Fig. 4. Cranially based bilateral skin flaps were raised on the dorsum of
mice. In the untreated control animals, about the distal two thirds
of the flap surface necrotized due to critical ischemia (above). Fiap
survival was markedly improved after topload infusion of HbV
dissolved in saline (Hb concentration 10g/dl, 25% total blood
volume (below).

Summary

Based on a large set of experimental data, the optimal
profile of an HBOC solution determined to improve
oxygenation, functionality and integrity of critically ischemic
tissue can be outlined as follows:

1) The hemoglobin compound should be of a large
diameter in order to prevent vasoconstriction due to
extravasation.

2) The viscosity of the solution should be high in order to
promote shear stress-related vasodilation and to
diminish leukocyte- endothelium interactivity.

3) The oxygen affinity of the HBOC should be high in
order to improve oxygen distribution, which is also
positively influenced by increasing the size of the Hb
compounds and the viscosity of the Hb solutions.

Furthermore, the efficacy of HBOC solutions are greatly
dependent on a functional collateral vascularization of the
ischemic tissue.
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Hemoglobin-vesicles for a Transfusion Alternative
and Targeted Oxygen Delivery
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Hb-vesicles (HbV) are artificial oxygen carriers that encapsulate purified Hb solution
(35 g/dl) in unilamellar phospholipid vesicles (liposomes). The dispersion stability of
HbV is attained using surface-modification with polyethylene glycol (PEG), so that the
deoxygenated HbV can be stored at room temperature for years. Moreover, the intra-
venously injected HbV does not induce aggregation when contacted with blood compo-
nents. Animal experiments have verified the safety and efficacy of HbV as a transfusion
alternative. One advantage of HbV is that the O, affinity (Psp) of HbV can be regulated
easily to that of RBC (28 torr) and to other values by manipulating the amount of the
allosteric effectors, such as pyridoxal 5'-phosphate, coencapsulated in HbV. It is possi-
ble that HbV with a lower Py, (higher O, affinity) would retain O, in the normal tissue
while unloading O, to a targeted hypoxic tissue. Small HbV (250-280 nm diameter) is
distributed homogeneously in the plasma phase, and HbV would transport oxygen
through collateral arteries in the ischemic tissues. Results of in vitro and in vivo exper-
iments of the domestic and international collaborations have confirmed the possibility
of targeted O, delivery by HbV.
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Development of Hb-vesicles as a Transfusion Alternative

The main reasons for Hb encapsulation in red blood cells (RBCs) are prevention of Hb
removal from blood circulation and preservation of the cells' chemical environment,
such as the concentration of phosphates (2,3-DPG, ATP, etc.) and other electrolytes.
Moreover, during the long history of the development of Hb-based O, carriers (HBOCs)
to substitute the function of RBCs, many side effects of molecular Hb have become
apparent, such as the dissociation of tetrameric Hb subunits into two dimers (o), —
2af), which might induce renal toxicity, and entrapment of gaseous messenger mole-
cules (NO and CO) inducing vasoconstriction, hypertension, reduced blood flow, and
impaired tissue oxygenation at microcirculatory levels (Goda et al., 1998; Nakai et al.,
1998; Sakai et al., 2000), neurological disturbances, and the malfunctioning of esoph-
ageal motor function (Murray et al., 1995). These side effects of molecular Hb also
imply the importance of the cellular structure of RBC to encapsulate Hb. Unique rheo-
logical properties of blood as a non-Newtonian viscous fluid are attributed to the nature
of suspension of RBCs, which constitute nearly 50% of blood volume, which is impor-
tant for the homeostasis of blood circulation.

From the viewpoint of constructing *Artificial Cells’, a pioneering work of Hb encap-
sulation to mimic the cellular structure of RBCs was performed by Chang in 1957 (Chang,
1984), who prepared microcapsules (5 pm) made of nylon, collodion, etc. Toyoda (1965)
and the Kambara-Kimoto group (Kimoto et al., 1968) also covered Hb solutions with gel-
atin, gum Arabic, silicone, etc. Nevertheless, it is extremely difficult to regulate the parti-
cle size, which is necessary for appropriate blood flow in the capillaries, and to obtain
sufficient biocompatibility. After Bangham and Horne (1964) reported that phospholipids
assemble to form vesicles in aqueous media, and that they encapsulate water-soluble
materials in their inner aqueous interior, it seemed reasonable to use such vesicles for Hb
encapsulation. Djordjevich and Miller (1977) prepared liposome-encapsulated Hb (LEH)
composed of phospholipids, cholesterol, fatty acids, etc. Many groups have attempted
LEH since then (Beissinger et al., 1986; Brandl and Gregoriadis, 1994; Hayward et al.,
1985; Hunt and Burnette, 1983; Kato et al., 1985; Li et al., 2005; Liu and Yonetani, 1994,
Usuba et al., 1991). In the US, Naval Research Laboratories have reported remarkable
progress using LEH (Rudolph et al., 1991).

