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Abstract: In recent years, clinical applications of recombinantly produced bioactive proteins such as cytokines have at-
tracted attention. However, since these recombinant proteins are rather unstable in vivo, their clinical use as therapeutic
agents requires frequent administration at a high dosage. This regimen disrupts homeostasis and results in severe side ef-
fects. To overcome these problems, bioactive proteins have been conjugated with water-soluble synthetic (WSS) polym-
eric carriers. Chemical modification of a protein with a WSS polymeric carrier (bioconjugation) regulates tissue distribu-
tion, resulting in a selective increase in its desirable therapeutic effects and a decrease in undesirable side effects. Among
several drug delivery system (DDS) technologies, bioconjugation has been recognized as one of the most efficient meth-
ods for improving therapeutic potency of proteins. However, for further enhancement of the therapeutic potency and
safety of conjugated bioactive proteins, more precise regulation of the in vivo behavior of each protein is necessary for
selective expression of its therapeutic effect. Therefore, alternative WSS polymeric modifiers in which new functions such
as targeting and controlled release of drugs can be added are required for further development of bioconjugated drugs. Re-
cently, we have synthesized a novel polymeric drug carrier, poly(vinylpyrrolidone-co-dimethyl maleic anhydride) [PVD],
which was a powerful candidate drug carrier for cancer therapy. In this review, we introduce useful information that en-

abled us to design polymeric drug carriers and their application for protein therapy.

Key Words: Polyethylene glycol (PEG), bioconjugation, drug delivery system (DDS), polyvinylpyrrolidone (PVP), poly
(vinylpyrrolidone-co-dimethyl maleic anhydride) [PVD], cancer therapy.

INTRODUCTION

In the postgenomic era, life sciences research has shifted
focus from genome analyses to the functional analyses of
genes and their products (proteins), and recently, there have
been dramatic advances in pharmacoproteomics. The func-
tions of numerous proteins will be clarified due to the recent
advances in structural genomics. Thus, the therapeutic appli-
cation of bioactive proteins such as newly identified proteins
and cytokines has been highly anticipated [1-6]. However,
the clinical application of most of these proteins is limited
because of their unexpectedly low therapeutic effects. The
reason behind this limitation is that these proteins are imme-
diately degraded by various proteases in vivo and are rapidly
excreted from blood circulation [1,6-9]. Therefore, frequent
administration at an excessively high dose is required for
manifestation of their therapeutic effects in vivo. This how-
ever disrupts homeostasis and leads to unexpected side ef-
fects.

Recently, to overcome the problems associated with the
clinical application of bioactive proteins, attachment of wa-
ter-soluble synthetic (WSS) polymers such as polyethylene
glycol (PEG) to the surface of these proteins has been
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developed (Fig. 1). The covalent conjugation of proteins
with PEG is specifically referred to as PEGylation. Biocon-
Jugation of proteins decreases their renal excretion rate due
to the increased molecular size. In addition, since the WSS
polymers cover the protein surface, attack by proteases is
blocked by steric hindrance, resulting in prolongation of the
in vivo half-life. A similar steric effect results in a decrease
in the antigenicity and immunogenicity in an immune re-
sponse, resulting in prolongation of in vivo clearance and
stabilization. All these advantages lead to an increase in in
vivo stability, and this in turn, enables a decrease in the dose
as well as time of administration.

In fact, PEGylated granulocyte-colony stimulating factor
(PEG-G-CSF; PEG filgrastim) , PEGylated interferon-alpha
(PEG-IFN-o;; PEGASYS, PEG-Intron), PEGylated aspar-
aginase (PEG-Asp; ONCASPER), PEGylated adenosine
deaminase (PEG-ADA; ADAGEN) and Poly(stylene-co-
maleic acid)-conjugated neocarzinostatin (SMANCS) have
demonstrated a marked improvement in therapeutic efficacy
in comparison with the native forms, and their clinical appli-
cations have already been reported [10-17]. SMANCS dis-
solved in lipiodol exhibits a marked antitumor effect when
used in chemotherapy for targeting hepatomas [13,14]. Fur-
thermore, studies have demonstrated the efficacy of PEGy-
lated Interleukin-2 (PEG-IL-2) in the treatment of patients
with metastatic melanoma and carcinoma [18-20]. These
results suggested that bioconjugation with a WSS polymeric
carrier is a very pragmatic approach for successful therapies
with various drugs such as enzymes and antitumor agents. In

© 2006 Bentham Science Publishers Ltd.
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Fig. (1). Characteristics of bioconjugation.

the future, bioconjugated drugs with a WSS polymeric car-
rier should be more extensive clinical application.

