薬物治療:我が国発の新規治療薬の

開発に向けて

―新規抗パーキンソン病薬ゾニサミドの開発―

村田美穂*

要 旨

ゾニサミド (ZNS) は日本で開発された抗てんかん薬であるが、偶然の臨床経験から抗パーキンソン病効果が発見された。大規模二重盲検試験結果の報告により、国際的にも日本発の抗パーキンソン病薬として注目されている。共同研究により、ZNSはドパミン合成亢進作用、MAO-B 阻害作用、パーキンソン病で認める基底核の異常発火パターンの正常化作用、ドパミン系を介さない抗振戦作用、培養細胞、モデル動物での神経保護作用などが明らかになった。

はじめに

ゾニサミド (ZNS) は日本で開発され、すでに 10 年以上難治性てんかんの治療に用いられてきた薬剤である. 筆者は偶然の臨床経験からこの ZNS が著明な抗パーキンソン作用を持つことを発見し、開発元会社とともに治験にかかわり、現在厚生労働省の使用許可承認を待っているところである. これまで我が国で使える抗パーキンソン病薬はドプス。を除いてはいずれも海外で開発され、海外よりかなり遅れて我が国で使用可能になったものである. ゾニサミドは日本で開発され、世

界で初めて大規模二重盲検試験の結果が海外雑誌"に報告され、国際的にエビデンスを認められたことから、日本から海外に発信できる抗パーキンソン病薬となると考えている。本稿では、発見のきっかけとその背景、治験や研究の進展について述べたい。

発見のきっかけ

パーキンソン病で外来診療中の 60 歳男性が、たまたま痙攣発作を起こした.この痙攣の治療のために当初バルプロ酸を 600mg まで投与したが効果不十分であったため、その時点で初めて、この患者に対してはきちんとしたてんかん治療がある程度以上の長期にわたって必要であることを認識した.ちょうど同じ時期に、たまたま ZNS が神経保護作用を持つという報告を知ったので、もしかする

* 国立精神・神経センター武蔵病院 神経内科 部長

キーワード: 抗パーキンソン病薬, ゾニサミド, ドパミン合成亢進作用,

下ハミン管成几進作用, 神経保護作用, 日本発 とパーキンソン病についても長い目で見れば少しはいいこともあるかもしれないという程度の気持ちで、ZNS 300mg を投与することにした。そうしたところ、次の外来受診時にはてんかん発作も消失したが、それと同時にパーキンソニズムが著明に改善していた。それまでは子ども3人が3交代で介助していたが、トイレ・入浴などもゆっくりではあるが自立となった2.

基礎実験

これをきっかけに、ZNS の抗パーキンソン作用についての研究がスタートした. 文献を検索すると、すでにてんかん薬としての研究の中で ZNS がラット線条体ドパミン含量を増加させることが報告されていた³. 早速自分でもラットに ZNS 25,50,100mg/日を経口投与し線条体ドパミン含量を測定すると、確かに明らかに上昇していた. この投与量は多く見えるが、実際に抗てんかん薬として用いられるヒト脳内 ZNS 濃度と同等の濃度を得られる量である.

筆者はもともとパーキンソン病患者でのL-DOPA 血中動態を多数例で検討しており、L-DOPA は極めて優れた薬剤であるが、半減期が短く急峻な血中動態をとることと、脳内移行が悪いことが最大の欠点であることを常に感じていた.そのため、半減期が 60 時間と長く、脳内移行が良好で、かつドパミンを増加させる薬剤は素晴らしいと思い込んだ.しかも、それまでドパミンアゴニストの薬価の高さが常に気になっていたため、1錠(100mg) 50 円足らずという薬価は理想的と思えた.これらの思い込みが、以後研究を進める原動力になったと言える.

ラットに ZNS を投与し、線条体内ドパミン含量を増加させることを確認した後、増加の機序を明らかにするためにドパミン合成の律速酵素であるチロシン水酸化酵素(TH)活

性、TH タンパク質量を測定した。これらの 増加を確認したのち、さらに TH mRNA 量を リアルタイム PCR 法を用いて測定し、ZNS が TH mRNA 増加を介して TH タンパク質 量を増加させることを明らかにした 455 .

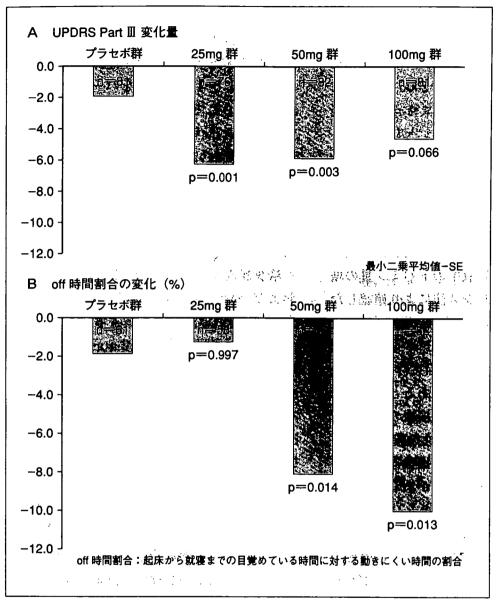
さらに製造元会社の協力を得て、ZNS が中等度のモノアミン酸化酵素 B(MAO-B)阻害作用を持つことを明らかにした。当初、肝細胞ミクロソーム分画を用いた実験では、ZNSの MAO-B 阻害の ICso は 670μ M とほとんど効果がないと思われた。ところが線条体膜分画を用いてやり直したところ、ICso は 27μ M で、50mg 服用の推定脳内濃度が 20μ M 前後であり、セレギリンに比較すると弱いものの、ある程度の阻害作用を持つことが分かった。また一方で、ドパミン受容体をはじめとするモノアミン受容体や、ドパミントランスポーターには親和性がないことを明らかにした。

自主臨床研究

これら基礎実験の一方で、倫理委員会の承 認のもと、臨床研究を進めた、1 例目は非常 に高い効果を得たが、常にそうである保証は ない. ZNS は抗てんかん薬として 10 年以上 我が国で使用されている薬剤であるので、安 全性という意味ではあまり不安はなかったが、 効果が確立している抗パーキンソン病薬が存 在するにもかかわらず、どの程度効果を示す か不明な薬剤を患者さんに服用していただく ことには、こちらとしてもかなりの決心が必 要であった、したがって、自分としては現存 の薬剤でベストと思われる治療をしてきたが、 なおそれでも効果が不十分でもう少し改善し たいと考えている患者で、かつ、元気そうで 何かあればすぐに訴えてくれる方に事情を説 明し、これまでの抗パーキンソン病薬に add on する形で ZNS を服用していただいた. 第1例目はもともと抗てんかん作用を期待し

ていたので 300mg/日であったが,第2例目はまず 100mg/日,朝1回とした.4週間後その患者さんは診察室に入ってくるなり,「先生,お見事」と言ってくださった.何が良くなったのかを尋ねてみると,全体の動きが良くなったこと,薬剤効果の切れ目がほとんどなくなったとのことであった.第3例目は100mg/日で処方したところ,口渇感のため,自己判断で50mg/日にしていた.口渇があるならやめましょうかと言ったところ,「この薬をのむと切れ目がほとんどなくなる,振るえが減る,半錠でも十分効果はあるので半錠のまま続けたい」ということであった.

