CO, in exhaled air. The plasma cholesterol
level elevated transiently 3 days after injection, that was
released from macrophages after degradation of HbV in
the phagosomes.”””® However, the plasma phospholipid
level did not increase significantly. It was recently clari-
fied using *H-cholesterol that the cholesterol of HbV is
released from macrophages to blood; it is ultimately
excreted in the feces. The PEG chain is widely used for
surface modification of liposomal products. The chemi-
cal crosslinker of PEG-lipid is susceptible to hydrolysis
to release PEG chains during metabolism. The released
PEG chains, which are known as inert macromolecules,
should be excreted in urine through the kidneys.*

In order to know the physiological capacity of RES for
degradation of HbV, we tested massive intravenous
doses by daily repeated infusion of 10 mL/kg/day into
Wistar rats for 14 days. The cumulative dosage was
140 mL/kg (Hb and lipids, 20,689 mg/kg). The total
volume was equal to 2.5 times of whole blood volume
(56 mL/kg).”® Even though the splenohepatomegaly was
significant, all rats tolerated the infusions, and the body
weight increased until the intentional sacrifice for the
succeeding 14 days. The phagocyted HbV disappeared
though significant hemosiderin deposition and was con-
firmed in the spleen, liver, kidney, adrenal grand and
bone marrow. We could not define a lethal dose of HbV
in this experiment.

The profile of liposome clearance is species-
dependent. More precise data are necessary to extrapo-
late the phenomena observed in animal experiments to
humans. However, these results imply that the metabo-
lism and excretion of HbV are within the physiological
capacity that has been well characterized for the
metabolism of senescent RBCs and conventional
liposomal products.

UNIQUE RHEOLOGICAL PROPERTY OF
HEMOGLOBIN VESICLES SUSPENSION

The extremely high concentration of the HbV suspen-
sion [(Hb)= 10 g/dL; (lipids) = 6 g/dL, volume fraction,
ca. 40 vol%) imparts an oxygen-carrying capacity that
is comparable to that of blood. The HbV suspension does
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not possess a colloid osmotic pressure (COP) because one
HbV particle (ca. 250 nm diameter) contains about
30,000 Hb molecules, and HbV acts as a particle, not as
a solute. Therefore, HbV must be suspended in or coin-
jected with an aqueous solution of a plasma substitute.
This requirement is identical to that for emulsified per-
fluorocarbon, which does not possess COP;*"# it con-
trasts to characteristics of other HBOCs, intramolecular
crosslinked Hbs, polymerized Hbs and polymer conju-
gated Hbs, which all possess very high COP as protein
solutions.?®

Animal tests of HbV suspended in plasma-derived
human serum albumin (HSA) or recombinant HSA
(rHSA) showed an oxygen-transporting capacity that is
comparable to that of blood.*** We reported previously
that HbV suspended in plasma-derived HSA or rHSA
was almost Newtonian: no aggregation was detected
microscopically.®"* In Japan, rHSA will be approved for
clinical use in 2007,** but various plasma substitutes are
used worldwide, such as hydroxylethyl starch (HES),
dextran (DEX), and modified fluid gelatin (MFG). The
selection among these plasma substitutes should be
determined not only according to their safety and effi-
cacy, but also by the related price, experience of clini-
cians and customs of respective countries. Water-soluble
polymers generally interact with particles such as poly-
styrene beads, liposomes and RBCs to induce aggrega-
tion or flocculation.?® For that reason, it is important
to determine the compatibility of HbV with these plasma
substitutes. With that background, we studied rheologi-
cal properties of HbV suspended in these plasma sub-
stitute solutions using a complex rheometer and a
microchannel array.*” The rheological property of an
HBOC is important because the infusion amount should
be considerably large, which might affect the blood
viscosity and hemodynamics.