However, with the exception of a few examples, the
clinical use of bioconjugated proteins remains limited. This
is due to the conflicting effects of polymer conjugation of
bioactive proteins; conjugation with a polymeric modifier
inhibits the transport from blood to tissues and the binding to
their receptors. In addition, specific activities of proteins are
decreased by the attachment of polymeric modifiers to active
sites. Therefore, it is important to select an optimal modify-
ing molecule based on its suitability for bioconjugation and
the properties of individual bioactive proteins and accumu-
late basic data such as the details of the relationship among
motecular weight, modification rate, and activity of the
modified protein. Additionally, we must consider the optimal
polymer-conjugation conditions to (a) increase plasma half-
life and stability, (b) control behavior in the body (well-
balanced tissue transport), and (c) selectively enhance desir-
able therapeutic activities of bioactive proteins without in-
creasing their side effects.

In this review, we first show the fundamental information
enabling us to design the bioconjugated bioactive proteins
applicable to therapeutic use. Next we discussed the novel
polymeric carries with desired DDS functions such as tar-
geting capability and controlled release of drugs for cancer
therapy.

NONIONIC WSS POLYMERIC CARRIERS THAT
ARE SUITABLE FOR IMPROVEMENT IN BLOOD
RESIDENCY OF DRUGS

The fate and distribution of the conjugates between WSS
polymeric- carriers and drugs (including proteins as drugs)

ugy
v - Disadvantages
Y o o Bioactive protein 1
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1. Block the attack from protease

2. Decrease the renal excretion rate
for the increase molecular size

3. Reduce immunogenicity

Lose bioactivity for modification
of active site

2. Inhibit sterically receptor binding
of cytokines

< 3. Limit the transport from blood to
tissues

can be attributed to the physicochemical properties of po-
lymeric modifiers, such as molecular weight, electric charge,
and hydrophilic balance [21-23]. Therefore, selecting a po-
lymeric modifier by considering the influence of physico-
chemical characteristics on its pharmacokinetics is extremely
important. PEG is a WSS polymeric modifier with low tox-
icity and antigenicity, and it has been frequently used for
bioconjugation. However, PEG also has some disadvantages
as a drug carrier—primarily the fact that PEG has a func-
tional group only at the end of the chain, which limits the
possibilities of adding new functions to the drugs for a more
precise control of their pharmacokinetics and tissue distribu-
tion. From this viewpoint, modifiable polymeric modifiers
are required to control the biopharmaceutical characteristics
of conjugated drugs. In view of this, in a study on mice
bearing solid tumors, we focused on nonionic WSS polymers
and assessed the pharmacokinetic properties of various po-
lymeric modifiers that could be modified by changes in their
physicochemical properties.