この3例が自覚的・他覚的ともに明らかな効果を示したことから、この薬剤の効果にはかなり自信を持つことができた.しかし一方、この話はアマンタジンの発見によく似ていることから、ZNS もアマンタジンと同様に最初は良い効果を示すが、2~3ヵ月で効果が消失してしまうのではないかというのが次の不安であった。幸いこの不安は杞憂で、結果的にはほとんどの症例が1年以上効果を持続できた.


第1例目の投与開始から1年以上経過して、2001年の神経学会総会に臨床効果を発表した.この発表を聞かれた複数の医師が実際に試してみたところ,比較的良い効果を得たことは、私にとって大変うれたことは、私にとって大のみのは無意識のうちに患者に良い結果では無意識のうちに患者に良いる可能性を否定では無い、評価も甘くなっている可例を対している。最初の10例というさないからである。最初の10例という考え方はまだ確立しているができないであるとができたができないであった。当時を始めていう考え方はまだ確立していまらず、エビデンスとして評価に耐えるものにするためには会社主導の大規模治験を施行することが不可欠であった。

無作為化二重盲検試験

最初の治験は探索的ということで、ZNS 50mg, 100mg, 200mgと偽薬という計 4 群で各群 30 人ほどの小規模のものであったが、進行期パーキンソン病患者を対象に L-DOPA 治療に ZNS を加える形で、50mg/日という少量の ZNS で有意な効果を得られた. 200mg 群では眠気、幻覚などが偽薬群より有意に多かった。しかし皆の期待があまりにも大きかったのか、効果は明らかであるが偽薬の、これ以後の治験では偽薬効果をできるだけ小さくするために、二重盲検であるうえにさらに患者には必ずどこかに偽薬の期間があると説明し、実際には最初の 2 週間に単盲検の偽薬期間を作るというかなり厳しい形式をとることにした.

さらにこの結果を受けて, より大規模に ZNS 50mg の有用性を明らかにするために 第Ⅱ相後期/第Ⅲ相の臨床試験を行った.こ の結果, 平均罹患期間 8.6 年の進行期パーキ ンソン病患者で、UPDRSⅢは 25,50mg 群 で有意に改善、wearing-off の off 時間は 50, 100mg 群で有意な改善を認めた¹⁾. 一方で、 不随意運動, 幻覚など副作用の発現率は 25, 50mg 群では偽薬群と有意差はなく, 眠気な どがやや多い程度であった(図1). またこ の結果で興味深かったのは、セレギリン投与 例と非投与例が約半数ずつであったが、両群 で効果には差はなく、むしろセレギリン非投 与群のほうがやや効果が高い傾向があったこ とである、この結果は、ZNS の効果の主体 が MAO-B 阻害ではないことを示唆してい る. ZNS のような多機能製剤では、基礎実 験では何が臨床効果の主体なのかが分かりに くいことが多く、治験が、つまり患者さんが 真実を教えてくれることを実感した.

図1 ゾニサミドの効果

A: 25mg, 50mg 群で有意な UPDRSIIIスコアの改善をみた。

B:50mg, 100mg 群で有意な off 時間割合の減少 (50mg 群で平均 1.3 時間, 100mg 群で平均 1.63 時間の減少) を認めた.

作用機序とその後の研究の展開

型どおり治験を進めながら、一方で基礎実験を進めた、比較的初期に行った実験で非常にうれしかったのは、MPTP サルでの ZNSの効果を見たときである、患者で効果があるのだから MPTP サルで効果があって当然なのではあるが、静注での実験であったこともあり、目の前で症状が改善していく、また、

L-DOPA との併用により明らかに L-DOPA の効果の持続が延長するのを見ると,偽薬効果のない動物での結果であるだけに,確かに効果があることを実感できた.またこの静注での即時効果から,ZNS の抗パーキンソン作用には TH mRNA 合成を介さない,より速いタイムスケールでの機序もあることが明らかになった.

この薬剤の作用機序や新たな可能性を明ら

かにするためには多くの方の協力が必要であ り、2003 年度より厚生労働省難治性疾患克 服研究事業の研究費を頂き、「日本発の新し い抗パーキンソン作用薬ゾニサミドの臨床研 究班」を立ち上げ、さらに 2006 年度から 「新規抗パーキンソン病薬ゾニサミドの神経 保護作用に関する臨床研究班」として研究を 進めている. ZNS の作用機序などを明らか にすることは、ZNS を越える新たな抗パー キンソン病薬の開発につながると考えている. 班員のご協力により多くの成果が得られてい る718)、線条体でのドパミン量の増加は、細胞 内のみならず、細胞外液中のドパミン量の増 加をマイクロダイアリシス法により確認した (愛媛大学 野元正弘教授ら). 現時点では, ZNS は被殻を作用点としてドパミン合成亢 進作用、中等度の MAO-B 阻害作用を持ち、 ドパミン取り込み阻害作用もあると考えられ る. さらに ZNS は、静止時振戦のみならず 姿勢に伴う粗大な振戦 (本態性振戦も含めて) にも効果を認めるが、この抗振戦作用にはド パミン系を介さない作用機序があることが明 らかになり、ZNS の抗パーキンソン作用発 現にドパミン系以外の系の関与が初めて明ら かになった(和歌山県立医科大学 近藤智善 教授ら). またサルのモデルで、ZNS がパー キンソン病で認める淡蒼球、視床下核の異常 発火パターンの正常化作用を持つことが見い だされた (生理学研究所 南部 篤教授ら). この正常化作用にドパミン系が関与するのか、 あるいは ZNS がT型カルシウムチャネルブ ロッカーであることが関与するのか、などに ついては今後明らかにされる予定である.