However, some intrinsic issues of encapsulated Hbs remain, mainly related to molecular
assembly and particle dispersion. What we call Hb-vesicles (HbV) with high-efficiency
production processes and their improved properties, were established by Tsuchida’s group
(Sakai et al., 1996; Takeoka et al., 1996; Sou et al., 2003) based on technologies of molec-
ular assembly and precise analyses of pharmacological and physiological aspects (Fig. 1).
The salient characteristics of HbV are the following:

i. Human Hb is purified completely via pasteurization at 60°C and ultrafiltration; no
viruses are included in it (Sakai et al., 1993; Abe et al., 2001; Naito et al., 2002).

ii. A concentrated Hb solution, nearly 35 g/dl, is encapsulated within a thin bilayer mem-
brane (Sakai et al., 1996; Sou et al., 2003; Takeoka et al., 1996).

iii. A new synthetic lipid is used to prevent platelet activation (Abe et al., 2006;
Wakamoto et al., 2005).

iv. PEG-modification guarantees long-term storage of over two years at room tempera-
ture, blood compatibility, and extended circulation half-life (Phillips et al., 1999;
Sakai et al., 1997, 1998, 2000; Sou et al., 2000, 2005; Wakamoto et al., 2001;
Yoshioka et al., 1991).
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1. Purified conc. Hb
2. Encapsulation
3. PEG-modification *

Figure 1. Schematic representation and transmittance electron micrograph of Hb-vesicles as artificial
oxygen carriers. The purified and concentrated Hb solution (35 g/dl) is encapsulated in phospholipid
vesicles and the surface is modified using PEG chains. The particle size is well regulated at 250 nm.

v. The cellular structure, which resembles that of red blood cells, shields all side effects
of molecular Hb, such as scavenging NO and CO (Goda et al., 1998; Nakai et al.,
1998; Sakai et al., 2000).

vi. The particle size (250 nm) is appropriate for sterilization, circulation persistence, and
biodistribution (Sou et al., 2003; 2005).

vii. Hb-vesicles do not show colloid osmotic pressure. Addition of a plasma substitute
solution such as recombinant albumin is effective to regulate colloid osmotic pressure
(Izumi et al., 1997; Sakai et al., 2004; 2006; 2007). We confirmed sufficient O,-trans-
port comparable with RBC in the animal experiments of extreme hemodilution up to
90% blood exchange and resuscitation from hemorrhagic shock, and priming solution
for cardiopulmonary bypass (ECMO) (Yamazaki et al., 2006).

Regulation of Oxygen Affinity

The O, affinity of purified Hb (expressed as Py, O, tension at which Hb is half-saturated
with O,) in phosphate-buffered saline solution is about 14 torr; Hb strongly binds O, and
does not release O, at 40 torr, as a partial pressure of mixed venous blood. Historically, it
has been widely believed that the O, affinity should be regulated similarly to RBC, at
about 25-30 torr, using an allosteric effector or by a direct chemical modification of the
Hb molecules. Theoretically, this allows sufficient O, unloading during blood microcircu-
lation, as can be inferred according to the arterio-venous difference in the levels of O,
saturation in accordance to an O, equilibrium curve (Fig. 2). It has been expected that
decreasing the O, affinity (increasing Pg) increases O, unloading, which is supported by
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Figure 2. Oxygen dissociation curves of RBC or HBOCs such as Hb-vesicles. (a) P5o = 28 torr, (b),
15 torr, (c) 9 torr. (a) Oxygen dissociation curve of human RBC (Psy = 28 torr). In the normal condi-
tion, the amount of O, released during one circulation is calculated as the arterio-venous (A-V) dif-
ference of about 25%. In a hypoxic tissue, such as 5 torr, oxygen saturation (Sa0,) of RBC is only
2%, and most of the O, is already released before the blood enters the hypoxic tissue. (c) For a high
O,-affinity HBOC, it does not release at a normal tissue because Sa0, at 40 torr is nearly 100%. On
the other hand, Sa0, at 5 torr is estimated as about 26%, which is higher than that for RBCs; conse-
quently, HBOC remains a major source of O,.