The polymer formulations that were used were PEG,
polyvinylpyrrolidone (PVP), polyacrylamide (PAAm), poly-
dimethylacrylamide (PDAAm), polyvinyl alcohol (PVA),
and dextran. PVP, PAAm, and PDAAm were functionalized
by the introduction of various co-monomers during radical
polymerization. PVA and dextran have many primary OH
groups that can be used for conjugation on the side chain.
Mice were intravenously injected with various 23] labeled
WSS polymers of the same molecular size (MW: 5000) for
studying the elimination profiles of these polymers (Fig. 2).
All polymers showed biphasic elimination patterns. PEG and
dextran, which are used frequently as drug carriers, were
rapidly eliminated from blood circulation. On the other hand,
PVA and PVP circulated for a longer period than the other
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polymers, while these nonionic polymers had the same mo-
lecular size as PEG. PVP exhibited the longest plasma half-
life among all the nonionic WSS polymers studied, and 25%
of the injected dose remained in the body after 3 h. Pharma-
cokinetic analysis revealed definite differences among the
polymers with respect to plasma clearance and tissue distri-
bution. PVP showed the longest mean residence time (MRT)
among all polymers examined. The total clearance of PVP
was approximately 10-fold lower than that of PEG. The dis-
tribution volume of dextran was the highest among all these
polymers; its volume was twice that of PVP. In this study,
although all the polymers had the same molecular weight
dispersity and were nonionic and water soluble, each poly-
mer showed a characteristic distribution. PVP had the long-
est circulation time, and its tissue distribution was extremely
restricted. In addition, PVP could be easily mixed with vari-
ous functional groups by radical polymerization in order to
control its physicochemical properties and to add functions
such as targeting or sustained release. These results suggest
that PVP is one of the most feasible polymeric modifiers for
localizing conjugated drugs in blood. In fact, PVP-conjuga-
ted tumor necrosis factor-alpha (TNF-ot) showed a higher
half-life than PEG-conjugated TNF-¢ despite having the
same molecular size [24].

1000 | —e— PEG
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E% 100
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2
§ 10
k
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Fig. (2). Plasma clearace of various WSS polymers in mice after
intravenous injection [24].

Here we show, using TNF-o as examples, the possibility
that PVP-conjugated proteins overcomes their drawbacks,
allowing their clinical application. The antitumor effects of
TNF-o result not only from its direct cytotoxic action against
various tumor cells, but also from activation of antitumor
effector immune cells in the blood and specific damage to
the tumor vessels. In addition, in the process of bleeding
necrosis in the tumor vessels, the vascular permeability of
the tumor vessels is selectively increased, promoting trans-
port from blood to the tumor tissue. On the other hand, the
increase in blood-residency would lead to a decrease in the
distribution of TNF-a in the liver and spleen, which are the
major sources of unfavorable side-effects. Therefore, im-
provement in blood stasis enhances all antitumor action
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mechanisms of TNF-« increasing its bioavailablity. As a
result, PVP-conjugated TNF-a had a more potent antitumor
effect than PEG-conjugated TNF-a, without any toxic side
effects [25,26]. This phenomenon has also been observed in
PVP-conjugated interleukin-6 (IL-6) and leukemia inhibitory
factor [27].

DEVELOPMENT OF TISSUE-TARGETING POLY-
MERIC CARRIERS

It has been reported that bioconjugation of TNF-o and
IL-6 with PEG and PVP improved their resistance to prote-
inase and their plasma half-lives, thereby resulting in greater
therapeutic potency [24-31]. However, for further enhance-
ment of therapeutic potency and safety of conjugated bioac-
tive proteins, a more precise control of the in vivo behavior
of each protein is necessary. Thus, the development of novel
WSS polymeric carriers with targeting capability to specific
tissue is expected; PEG and PVP are useful and powerful
polymeric carriers for improving plasma half-lives. Using
PVP as a backbone polymer, we have evaluated the in vivo
pharmacokinetics of synthesized PVP derivatives with vari-
ous electric charges or hydrophilic-hydrophobic balance. For
example, hydrophobic PVP derivatives that contain vinyl
laurate and stylene accumulated in the spleen and liver, re-
spectively, after intravenous injection [32]. In contrast,
anionized PVP derivatives were retained in the blood or ac-
cumulated in the kidneys (Fig. 3). Carboxyl PVP, which
contained an optimal amount of acrylate, distributed to the
kidneys but over-carboxylation resulted in excretion through
urine [33]; the same pattern was observed with sulfonated
PVP. The in vitro cytotoxicity of carboxylated PVP against
renal tubular cells was low, and its renal targeting capacity
was better than that of other carriers. Anionic polyaspar-
tamides are transiently distributed in the kidneys and are
rapidly excreted in the urine [34]. However, we found that
these anionic polymers were unsuitable as renal targeting
carriers because conjugates composed of these anionic
polymers and the drug did not accumulate in sufficient
quantities to produce therapeutic effects.