さらに、最初に ZNS をパーキンソン病患者に投与するきっかけとなった神経保護作用について、班研究の中で素晴らしい成果が得られた. すなわち ZNS は、脳内グルタチオン増加作用とドパミン自動酸化系でのキノン体の速やかかつ強力な除去作用を持つことが

明らかになった.これまで L-DOPA が毒と思われた最大の原因はこの自動酸化におけるキノン体合成であり、ZNS が速やかにこれらを消去するということは、ZNS を併用することにより L-DOPA をパーキンソン病初期から安心して使えることを示唆する.6-ヒドロキシドパミン (6-OHDA) によるモデルマウスにおいては、6-OHDA 投与3週間後の ZNS 投与でも黒質ドパミン神経の脱落は有意に減少しており、すでに発症している患者での効果も期待できる結果を得た(岡山大学 浅沼幹人准教授ら).

培養細胞系では、ZNS が高濃度ドパミンおよび MPP⁺ に対して保護効果を持つことを明らかにした。ZNS によってアポトーシス経路の PTEN (phosphatase and tensin homolog), akt1, FOXO3A (forkhead transcription factor) のリン酸化が増加することより、ZNS が Akt 経路の最終機転をリン酸化して不活性化することで細胞死抑制に作用しているものと考えられた(順天堂大学 服部信孝教授ら).

ZNS の長期投与試験において、平均罹患期間 8.7 年の患者でも1年以上改善が維持され、しかも 40 週以降より改善する傾向にあることは、臨床的な神経保護効果を期待できる結果であると考えられる。現時点ではパーキンソン病の神経保護効果を評価する系が確立していないことから、まずその系を確立し、ZNS の臨床的な神経保護作用の評価を行いたいと考えている。

ところで、パーキンソン病患者の中には ZNS の効果が驚くほど高い患者が少なからず存在する.これらの人々の臨床的な特徴ははっきりせず、現在1塩基多型(SNP)タグチップを用いて検討を進めている.この研究がパーキンソン病のテーラーメード治療のきっかけになることを期待している(大阪大学戸田達史教授ら).

また、半減期の長いドパミン系刺激薬剤の 1つとして、むずむず脚症候群への効果も少 数例で確認され、この効果の評価を進める予 定である(国立病院機構相模原病院 長谷川 一子医長ら)。

おわりに

現在,まだダメ押しの追加の治験をしているところであるが, ZNS を使うことで手術例がかなり減ったという話も聞き,1日も早く使用承認が得られることを心待ちにしている.

ZNS が抗パーキンソン作用を持つことを発見したのは全くの偶然であった.しかし,ある病態に対する治療薬が別な作用を持つことは当然ありうることで,このような「発見」は,実は身近にあるのに気がついていないだけかもしれないとも思われる.注意深い臨床的な観察と,事実を科学的・論理的に分析すること,それに少しの思い込みにより,誰にも新たな「発見」のチャンスはあるものと思われる.

謝辞

患者さんはじめ,治験や研究にご参加いただい た先生方,その他多くの皆さまのご協力でこれら の成果を挙げることができたことを,この場をお借りして深く感謝いたします.特に,終始ご指導いただいた金澤一郎国立精神・神経センター名誉総長,および大学院生として初期の基礎実験を一緒に進めてくれた現 国立病院機構相模原病院神経内科 堀内恵美子博士に深謝いたします.

文 献

- Murata M, et al: Zonisamide improves motor function in Parkinson's disease. A randomized, double-blind study. Neurology 68: 45-40, 2007.
- Murata M, et al: Zonisamide has beneficial effects on Parkinson's disease patients. Neurosci Res 41: 397-399. 2001.
- Okada M, et al: Effects of zonisamide on dopaminergic system. Epilepsy Res 22: 193–205, 1995.
- Murata M, et al: Zonisamide increases dopamine synthesis by inducing TH mRNA. Mov Disord 17 (Suppl 5): S56, 2002.
- 5) Murata M: Novel therapeutic effects of the anti-convulsant, zonisamide, on Parkinson's disease. Curr Pharm Des 10: 687-693, 2004.
- 6) 村田美穂: 日本発の新しい抗パーキンソン作用薬 ゾニサミドの臨床研究班. 平成 15~17 年度総合 研究報告書, 2006 年 3 月.
- 7) 村田美穂: 新規抗パーキンソン病薬ゾニサミドの 神経保護作用に関する臨床研究班. 平成 18 年度 総括・分担研究報告書, 2007 年 3 月.

Development of the New Anti-parkinsonian Drug: Zonisamide

Miho Murata

Department of Neurology, Musashi Hospital, National Center of Neurology and Psychiatry

(–)-Epigallocatechin Gallate Enhances Prostaglandin $F_{2\alpha}$ -Induced VEGF Synthesis Via Upregulating SAPK/JNK Activation in Osteoblasts

Haruhiko Tokuda,^{1,2}* Shinji Takai,² Rie Matsushima-Nishiwaki,² Shigeru Akamatsu,³ Yoshiteru Hanai,^{1,2} Takayuki Hosoi,⁴ Atsushi Harada,⁵ Toshiki Ohta,⁶ and Osamu Kozawa²

National Center for Geriatrics and Gerontology, Obu 474-8511, Japan

National Center for Geriatrics and Gerontology, Obu 474-8511, Japan

National Center for Geriatrics and Gerontology, Obu 474-8511, Japan

National Center for Geriatrics and Gerontology, Obu 474-8511, Japan

Abstract Catechin, one of the major flavonoids presented in plants such as tea, reportedly suppresses bone resorption. We previously reported that prostaglandin $F_{2\alpha}$ (PGF_{2α}) stimulates the synthesis of vascular endothelial growth factor (VEGF) via p44/p42 mitogen-activated protein (MAP) kinase in osteoblast-like MC3T3-E1 cells. To clarify the mechanism of catechin effect on osteoblasts, we investigated the effect of (—)-epigallocatechin gallate (EGCG), one of the major green tea flavonoids, on the VEGF synthesis by PGF_{2α} in MC3T3-E1 cells. The PGF_{2α}-induced VEGF synthesis was significantly enhanced by EGCG. The amplifying effect of EGCG was dose dependent between 10 and 100 μM. EGCG did not affect the PGF_{2α}-induced phosphorylation of p44/p42 MAP kinase. SB203580, a specific inhibitor of p38 MAP kinase, and SP600125, a specific inhibitor of stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), reduced the PGF_{2α}-induced VEGF synthesis. EGCG markedly enhanced the phosphorylation of SAPK/JNK induced by PGF_{2α} without affecting the PGF_{2α}-induced phosphorylation of p38 MAP kinase. SP600125 markedly reduced the amplification by EGCG of the SAPK/JNK phosphorylation. In addition, the PGF_{2α}-induced phosphorylation of c-Jun was amplified by EGCG. These results strongly suggest that EGCG upregulate PGF_{2α}-stimulated VEGF synthesis resulting from amplifying activation of SAPK/JNK in osteoblasts. J. Cell. Biochem. 100: 1146–1153, 2007. © 2006 Wiley-Liss, Inc.