the result that the RBC with a high P, shows an enhanced O, release for improved
exercise capacity in a mice model (Shirasawa et al., 2003). '

If this theory is correct, the P, of Hb in HbV should be equivalent to that of human
RBCs, i.e., 28 torr, or higher. Pyridoxal 5’-phosphate (PLP) is coencapsulated in HbV as
an allosteric effector to regulate Py, (Sakai et al., 2000; Wang et al., 1992). The main
binding site of PLP is the N-terminal of the o-chains and S-chains and $-82 lysine within
the B-cleft, which is part of the binding site of natural allosteric effector, 2,3-diphosphoglyceric
acid (2,3-DPG) (Benesch et al., 1973). The bound PLP retards the dissociation of the ionic
linkage between the B-chains of Hb during conversion of deoxy to oxyHb in the same
manner as does 2,3-DPG. Consequently, the O, affinity of Hb decreases in the presence of
PLP. The Py, of HbV can be regulated to 5-150 torr by coencapsulating the appropriate
amount of PLP or inositol hexaphosphate (IHP) as an allosteric effector and other electrolytes
(Wang et al., 1992). Equimolar PLP to Hb (PLP/Hb = 1/1 by mol) was coencapsulated,
and Py, was regulated to 18 torr. When the molar ratio PLP/Hb was 3/1, Ps, was regulated
to 32 torr. The present HbV contains PLP at PLP/Hb = 2.5 by mol; the resulting Py, is about
25-28 torr, which shows sufficient O, transporting capacity as a transfusion alternative for
extreme hemodilution, resuscitative fluid for hemorrhagic shock, and prime solution for
extracorporeal circulation. Much higher Psy, such as 50 torr, can be attained using the
combination of a stronger allosteric effector, IHP. The resulting HBOC shows incomplete
oxygenation at FiO, = 20%, and a larger arterio-venous difference requires respiration at
ahigher FiO,, which might engender hyperoxia-induced lung injury. Whatever the
case might be, it should be emphasized that the O, affinities of HbV can be regulated
quite easily without changing the other physical parameters. However, in the case of
the other modified Hb solutions, their chemical structures determine their O, affinities.
For that reason, regulation is difficult. The appropriate O, affinities for O, carriers have
not been completely determined. However, the simple regulation of the O, affinity might
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be useful to meet the requirements of clinical indications such as oxygenation of ischemic
tissues.

Oxygenation of Ischemic Tissues Using Hb-vesicles

In an ischemic tissue, the blood flow is extremely reduced. As a result, O, tension is very
low: such as 5 torr. Normal RBCs should have already released O, before they reach the
ischemic tissue. The left-shifted curve (lower Ps) indicates that Hb does not release O,,
even in the venous side in a normal condition. However, RBC or an HBOC with a lower
P;, than usual can carry O, to an ischemic tissue (Linberg etal., 1998; Stein and
Ellsoworth, 1993). Dr. Erni and colleagues at Inselspital Hospital of University of Berne
developed a hamster skin flap model in which the blood flow of one branch is blocked
completely and the tissue becomes completely ischemic (Emi et al., 1999). Exchange
transfusion was performed using low and high P, Hb-vesicles, which revealed the
improved oxygenation of the ischemic part, especially with the low Psy-Hb-vesicles
(Contaldo et al., 2003, 2005; Erni et al., 2003; Plock et al., 2005, 2007). Collateral blood
flow should occur even to the ischemic part, and the Hb-vesicles retain O, to the ischemic
part via the collateral arteries. This is the first example of the effectiveness of HbV for an
ischemic tissue; it implies its applicability for other ischemic diseases. We observed O,-
releasing behavior in both in-vitro and in-vivo conditions for detailed clarification of this
mechanism.