Based on a series of research studies, we have synthe-
sized a novel polymeric drug carrier, namely, poly(vinyl-
pyrrolidone-co-dimethyl maleic anhydride) [PVD], by radi-
cal copolymerization and mixed the reactive comonomers
[dimethyl maleic anhydride (DMMAn) and vinylpyrrolidone
(VP)] in a ratio of 1:5 (Fig. 4). We found that approximately
80% of the dose of PVD (1:5) selectively accumulated in the
kidneys 24 h after intravenous injection. Although the PVD
(1:5) that was accumulated in the kidneys was gradually ex-
creted in the urine, approximately 40% was retained 96 h
after the treatment was commenced [35]. The high renal ac-
cumulation and retention of PVD (1:5) makes it a more use-
ful targeting carrier than other agents. Although most anion-
ized polymers are safer than cationized polymers, they ex-
hibit cytotoxicity at high doses. Poly(VP-co-MAn), which
has the same molecular size, polydispersity, and carboxyl
group content as PVD (1:5), produced cytotoxicity in LLC-
MK?2 cells at higher concentrations (Fig. 5). In contrast, PVD
(1:5) produced no evidence of pathological effects in mice at
a dose of 10 mg/day for 28 days. A subcutaneous dose of 50
mg PVD (1:5) was well tolerated by mice. The safety of
PVD (1:5) appears to be similar to that of PEG and PVP,
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Fig. (3). Kidney accumulation of PVP and anionized PVP derivatives after intravenous injection in mice [33].
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Fig. (4). Chemical structures and characteristics of poly(vinylpyrrolidone-co-dimethyl maleic anhydride)[PVD].

which are used clinically. Thus, PVD (1:5) appears to be a
safe polymeric carrier with a considerably higher renal tar-
geting and retention capacity than any other renal targeting
carrier.

Renal disease is a serious health problem on the increase
in the world. There is no cure for renal disease, and few
strategies are available for prevention [36,37]. Bioactive
proteins, such as superoxide dismutase (SOD) and interleu-
kin-10, have been expected to prevent the progression of
renal disease, but their therapeutic potency were too low
because they were poorly distribution to the kidney. The
development of a renal delivery system that selectively car-
ries drugs to the kidneys is a promising approach for limiting
tissue distribution and controlling toxicity. Several renal
DDS have been previously described [38,39]. One approach
involves prodrugs that are cleaved by kidney-associated en-
zymes to release the drugs in the kidney [40]. However,

these prodrugs generally do not accumulate in the kidneys as
a result of plasma protein binding and limited transport to the
kidney. Low-molecular weight proteins, such as lysozyme,
have been used as carriers because they are reabsorbed by
the kidneys. Unfortunately, they also produced strong renal
toxicity and cardiovascular side effects [41]. Streptavidine
carriers bind to biotin in the kidney, but they are immuno-
genic and have limited renal accumulation due to their large
molecular size [42,43]. Thus, it is important to develop an
effective renal DDS that not only targets the kidney but also
has excellent safety. In this regard, we attempted to design
novel targeting polymeric modifier to renal system. To cite a
case, PVD (1:5)-modified SOD accumulated in the kidneys
after intravenous injection and accelerated recovery from
HgCl,-induced acute renal failure [35,44]. In contrast, PVP-
modified SOD and native SOD were not as effective, be-
cause of its poor renal accumulation. Thus, PVD (1:5) repre-
sents a promising candidate as a renal targeting carrier.



Polymeric DDS for Optimized Protein Therapies

120
100
g 80
2
:_g 60
=
40 +OPEG
M PvD
20 | A Poly(VP-co-MAn)
@ Polybrene
0 L

0 0.01 0.1 1 10

Concentration (mg/ml)

Fig. (5). In vitro cytotoxicity of PVD [35].