Key words: catechin; PGF_{2α}; VEGF; MAP kinase; osteoblast

Grant sponsor: The Ministry of Education, Science, Sports and Culture of Japan, Grant-in-Aid for Scientific Research; Grant numbers: 16590873, 16591482; Grant sponsor: The Ministry of Health, Labour and Welfare of Japan, The Research Grants for Longevity Sciences, Research on Proteomics and Research on Fracture and Dimentia; Grant numbers: 15A-1, 15C-2, 17A-3.

*Correspondence to: Haruhiko Tokuda, Department of Clinical Laboratory, National Hospital for Geriatric Medicine, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan. E-mail: tokuda@ncgg.go.jp

Received 19 July 2006; Accepted 20 July 2006

DOI 10.1002/jcb.21104

Published online 9 October 2006 in Wiley InterScience (www.interscience.wiley.com).

© 2006 Wiley-Liss, Inc.

It is generally recognized that compounds in foods such as vegetables and fruits have beneficial properties to human being. Among them, flavonoids reportedly show antioxidative, antibacterial, and antitumor effects [Jankun et al., 1997; Harbourne and Williams, 2000]. Catechins are one of the major flavonoids, which are present in various species of plants such as tea [Harbourne and Williams, 2000]. In bone metabolism, it has been reported that catechin suppresses bone resorption [Delaisse et al., 1986]. Bone metabolism is regulated by two functional cells, osteoblasts, and osteoclasts, responsible for bone formation and bone resorption, respectively [Nijweide et al., 1986]. The

¹Department of Clinical Laboratory, National Hospital for Geriatric Medicine,

²Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan

³Critical Care Center, Matsunami General Hospital, Kasamatsu 501-6062, Japan

⁴Department of Advanced Medicine, National Hospital for Geriatric Medicine,

⁵Department of Restorative Medicine, National Hospital for Geriatric Medicine,

⁶Department of Internal Medicine, National Hospital for Geriatric Medicine,

formation of bone structures and bone remodeling results from the coupling process, bone resorption by activated osteoblasts with subsequent deposition of new matrix by osteoblasts. As for osteoblasts, it has been shown that catechin stimulates alkaline phosphatase activity, a mature osteoblast phenotype and reduces bone-resorptive cytokine production in osteoblast-like MC3T3-E1 cells [Choi and Hwang, 2003]. However, the exact role of catechin in osteoblasts has not yet been clarified.

Vascular endothelial growth factor (VEGF) has been characterized as a heparin-binding angiogenic growth factor displaying high specificity for vascular endothelial cells [Ferrara and Davis-Smyth, 1997]. It is well recognized that VEGF, which is produced and secreted from a variety of cell types, increases capillary permeability and stimulates proliferation of endothelial cells [Ferrara and Davis-Smyth, 1997]. As for bone metabolism, it has been shown that inactivation of VEGF causes complete suppression of blood vessel invasion concomitant with impaired trabecular bone formation and expansion of hypertrophic chondrocyte zone in mouse tibial epiphyseal growth plate [Gerber et al., 1999]. Accumulating evidence indicates that osteoblasts among bone cells produce and secrete VEGF in response to various humoral factors [Goad et al., 1996; Wang et al., 1996; Ferrara and Davis-Smyth, 1997; Schalaeppi et al., 1997]. During bone remodeling, capillary endothelial cells provide the microvasculature, and osteoblasts and osteoprogenitor cells, which locally proliferate and differentiate into osteoblasts, migrate into the resorption lacuna. It is currently recognized that the activities of osteoblasts, osteoclasts and capillary endothelial cells are closely coordinated via humoral factors as well as by direct cell-to-cell contact, and these cells cooperatively regulate bone metabolism [Erlebacher et al., 1995]. Thus, there is no doubt that VEGF secreted from osteoblasts plays an important role in the regulation of bone metabolism. However, the mechanism underlying VEGF synthesis in osteoblasts has not yet been fully clarified.

It is well known that prostaglandins (PGs) act as autocrine/paracrine modulators in osteo-blasts and play crucial roles in the regulation of bone metabolism [Nijweide et al., 1986; Pilbeam et al., 1996]. Among them, $PGF_{2\alpha}$ is known as a potent bone-resorptive agent and stimulates the proliferation of osteoblasts and

inhibits their differentiation [Pilbeam et al., 1996]. In our previous studies [Miwa et al., 1990; Kozawa et al., 1994], we have reported that PGF_{2\alpha} stimulates both phosphoinositidehydrolyzing phospholipase C (PI-PLC) and phosphatidylcholine-hydrolyzing phospholipase D (PC-PLD), recognized to be two major pathways of physiological protein kinase C (PKC) activation [Nishizuka, 1992; Exton, 1999], in osteoblast-like MC3T3-E1 cells. In addition, we have recently shown that PGF20 stimulates the VEGF synthesis through PKCdependent activation of p44/p42 mitogen-activated protein (MAP) kinase in these cells [Tokuda et al., 2003]. In the present study, we investigated the effect of (-)-epigallocatechin gallate (EGCG), one of the major green tea flavonoids, on the PGF_{2\alpha}-induced VEGF synthesis in osteoblast-like MC3T3-E1 cells. We here show that EGCG upregulates PGF_{2α}-stimulated VEGF synthesis via enhancing SAPK/ JNK activation among the MAP kinase superfamily in these cells.