The HbV suspended in rHSA was nearly Newtonian.
Its viscosity was similar to that of blood, and the mix-
tures with RBCs at various mixing ratios showed vis-
cosities of 3-4 cP. Other polymers, HES, DEX and MFG,
induced flocculation of HbV, possibly by depletion
interaction, and rendered the suspensions as non-
Newtonian with the shear-thinning profile.?” These HbV
suspensions showed a high viscosity and a high storage
modulus (G’) because of the presence of flocculated
HbV. On the other hand, HbV suspended in rHSA exhib-
ited a very low G’. The viscosities of HbV suspended in
DEX, MFG and high molecular weight HES solutions

responded quickly to rapid step changes of shear rates of
0.1-100 5" and a return to 0.1 s, indicating that floc-
culation formation is both rapid and reversible. Micro-
scopically, the flow pattern of the flocculated HbV
perfused through microchannels (4.5 um deep, 7 um
wide, 20 cmH,0 applied pressure) showed no plugging.
Furthermore, the time required for passage was simply
proportional to the viscosity.

It has been regarded that lower blood viscosity after
hemodilution is effective for tissue perfusion. However,
microcirculatory observation shows that, in some cases,
lower viscosity decreases shear stress on the vascular
wall, causing vasoconstriction and reduced functional
capillary density.®® Therefore, an appropriate viscosity
might exist, which maintains the normal tissue perfusion
level. The large molecular dimension of HbV result in a
transfusion fluid with high viscosity. A large molecular
dimension is also effective to reduce vascular permeabil-
ity and to minimize the reaction with NO and CO as
vasorelaxation factors. These new concepts suggest
reconsideration of the design of artificial oxygen carri-
ers.® Actually, new products are appearing, although
they are in the preclinical stage, not only HbV, but also
zero-link polymerized Hb*® and others with larger
molecular dimensions and higher oxygen affinities.”'
Emi et al. clarified that HbV with a high 0, affinity (low
Pso, such as 8-15 torr) and high viscosity (such as 11 cP)
suspended in a high-molecular-weight HES solution was
effective for oxygenation of an ischemic skin flap.*>92%
That study showed that HbV would retain 0, in the upper
arterioles, then perfuse through collateral arteries and
deliver oxygen to the targeted ischemic tissues, a concept
of targeted oxygen delivery by an HBOC.* Some plasma
substitutes cause flocculation of HbV and hyperviscosity.
However, reports show that hyperviscosity would not
necessarily be deteriorative and might be, in some cases,
advantageous in the body." The combination of HbV and
plasma substitute solutions provides a unique opportu-
nity to manipulate the suspension rheology, not only as a
transfusion alternative, but also for other clinical appli-
cations, such as oxygenation of ischemic tissues and
ex vivo perfusion systems.

CONCLUSION

Other related issues for HbV in a clinical situation
include the interference effect of HbV on spectrophoto
metric measurements in routine clinical laboratory tests

© 2007 The Authors
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and noninvasive pulse oximetry monitoring of arterial
blood oxygen saturation. Such interference is caused by
strong light scattering resulting from the small HbV
particles in blood.* We clarified that HbV can be
removed easily from a blood specimen by the addition
of high molecular weight dextran and centrifugation.
Pulse oximetry can be improved by some modifications
of the detection wavelength and software.
Encapsulation of Hb was initiated with the simple idea
of duplicating the structure and function of RBCs.
However, we are convinced that obstacles remain for the
approach to realize the sophisticated function of RBCs;
for example, it is impossible to mimic the flexibility of
the unfilled biconcave structure of RBCs. The present
HbV lacks ionophores in the bilayer membrane which
facilitate the transport of small functional molecules
from the outer medium, such as ascorbic acid or glu-
tathione, to reduce metHb in HbV that does not contain
enzymatic metHb reducing system, because the unstable
enzymes are removed during the virus inactivation
process of Hb purification.?®”” On the other hand, clear
advantages of simplified HBOCs exist, such as the
absence of blood-type antigens and infectious viruses,
along with stability for a long-term storage at room
“temperature for any emergency, all of which might
overwhelm the functions of RBCs. The shorter half-life
of the HBOCs in the bloodstream (2-3 days) limits their
use, but they are applicable as a transfusion alternative
for shorter periods of use. Easy manipulation of physi-
cochemical properties of HbV such as Psy and viscosity
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supports the possible development of tailor-made
oxygen carriers that suit various clinical indications.
The achievements of ongoing HbV research described
above give us confidence in advancing further develop-
ment of HbV, with the expectation of its eventual
realization.
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