POLYMERIC DDS FOR OPTIMIZED CANCER
CHEMOTHERAPY

The major limitation of antitumor agents, typified by
Adriamycin (ADR, doxorubicin), used in clinical applica-
tions, is its severe toxicity, such as bone marrow suppression
and cardiotoxicity [45-48]. This is caused by the high and
frequent dose of antitumor agents, which have a very short
half-life and a wide tissue distribution. The chemical conju-
gation of antitumor agents with WSS polymeric carriers has
been found recently to overcome these defects. The conjuga-
tion of low molecular weight antitumor agents to WSS po-
lymeric carriers, such as N-(2-hydroxypropyl)methylacryl-
amide, divinylether-co-maleic anhydride, styrene-co-maleic
anhydride, dextran, and PEG, offers a potential mechanism
to improve cancer chemotherapy [14,49-53]. Distribution of
the conjugates, which have a higher molecular weight, is
usually restricted to the intravascular space after intravenous
injection due to the low permeability in most organs with a
continuous capillary bed. It is known that vascular perme-
ability of macromolecules into solid tumors and its retention
in tumor tissues are enhanced compared with normal tissues.
This is generally called the enhanced permeability and re-
tention (EPR) effect {54-56]. As a result, the polymeric DDS
may selectively expand the therapeutic windows of antitu-
mor agents.

However, there is a restriction on the clinical application
of this polymeric DDS for cancer chemotherapy. For in-
stance, after the ADR that is taken up into the tumor cells
intercalates between double strands of DNA, its antitumor
activity is induced by inhibition of DNA replication and
topoisomerase activity in the tumor cells [57]. However, the
intercalation of polymer-conjugated ADR between double
strands of DNA is based on macromolecular interactions,
which are sterically hindered by the attached polymeric car-
rier. Thus, for obtaining in vivo antitumor effects, a sufficient
amount of antitumor agents is required to be released from
the conjugates, because polymer-conjugated anticancer drugs
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themselves seldom show antitumor activity. However, in
most cases, the conjugate between an antitumor agent and a
polymeric carrier is formed through stable covalent bonding.
As a result, the antitumor therapeutic effects of these conju-
gates have often not been observed in their clinical trials. To
overcome these problems, a relatively unstable linker was
used for the conjugation between an antitumor agent and a
polymeric carrier. Most of the antitumor agents released
from the conjugates have a linker fragment. Furthermore,
these modified antitumor agents show much lower specific
activities than original antitumor agents in their native form,
because the linker fragment is attached to an active func-
tional group of the antitumor agents [58]. Thus, it is neces-
sary to develop a novel polymeric DDS for optimization of
cancer chemotherapy.

There are certain characteristics needed by the polymeric
drug carrier to (a) be excellent in blood residency for effec-
tively obtaining the EPR effect in tumors, (b) gradually re-
lease the fully active form (native form) of antitumor agents,
and (c) efficiently release the native antitumor agents under
the slightly acidic conditions, if possible, because it is known
that the pH of tumor tissues is slightly lower than that of
normal tissues [59,60]. From such a viewpoint, some polym-
eric carriers, typified by divinylether-co-maleic anhydride
and styrene-co-maleic anhydride, were developed [50,55].
Some maleic anhydride, that is one of the acid anhydride,
were contained in the structure of these polymeric carriers,
and the antitumor agents were conjugated with these polym-
eric carriers via the formation of amide bonds between the
amino group of antitumor agents and the acid anhydride
groups. However, the amide bonds formed through maleic
anhydride are very stable near neutral pH, and the antitumor
agents are released from the conjugates under strong acidic
conditions (<pH 3.0). As a result, the antitumor therapeutic
effects of these conjugates have often not been observed in
their clinical trials.

DMMAnR with a double bound in its structure is used as a
pH-reversible protective agent of amino groups in proteins
and chemical compounds [61,62]. DMMAn binds to an
amino group by forming an amide bond through its acid an-
hydride group at a pH higher than 8.0, and then reversibly
dissociates from the amino group, thereby changing into a
slightly acidic from neutral. Therefore, if a polymeric carrier
with this function of DMMAn is synthesized, it meets the
above conditions and will release a native drug in response
to changes in pH.