MATERIALS AND METHODS

Materials

 $PGF_{2\alpha}$ was purchased from Sigma Chemical Co. (St. Louis, MO). Mouse VEGF enzyme immunoassay kit was purchased from R&D Systems, Inc. (Minneapolis, MN). (-)-Epigallocatechin gallate (EGCG), SB203580, and SP600125 were obtained from Calbiochem-Novabiochem Co. (La Jolla, CA). Phosphospecific p44/p42 MAP kinase antibodies, p44/ p42 MAP kinase antibodies, phospho-specific p38 MAP kinase antibodies, p38 MAP kinase antibodies, phospho-specific SAPK/JNK antibodies, SAPK/JNK antibodies, and c-Jun antibodies were purchased from Cell Signaling Technology (Beverly, MA). ECL Western blotting detection system was purchased from Amersham Japan (Tokyo, Japan). Other materials and chemicals were obtained from commercial sources. $PGF_{2\alpha}$ was dissolved in ethanol. SB203580 and SP600125 were dissolved in dimethyl sulfoxide. The maximum concentration of ethanol or dimethyl sulfoxide was 0.1%, which did not affect the assay for VEGF or the analysis of Western blot.

Cell Culture

Cloned osteoblast-like MC3T3-E1 cells derived from newborn mouse calvaria [Sudo

1148 Tokuda et al.

et al., 1983] were maintained as previously described [Kozawa et al., 1992]. Briefly, the cells were cultured in α -minimum essential medium (α -MEM) containing 10% fetal calf serum (FCS) at 37°C in a humidified atmosphere of 5% CO₂/95% air. The cells were seeded into 35-mm diameter dishes (5 \times 10⁵/dish) or 90-mm diameter dishes (5 \times 10⁵/dish) in α -MEM containing 10% FCS. After 5 days, the medium was exchanged for α -MEM containing 0.3% FCS. The cells were used for experiments after 48 h.

VEGF Assay

The cultured cells were stimulated by $PGF_{2\alpha}$ in 1 ml of α -MEM containing 0.3% FCS for the indicated periods. When indicated, the cells were pretreated with EGCG, SB203580, or SP600125 for 60 min. The reaction was terminated by collecting the medium, and VEGF in the medium was measured by a VEGF enzyme immunoassay kit.

Western Blot Analysis

The cultured cells were stimulated by PGF_{2α} in α-MEM containing 0.3% FCS for the indicated periods. The cells were washed twice with phosphate-buffered saline and then lysed, homogenized, and sonicated in a lysis buffer containing 62.5 mM Tris/HCl, pH 6.8, 2% sodium dodecyl sulfate (SDS), 50 mM dithiothreitol, and 10% glycerol. The cytosolic fraction was collected as a supernatant after centrifugation at 125,000g for 10 min at 4°C. SDSpolyacrylamide gel electrophoresis (PAGE) was performed by Laemmli [1970] in 10% polyacrylamide gel. Western blotting analysis was performed as described previously [Kato et al., 1996] by using phospho-specific p44/p42 MAP kinase antibodies, p44/p42 MAP kinase antibodies, phospho-specific p38 MAP kinase antibodies, p38 MAP kinase antibodies, phospho-specific SAPK/JNK antibodies, SAPK/JNK antibodies, or c-Jun antibodies, with peroxidase-labeled antibodies raised in goat against rabbit IgG being used as second antibodies. Peroxidase activity on the nitrocellulose sheet was visualized on X-ray film by means of the ECL Western blotting detection system. The pretreatment of EGCG or SP600125 was performed for 60 min before the addition of $PGF_{2\alpha}$.

Determination

The absorbance of enzyme immunoassay samples was measured at 450 nm with EL 340

Bio Kinetic Reader (Bio-Tek Instruments, Inc., Winooski, VT). The densitometric analysis was performed using Molecular Analyst/Macintosh (Bio-Rad Laboratories, Hercules, CA).

Statistical Analysis

The data were analyzed by ANOVA followed by the Bonferroni method for multiple comparisons between pairs, and a P < 0.05 was considered significant. All data are presented as the mean \pm SEM of triplicate determinations. Each experiment was repeated three times with similar results.

RESULTS

Effect of EGCG on the $PGF_{2\alpha}$ -Stimulated VEGF Synthesis in MC3T3-E1 Cells

We have previously shown that $PGF_{2\alpha}$ stimulates VEGF synthesis in osteoblast-like MC3T3-E1 cells [Tokuda et al., 2003]. We first examined the effect of EGCG on the $PGF_{2\alpha}$ -stimulated VEGF synthesis. EGCG, which by itself had little effect on the VEGF levels, significantly enhanced the $PGF_{2\alpha}$ -stimulated synthesis of VEGF (Table I). The amplifying effect of EGCG was dose dependent between 10 and 100 μ M (Table I).

Effect of EGCG on the Phosphorylation of p44/p42 MAP Kinase Induced by $PGF_{2\alpha}$ in MC3T3-E1 Cells

We have previously reported that the $PGF_{2\alpha}$ -stimulated VEGF synthesis is regulated by $PGF_{2\alpha}$ -activated p44/p42 MAP kinase in MC3T3-E1 cells [Tokuda et al., 2003]. In order to investigate whether EGCG effect on the $PGF_{2\alpha}$ -stimulated VEGF synthesis is mediated

TABLE I. Effect of EGCG on the $PGF_{2\alpha}$ -Stimulated VEGF Synthesis in MC3T3-E1 Cells

EGCG (μM)	$PGF_{2\alpha}$	VEGF (pg/ml)
	_	19 ± 10
_	+	580 ± 51
10	<u>-</u>	14 ± 10
10	+	630 ± 85
30	<u>-</u>	15 ± 10
30	+	$2680 \pm 167*$
100	<u>-</u>	20 ± 10
100	+	$4100 \pm 249*$

The cultured cells were pretreated with various doses of EGCG for 60 min, and then stimulated by 10 μ M PGF_{2x} or vehicle for 24 h. Each value represents the mean \pm SEM of triplicate determinations. Similar results were obtained with two additional and different cell preparations.

*P < 0.05, compared to the value of PGF_{2 α} alone.