The O, release from flowing HbVs was examined using an O,-permeable, fluorinated
ethylenepropylene copolymer tube (28 um inner diameter) exposed to a deoxygenated
environment (Sakai et al., 2003). Measurement of O, release was performed using an
apparatus that consisted of an inverted microscope and a scanning-grating spectrophotom-
eter with a photon-count detector; the O, release rate was determined based on the visible
absorption spectrum in the Q band of Hb. The HbVs and fresh human RBCs were mixed
in various volume ratios at the Hb concentration of 10 g/dl in isotonic saline, which con-
tained 5 g/dl albumin. The suspension was perfused at the centerline flow velocity of
1 mm/s through the narrow tube. The mixtures of acellular Hb solution and RBCs were also
tested. The values of Ps, of HbV, Hb, and RBC were fixed as almost identical (28 torr).
Irrespective of the mixing ratio, the rate of O, release from the HbV/RBC mixtures was
similar to that of RBCs alone. On the other hand, the addition of 50 vol% of acellular Hb
solution to RBCs markedly enhanced the rate of deoxygenation. This outstanding differ-
ence in the rate of O, release between the HbV suspension and the acellular Hb solution is
probably attributable mainly to the difference in the particle size (250 vs. 7 nm), which
affects their diffusion for the facilitated O, transport. It is reported that faster O, release of
acellular Hb would induce autoregulatory vasoconstriction. Consequently, it is advanta-
geous that the O,-release behavior of HbV is similar with that of RBC at the same Py, and
would retain O, in blood circulation to the peripheral tissues.

We prepared two HbVs with different Ps, values (8 and 29 torr, respectively desig-
nated as HbVg and HbV,,) and observed their O,-releasing behavior from an occluded
arteriole in a hamster skinfold window model in collaboration with Prof. Intaglietta of
UCSD (Sakai et al., 2005). Conscious hamsters received HbV; or HbV,, at a dose rate of
7 ml/kg. In the microscopic view, an arteriole (diameter: 53.0 + 6.6 um) was occluded
transcutaneously by a glass pipette on a manipulator; the reduction of the intra-arteriolar
PO, 100 um down from the occlusion was measured using the phosphorescence quench-
ing of preinfused Pd-porphyrin. The baseline arteriolar PO, (50-52 torr) decreased to
about 5 torr for all groups. Occlusion after HbV; infusion showed a slightly slower rate of
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PO, reduction than that after HbV,, infusion. The arteriolar O, content was calculated at
each reducing PO, in combination with the O, equilibrium curves of HbVs; those calcula-
tions clarified that HbVy showed a significantly slower rate of O, release compared to that
of HbV 4 and was a primary source of O, (maximum fraction, 0.55) overwhelming RBCs
when the PO, was reduced (e.g., <10 torr) despite a small dosage of HbV. This result sup-
ports the possible utilization of Hb-based O, carriers with lower P, for oxygenation of
ischemic tissues.

The O, transport capacity of HbVg and HbV,9 was investigated in the hamster cham-
ber window model. Extreme hemodilution was performed using 5% recombinant albumin
(rHSA) until Hct became 35% of the baseline value (Cabrales et al., 2005). At this condi-
tion, all tissues are totally hypoxic. Isovolemic exchange was continued using HbV sus-
pended in tHSA solution to a total [Hb] of 5.7 g/dl in blood. Final Hct was 11% for the
HbV groups, with a plasma [Hb] of 2.1 £ 0.1 g/dl after exchange with HbVg or HbV,4. A
reference group was hemodiluted to Het 11% using only rHSA. All groups showed stable
blood pressure and heart rate. Arterial oxygen tensions were significantly higher than
baseline for the HbV groups and the rHSA group and significantly lower for the HbV
groups compared to those of the rHSA group. Blood pressure was significantly higher for
the HbV, group compared to those of the HbV,q group. Arteriolar and venular blood flows
were significantly higher than baseline for the HbV groups. Microvascular O, delivery
and extraction were similar for the HbV groups, but lower for the rHSA group. Venular
and tissue O, tensions were significantly higher for the HbV, versus the HbV,q and rHSA
groups. In this systemically ischemic model after extreme hemodilution, an improved
tissue O, tension is obtained when a high, rather than low, affinity HbV was injected.
Results show that the high-affinity HbV can deliver O, more efficiently and more
homogeneously to the peripheral tissues.

Recent studies have shown the effectiveness of HBOCs with a lower Py, (higher O,
affinity) as a means of implementing O, delivery targeted to ischemic tissues (Banes et al.,
1998, 2003; Tsai et al., 2003; Winslow et al., 2005; Nemoto et al., 2006). Our experimen-
tal data support those previous observations and ensure the possible utilization of HBOCs
for remedying ischemic conditions in addition to its utilization as a transfusion alternative.
The salient difference between HbV and other HBOCs such as chemically-modified Hb
solutions is that the physicochemical properties of HbV are adjustable, not only Ps,, but
also the particle size, surface properties, Hb concentration inside the vesicles, and rheolog-
ical properties. Accordingly, the use of HbV provides unique opportunities for versatile
therapeutic approaches.
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