APPLICATION OF PVD FOR CANCER THERAPY

As described above, PVD contains DMMAn that reacts
with an amino group of a drug by forming an amide bond
through its acid anhydride group in response to changes in
pH. Reflecting the property of DMMAn, PVD could release
fully active drugs in the native form in response to the
change in pH near neutrality, and gradually released drugs at
neutral pH 7.0 and slightly acidic pH 6.0 (Fig. 6). Further,
since the pH of inflammatory tissues and tumor tissues is
well-known to be lower than that of normal tissues [59,60],
the PVD conjugates would possibly release free drugs more
efficiently in inflammatory tissues and tumor tissues.

In view of this, to clarify the usefulness of PVD as a po-
lymeric drug carrier for optimization of cancer therapy, we
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examined the therapeutic efficacy of conjugate between PVD
and ADR [63]. PVD (1:20) was radically synthesized with
DMMAnR and VP in a ratio of 1:20. PVD (1:20) also had a
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Fig. (6). pH-sensitive controlled release of Lucifer yellow ca-
daverine (LYC) from the conjugates between PVD (1:20) and LYC
[631.

long plasma half-life as well as PVP, rather than PEG. Un-
like in the case of PVD (1:5), which selectively accumulated
in the kidneys, the tissue distribution of PVD (1:20) was
extremely restricted. We show here that the PVD (1:20)-
conjugated ADR showed superior antitumor activity against
S-180 sarcomas in mice and had less side effects than free
ADR (Fig. 7 and Table 1). As shown in Fig. 7, all of the
mice administered with free ADR at a dose of 600 pg/mouse
and 200 pg/mouse died within 6-10 days after their intrave-
nous injection (within 13 days or 17 days after tumor inocu-
lation) because of toxicity of ADR. There was a marked
weight loss in these mice after the high dose of free ADR. In
mice treated with free ADR at a dose of 60 pg/mouse, al-
though tumor growth was slightly inhibited without causing
sudden death or weight loss, complete tumor regression, de-
fined as disappearance of tumor without regrowth within 100
days, was not observed. In contrast, the antitumor activity of
PVD (1:20)-ADR at a dose of 60 ng ADR/mouse was more
effective than that of free ADR at 60 pg/mouse. Tumor
growth was remarkably and completely inhibited by PVD
(1:20)-ADR at a dose of 200 ug ADR/mouse and 600 pg
ADR/mouse. Complete tumor regression was observed in
75%, 25%, and 25% of mice treated with PVD (1:20)-ADR
at a dose of 600 ug ADR/mouse, 200 pg ADR/mouse, and
60 ug ADR/mouse, respectively. During the experimental
period, all doses of PVD (1:20)-ADR were well tolerated,
and no loss in body weight was observed. Overall, the thera-
peutic window is markedly increased. These results have
important clinical implications for the use of antitumor che-
motherapeutic agents in patients. The expansion of the
therapeutic window is probably due to the following reasons.
PVD (1:20)-ADR may preferentially accumulate in solid
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tumors due to the EPR effect. Additionally, as it is known
that pH of tumor tissues is slightly lower than that of normal
tissues, the PVD (1:20)-ADR is likely to release free ADR
more efficiently in tumor tissues. These results indicate that
PVD (1:20) is an effective polymeric carrier for cancer ther-
apy, accordingly it would be expected the clinical application
of PVD (1:20)-conjugated cytokines as antitumor agents.
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Fig. (7). Antitumor effect of Adriamycin (ADR) and PVD (1:20)-
ADR on sarcoma-180 solid tumors [63].

Table 1. Antitumor Effect of ADR and PVD (1:20)-ADR on
Sarcoma-180 Solid Tumors [63]
Agent Dose (jLg/mouse/day) Complete regression
600 All mice died until 13 days
ADR 200 All mice died until 17 days
60 0/4
600 3/4
PVD (1:20)-ADR 200 1/4
60 1/4

Complete regression was defined when tumor was not regrown for >100days.

SUMMARY

In this review, we have showed the usefulness of bio-
conjugation for DDS to selectively enhance desirable thera-
peutic activities of bioactive proteins without increasing their
side effects. The following sequential and multiple strategies
are required for the optimization of protein therapy based on
bioconjugation: (a) optimum selection of the polymeric
modifier by considering the disposition of the drugs and ob-
jectives such as targeting or controlled release; (b) bioconju-
gation based on the estimation of characteristics such as
molecular size, modification site, degree of modification,
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and specific activity; and (c¢) assessment of therapeutic ef-
fects and pharmacokinetics of bioconjugated drugs. This
fundamental approach will enable the establishment of such
a methodology of bioconjugation. It may facilitate optimum
molecular design of a polymeric modifier in DDS.