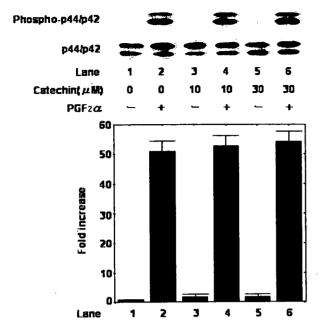
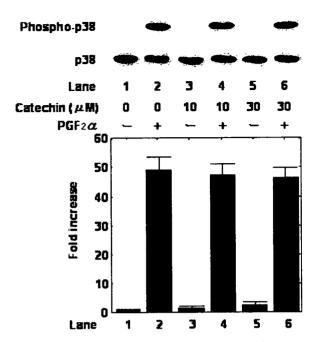


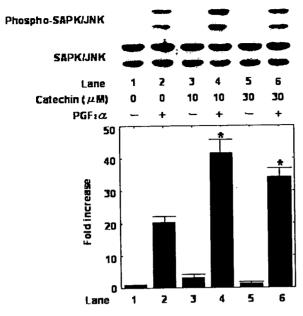
Fig. 1. Effect of EGCG on the phosphorylation of p44/p42 MAP kinase induced by PGF $_{2\alpha}$ in MC3T3-E1 cells. The cultured cells were pretreated with the indicated doses of EGCG or vehicle for 60 min, and then stimulated by 10 μ M PGF $_{2\alpha}$ or vehicle for 30 min. The extracts of cells were subjected to SDS-PAGE with subsequent Western blotting analysis with antibodies against phospho-specific p44/p42 MAP kinase or p44/p42 MAP kinase. The histogram shows quantitative representations of the levels of PGF $_{2\alpha}$ -induced phosphorylation obtained from laser densitometric analysis of three independent experiments. Each value represents the mean \pm SEM of triplicate determinations. Similar results were obtained with two additional and different cell preparations.

through p44/p42 MAP kinase activation in MC3T3-E1 cells, we next examined the effect of EGCG on the PGF $_{2\alpha}$ -induced phosphorylation of p44/p42 MAP kinase. However, EGCG hardly affected the PGF $_{2\alpha}$ -induced phosphorylation of p44/p42 MAP kinase (Fig. 1).

Effect $PGF_{2\alpha}$ of on the Phosphorylation of p38 MAP Kinase and SAPK/JNK in MC3T3-E1 Cells

Among the MAP kinase superfamily, p38 MAP kinase and SAPK/JNK in addition to p44/p42 MAP kinase play a crucial role as intracellular components to transduce the various signals of agonists [Widmann et al., 1999]. Therefore, in order to investigate whether activates p38 MAP kinase or SAPK/JNK in MC3T3-E1 cells, we next examined the effect of PGF $_{2\alpha}$ on the phosphorylation of p38 MAP kinase and SAPK/JNK. PGF $_{2\alpha}$ induced both the phosphorylation of p38 MAP kinase (lane 2 in Fig. 2) and SAPK/JNK (lane 2 in Fig. 3).




Fig. 2. Effect of EGCG on the phosphorylation of p38 MAP kinase induced by $PGF_{2\alpha}$ in MC3T3-E1 cells. The cultured cells were pretreated with the indicated doses of EGCG or vehicle for 60 min, and then stimulated by 10 μ M $PGF_{2\alpha}$ or vehicle for 10 min. The extracts of cells were subjected to SDS-PAGE with subsequent Western blotting analysis with antibodies against phospho-specific p38 MAP kinase or p38 MAP kinase. The histogram shows quantitative representations of the levels of $PGF_{2\alpha}$ -induced phosphorylation obtained from laser densitometric analysis of three independent experiments. Each value represents the mean \pm SEM of triplicate determinations. Similar results were obtained with two additional and different cell preparations.

Effects of SB203580 or SP600125 on the PGF $_{2\alpha}$ -Stimulated VEGF Synthesis in MC3T3-E1 Cells

In order to clarify the involvement of the MAP kinases in the PGF $_{2\alpha}$ -stimulated VEGF synthesis in MC3T3-E1 cells, we examined the effect of SB203580, a specific inhibitor of p38 MAP kinase [Cuenda et al., 1995] or SP600125, a specific SAPK/JNK inhibitor [Bennett et al., 2001], on the VEGF synthesis. SB203580 or SP600125, which by itself had little effect on the VEGF levels, significantly suppressed the PGF $_{2\alpha}$ -stimulated synthesis of VEGF (Table II).

Effect of EGCG on the Phosphorylation of p38 MAP Kinase or SAPK/JNK Induced by $PGF_{2\alpha}$ in MC3T3-E1 Cells

In order to clarify whether p38 MAP kinase is involved in EGCG effect on the $PGF_{2\alpha}$ -

Fig. 3. Effect of EGCG on the phosphorylation of SAPK/JNK induced by PGF $_{2\alpha}$ in MC3T3-E1 cells. The cultured cells were pretreated with the indicated doses of EGCG or vehicle for 60 min, and then stimulated by 10 μM PGF $_{2\alpha}$ or vehicle for 20 min. The extracts of cells were subjected to SDS-PAGE with subsequent Western blotting analysis with antibodies against phospho-specific SAPK/JNK or SAPK/JNK. The histogram shows quantitative representations of the levels of PGF $_{2\alpha}$ -induced phosphorylation obtained from laser densitometric analysis of three independent experiments. Each value represents the mean ± SEM of triplicate determinations. Similar results were obtained with two additional and different cell preparations. *P<0.05, compared to the value of PGF $_{2\alpha}$ alone.

stimulated VEGF synthesis in MC3T3-E1 cells, we examined the effect of EGCG on the $PGF_{2\alpha}$ -induced phosphorylation of p38 MAP kinase. However, EGCG had little effect on the $PGF_{2\alpha}$ -

TABLE II. Effects of SB203580 or SP600125 on the $PGF_{2\alpha}$ -Stimulated VEGF Synthesis in MC3T3-E1 Cells

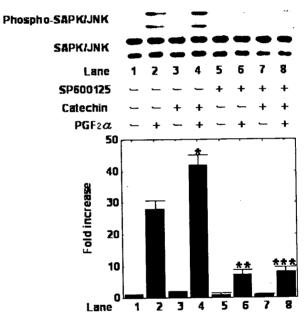
Inhibitor (μM)	$\mathrm{PGF}_{2\alpha}$	VEGF (pg/ml)
Vehicle	_	20 ± 10
Vehicle	+	559 ± 51
SB203580 (3)	_	13 ± 10
SB203580 (3)	+	$221 \pm 35*$
SB203580 (10)	<u>.</u>	15 ± 10
SB203580 (10)	+	$46 \pm 12*$
SP600125 (1)	<u> </u>	15 ± 10
SP600125 (1)	+	$399 \pm 37*$
SP600125 (30)	<u>-</u>	13 ± 10
SP600125 (30)	+	$162 \pm 29*$

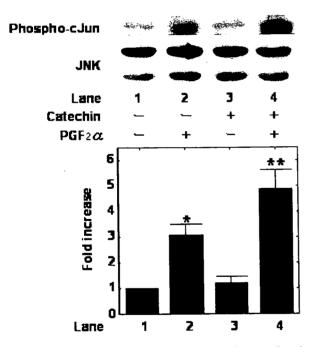
The cultured cells were pretreated with SB203580, SP600125, or vehicle for 60 min, and then stimulated by 10 μM PGF $_{2\alpha}$ or vehicle for 24 h. Each value represents the mean \pm SEM of triplicate determinations. Similar results were obtained with two additional and different cell preparations.

induced phosphorylation of p38 MAP kinase (Fig. 2). On the contrary, EGCG markedly enhanced the PGF $_{2\alpha}$ -induced phosphorylation of SAPK/JNK (Fig. 3). According to the densitometric analysis, EGCG (10 μ M) caused about 100% enhancement of the PGF $_{2\alpha}$ effect on the SAPK/JNK phosphorylation.

Effect of SP600125 on the Enhancement by EGCG of $PGF_{2\alpha}$ -Induced Phosphorylation of SAPK/JNK in MC3T3-E1 Cells

SP600125 [Bennett et al., 2001], which by itself did not affect the basal levels of phosphorylation of SAPK/JNK, significantly reduced the enhancement by EGCG of $PGF_{2\alpha}$ -induced SAPK/JNK phosphorylation (Fig. 4). The enhanced phosphorylation levels by EGCG of $PGF_{2\alpha}$ -induced SAPK/JNK were suppressed by




Fig. 4. Effect of SP600125 on the enhancement by EGCG of the $PGF_{2\alpha}$ -induced phosphorylation of SAPK/JNK in MC3T3-E1 cells. The cultured cells were pretreated with 30 μM SP600125 or vehicle for 60 min, and then incubated by 10 μM EGCG for 60 min. The cells were stimulated by 10 μM PGF $_{2\alpha}$ or vehicle for 20 min. The extracts of cells were subjected to SDS-PAGE with subsequent Western blotting analysis with antibodies against phospho-specific SAPK/JNK or SAPK/JNK. The histogram shows quantitative representations of the levels of $PGF_{2\alpha}$ -induced phosphorylation obtained from laser densitometric analysis of three independent experiments. Each value represents the mean ± SEM of triplicate determinations. Similar results were obtained with two additional and different cell preparations. *P< 0.05, compared to the value of PGF_{2 α} alone. **P< 0.05, compared to the value of PGF_{2 α} alone. ***P < 0.05, compared to the value of PGF₂₂ with EGCG pretreatment.

^{*}P < 0.05, compared to the value of $PGF_{2\alpha}$ alone.

SP600125 similar to the levels by $PGF_{2\alpha}$ with SP600125 treatment.

Effect of EGCG on the Phosphorylation of c-Jun Induced by $PGF_{2\alpha}$ in MC3T3-E1 Cells

It is well known that c-Jun acts as a downstream effector of SAPK/JNK [Widmann et al., 1999; Weston and Davis, 2002]. Thus, in order to investigate whether EGCG effect on the PGF $_{2\alpha}$ -stimulated VEGF synthesis is mediated through c-Jun activation in MC3T3-E1 cells, we next examined the effect of EGCG on the PGF $_{2\alpha}$ -induced phosphorylation of c-Jun. We found that PGF $_{2\alpha}$ time-dependently phosphorylated c-Jun and that SP600125 suppressed the PGF $_{2\alpha}$ -induced phosphorylation of c-Jun in these cells (data not shown). EGCG markedly amplified the PGF $_{2\alpha}$ -induced phosphorylation of c-Jun (Fig. 5). According to the densitometric

Fig. 5. Effect of EGCG on the phosphorylation of c-Jun induced by PGF_{2α} in MC3T3-E1 cells. The cultured cells were pretreated with the indicated doses of EGCG or vehicle for 60 min, and then stimulated by 10 μM PGF_{2α} or vehicle for 20 min. The extracts of cells were subjected to SDS-PAGE with subsequent Western blotting analysis with antibodies against c-Jun or SAPK/JNK. The histogram shows quantitative representations of the levels of PGF_{2α}-induced phosphorylation obtained from laser densitometric analysis of three independent experiments. Each value represents the mean \pm SEM of triplicate determinations. Similar results were obtained with two additional and different cell preparations. *P<0.05, compared to the control value. *P<0.05, compared to the value of PGF_{2α} alone.

analysis, EGCG (10 μM) caused about 80% enhancement of the PGF_{2 α} effect on the c-Jun phosphorylation.

DISCUSSION

In the present study, we demonstrated that EGCG, which alone did not affect the levels of VEGF, significantly enhanced the PGF_{2α}-stimulated VEGF synthesis in osteoblast-like MC3T3-E1 cells. We next investigated the mechanism of EGCG behind the amplifying effect on the VEGF synthesis. It is well recognized that the MAP kinase superfamily mediates intracellular signaling of extracellular agonists and plays a crucial role in cellular functions including proliferation, differentiation, and cell death in a variety of cells [Widmann et al., 1999]. Three major MAP kinase, p44/p42 MAP kinase, p38 MAP kinase, and SAPK/JNK are known as central elements used by mammalian cells to transduce the diverse messages [Widmann et al., 1999]. In our previous study [Tokuda et al., 2003], we have shown that PGF_{2\alpha}-activated p44/p42 MAP kinase acts as a positive regulator in PGF_{2α}induced VEGF synthesis in osteoblast-like MC3T3-E1 cells. In the present study, we showed that EGCG failed to affect the PGF_{2α}induced phosphorylation of p44/p42 MAP kinase. Thus, it seems unlikely that EGCG amplifies the PGF_{2\alpha}-induced VEGF synthesis through upregulating the activation of p44/p42 MAP kinase in osteoblast-like MC3T3-E1 cells.

We further investigated the involvement of p38 MAP kinase and SAPK/JNK in the amplifying effect of EGCG. We found that $PGF_{2\alpha}$ induced both the phosphorylation of p38 MAP kinase and SAPK/JNK. It has been shown that MAP kinases are activated by phosphorylation of threonine and tyrosine residues by dual specificity MAP kinase kinases [Widmann et al., 1999]. Therefore, our findings strongly suggest that PGF_{2\alpha} activates p38 MAP kinase and SAPK/JNK in addition to p44/p42 MAP kinase in osteoblast-like MC3T3-E1 cells. In addition, we showed that the PGF_{2α}-stimulated VEGF synthesis was suppressed by a specific p38 MAP kinase inhibitor, SB203580 [Cuenda et al., 1995], or a specific SAPK/JNK inhibitor, SP600125 [Bennett et al., 2001]. Based on our findings, it is probable that $PGF_{2\alpha}$ stimulates the synthesis of VEGF via the three MAP kinases in osteoblast-like MC3T3-E1 cells. 1152 Tokuda et al.