On the other hand, to further optimize protein therapy, it
is necessary to develop a system to create mutant proteins
(muteins) with desired properties, such as superior bioactiv-
ity. Recently, we developed the efficient way to create de-
sired muteins by phage display technique. Using this tech-
nique, we created a lysine-deficient mutant TNF-q, in which
all of the lysine residues were replaced with other amino
acids, with full bioactivity and attempted site-specific PE-
Gylation at its N-terminus {64,65]. In most cases, PEGyla-
tion occurs randomly at multiple lysine residues in the pro-
teins, some of which may be located in or near the protein
active site. Accordingly, the bioactivity of randomly PEGy-
lated wild-type TNF-o is markedly lower than of the un-
modified TNF-o.. But then, this N-terminal mono-PEGylated
mutant TNF-o had comparable bioactivity to unmodified
TNF-o in vitro, other properties including plasma half-life,
antitumor activity, and toxicity were greatly improved. This
protein-drug innovation system will open the new way for
promotion of protein therapy, by applying the technique of
optimal bioconjugation as described in this review.
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ABBREVIATIONS

ADR = Adriamycin

DDS = Drug Delivery System

DMMAn = Dimethyl maleic anhydride

EPR = Enhanced Permeability and Retention

IL-6 = Interleukin-6

MAn = Maleic anhydride

MRT = Mean residence time

PAAmM = Polyacrylamide

PEG = Polyethylene glycol

PEG-ADA = PEGylated adenosine deaminase

PEG-Asp = PEGylated asparaginase

PEG-G-CSF = PEGylated granulocyte-colony stimulating
factor

PEG-IFN-o = PEGylated interferon-alpha

PEG-IL-2 = PEGylated Interleukin-2

PDAAm = Polydimethylacrylamide

PVA = Polyvinyl alcohol
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PVD = Poly(vinylpyrrolidone-co-dimethyl

maleic anhydride)

PVP = Polyvinylpyrrolidone

SMANCS = Poly(stylene-co-maleic acid)-conjugated

neocarzinostatin

SOD = Superoxide dismutase

TNF-o = Tumor necrosis factor-alpha

VP = Vinylpyrrolidone

WSS = Water-soluble synthetic
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Development of nanomedicine using intracellular DDS
"Tomoaki Yoshikawa, '“Yasuo Tsutsumi, 'Shinsaku Nakagawa
'Graduate School of Pharmaceutical Sciences, Osaka University
National Institute of Biomedical Innovation

Abstract
In recent years, sustained release and targeting system using nanospheres or
microspheres is noticed in systemic pharmacokinetics. However, in the near future, not
only “systemic pharmacokinetics” but also “intracellular pharmacokinetics” seems to be
important in Drug Delivery System research. In this context, we have tried to develop the
novel cytoplasmic nanoparticle (NP) delivery methods using fusogenic liposomes (FL) and
protein transduction domain (PTD). In this study, we demonstrated that the FL efficiently
delivered the encapsulated NP to the cytoplasm directly in a fusion —dependent.
Oligonucleotides attached to NP were gradually released in the cytoplasm after its efficient
delivery using FL. Furthermore, we have succeeded in identifying the novel PTD using
phage displayed random peptide library. In near future, this novel PTDs are applied to
cytoplasmic NP delivery carrier. From these results, we suggested that this technology is
very important to control the intracellular pharmacokinetics, and can be also applied to
any NP which will be produced by the nanotechnology in the future.
Key words: Drug Delivery System, nanotechnology, fusogenic liposome, protein
transduction domain (PTD), phage display system

U &I

KA MY AFROPLBEEZHo TS
TaFF—hR Ay RO — W%, BITIZHEE
FERE ORI RRRNT DR IZPE YV, BRIEHEDE
e DBELMBAT R4 LRESNSE
ERTFRENSE., Lo T, RAMNY /LK
KROFEWEBEMIEICBNTIE, THHMBAS
TEENE LEHREORRYEEEL LD L

" KBOR P KEEBEIR I FE R

0047-1852/06/ ¥ 40/ E/JCLS

HFHREN, FIIRT7FFRRERAEH 5V IE
EFLEDEENETTFEERLLTE S X,
FNO R HBNICEALTHEBELELIETET
Tu—FHRETETHAEXBTSL L% BT
H59). LHrL, ThoEBNBETFRERS
TOBRGTFERILEW L EOER L IR L Y,
HAEE BT BEICEL, HMRENOKED
ANVTFFIZREELZVAE Y IGEDELES
ZENTERV, Thbb, HRNIZHLER

AT Bk AR IR BB 7R



248 AAEGk 64 % 2 5 (2006-2)

NP (500 nm)

NP/Lipo

NP/FL Sendai virus

1 Characterization of NP -Lipo and NP-FL
NP-FL were observed by Cryo—TEM. Bar is identical to 100 nm.
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day 0 day 3

day 7

fluorescent intensity
=

0 255

2 Sustained release of oligonucleotides from NP introduced by FL
LLCMK2 cells were cultured with FL containing oligonucleotide —adsorbed NP for 30 min.
Intracellular distribution of oligonucleotides were visualized by confocal microscopy on day 0,
day 3, and day 7. Relative fluorescence intensities were represented by a 256 —color spectrum.

Bars indicate 20 ;m.

ROBEALHFLEL T DT EARER I,

ZOFL/NPIZ L 2MBA~DF / K8 A
HAFACSEIZEI DRI LA-ER, EHIE:
HELD% YL EIZF /R TOBAMED LN
7. BIZHOEHESOMRBMNICEASRZ T/
RHFREFEE L2 A, 1KY EHH
1000, EiC26M@LEHEASIh TSRS
Y5%UEFELR. — ), T/ TFHEMmR
N A ALZERED) R — L (NP/Lipo)
YRR S s BV TiE, F/RTFORDY
AR EAEHESN o7 D EOKR
Eh, FLBWRH L+ /R 2 lRcH®E
ISHBATELIEDRSRI.

b. FL % A /- #lRAEHREBIL

AT LORR

KiIZEWEELF /K F% FLZ AW THE
HIZEAL, SREAICBT2EWERIZOVWT
Wi L7, EFVERE L CHEBERL /-4 Y
TIR7 LA4F F(ODN) %K FREAHF+ >~
BOEYVE=ZLT I+ I HFICHESHE,
FLAZHWTHIFENICEAL .. MIREANT
DAY TR LAF FORGEEZESL —F—
PAREE IS CARM L -5, MIRENICEASR
2 2 RFALEAMICAH) T 7 LA F FA

HREAN AR 2 2 ShTw 53R
*h7:(H2). ULEoERL), FLEHAWTHE
Wit /N FRRENICEEEAT S
LT, MINICBVWTER LA ERSEL I LN
EEThbZ LR shsl. 5&+/ 72/
Oy —DOREBIZEST, RE - Bk ORI,
HHVIIHBRAREELICRE TS L %, #
BT N i ERBESNAZ LTS
na., FLICXAF /7 NTOMBENEREEA
EiohoHR;T /b EMTRZARTE
DEVWHERTHY, FHEF/ KNFLdAED
HHZETE ) HMEOECEWERIERT
ERRNDRA IR (BN

2. #la3 DDS DERBRICH % S
FRANTF X v+ U7 ORRE

i, HIVHRDTATR 7 F FE w12
protein transduction domain (PTD) A*#fd i 2
ERTHEBEATHAIEAXHONELY, B
HoMBAMEEAF )7 ELTEHSRT
V5. PTD O#FE A BRI & 0T
BavA, MRNICED AT ERICHREN
ANEBITTAZ EAHE SN, PIDZ YK
VAR I R ICEGsEATET, N



250 H 4Btk 64 % 2 %5 (2006-2)

3 Phage displayed random peptide library
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