However, EGCG had little effect on the PGF₂₀induced p38 MAP kinase phosphorylation. Therefore, it seems unlikely that the EGCGinduced enhancement of PGF_{2α}-stimulated VEGF synthesis is due to the upregulation of p38 MAP kinase activation. On the contrary, we showed that the PGF_{2\alpha}-induced SAPK/JNK phosphorylation was markedly amplified by EGCG. Furthermore, SP600125 [Bennett et al., 2001] markedly reduced the enhancement by EGCG almost to the levels of $PGF_{2\alpha}$ alone with SP600125 in the phosphorylation of SAPK/JNK. These results suggest that EGCG upregulates the PGF_{2α}-stimulated activation of SAPK/JNK. Additionally, we demonstrated that EGCG strengthened the PGF_{2a}-induced phosphorylation of c-Jun, well known as a downstream effector of SAPK/JNK [Widmann et al., 1999; Weston and Davis, 2002], as well as SAPK/JNK. Taking our findings into account as a whole, it is most likely that EGCG upregulates PGF_{2\alpha}-stimulated VEGF synthesis through enhancing the activation of SAPK/JNK in osteoblast-like MC3T3-E1 cells. Further investigations are necessary to clarify the precise mechanism of catechin behind the amplification of VEGF synthesis in osteoblasts.

It is generally recognized that the expansion of capillary network providing microvasculature is an essential process of bone remodeling [Erlebacher et al., 1995]. Since VEGF is a specific mitogen of vascular endothelium [Ferrara and Davis-Smyth, 1997], it is speculated that VEGF synthesized by osteoblasts functions as a pivotal intercellular mediator between osteoblasts and vascular endothelial cells. Moreover, it has been reported that VEGF is involved in trabecular bone formation and expansion of the hypertrophic chondrocyte zone in epiphyseal growth plate of mouse [Gerber et al., 1999], supporting the importance of VEGF in bone metabolism. On the other hand, it has been shown that catechin exerts an inhibitory effect on bone resorption [Delaisse et al., 1986]. Additionally, in osteoblasts, production of bone-resorptive cytokines such as tumor necrosis factor-α and interleukin-6 has been reported to be suppressed by catechin [Choi and Hwang, 2003]. Based on our results as a whole, it is probable that catechin-enhanced VEGF synthesized from osteoblasts acts a crucial role in the process of bone remodeling via regulating the capillary endothelial cells proliferation. Further investigations

required to elucidate the role of catechin in bone metabolism.

In conclusion, our present results strongly suggest that catechin upregulates $PGF_{2\alpha}$ -stimulated VEGF synthesis via enhancing activation of SAPK/JNK among the MAP kinase superfamily in osteoblasts.

ACKNOWLEDGMENTS

We are very grateful to Yoko Kawamura and Seiko Sakakibara for their skillful technical assistance.

REFERENCES

Bennett BL, Sasaki DT, Murray BW, O'Leary EC, Sakata ST, Xu W, Leisten JC, Motiwala A, Pierce S, Satoh Y, Bhagwat SS, Manning AM, Anderson DW. 2001. SP600125, an anthrapyrazolone inhibitor of Jun Nterminal Kinase. Proc Natl Acad Sci USA 98:13681-13686

Choi E-M, Hwang J-K. 2003. Effects of (+)-catechin on the function of osteoblastic cells. Biol Pharm Bull 26:523-526.

- Cuenda A, Rouse J, Doza YN, Meier R, Cohen P, Gallagher TF, Young PR, Lee JC. 1995. SB203580 is a specific inhibitor of a MAP kinase homologue which is stimulated by cellular stresses and interleukin-1. FEBS Lett 364:229–233.
- Delaisse JM, Eeckhout Y, Vaes G. 1986. Inhibition of bone resorption in culture by (+)-catechin. Biochem Pharmacol 35:3091-3094.
- Erlebacher A, Filvaroff EH, Girelman SE, Derynck R. 1995. Toward a molecular understanding of skeletal development. Cell 80:371-378.
- Exton JH. 1999. Regulation of phospholipase D. Biochim Biophys Acta 439:121-133.
- Ferrara N, Davis-Smyth T. 1997. The biology of vascular endothelial growth factor. Endocr Rev 18:4-25.
- Gerber HP, Vu TH, Ryan AM, Kowalski J, Werb Z, Ferrara N. 1999. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat Med 5:623-628.
- Goad DL, Rubin J, Wang H, Jr., Tashijian AH, Patterson C. 1996. Enhanced expression of vascular endothelial growth factor in human SaOS-2 osteoblast-like cells and murine osteoblasts induced by insulin-like growth factor I. Endocrinology 137:2262-2268.
- Harbourne JB, Williams CA. 2000. Advances in flavonoid research since 1992. Phytochemistry 55:481-504.
- Jankun J, Selman SH, Swiercz R, Skrzypczak-Jankun E. 1997. Why drinking green tea could prevent cancer. Nature 387:561.
- Kato K, Ito H, Hasegawa K, Inaguma Y, Kozawa O, Asano T. 1996. Modulation of the stress-induced synthesis of hsp27 and αB-crystallin by cyclic AMP in C6 glioma cells. J Neurochem 66:946–950.
- Kozawa O, Tokuda H, Miwa M, Kotoyori J, Oiso Y. 1992. Cross-talk regulation between cyclic AMP production and phosphoinositide hydrolysis induced by prostaglandin E₂ in osteoblast-like cells. Exp Cell Res 198:130– 134.

- Kozawa O, Suzuki A, Kotoyori J, Tokuda H, Watanabe Y, Ito Y, Oiso Y. 1994. Prostaglandin $F_{2\alpha}$ activates phospholipase D independently from activation of protein kinase C in osteoblast-like cells. J Cell Biochem 55:373–379.
- Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680-685.
- Miwa M, Tokuda H, Tsushita K, Kotoyori J, Takahashi Y, Ozaki N, Kozawa O, Oiso Y. 1990. Involvement of pertussis toxin-sensitive GTP-binding protein in prostaglandin $F_{2\alpha}$ -induced phosphoinositide hydrolysis in osteoblast-like cells. Biochem Biophys Res Commun 171:1229–1235.
- Nijweide PJ, Burger EH, Feyen JHM. 1986. Cells of bone: Proliferation, differentiation and hormonal regulation. Physiol Rev 66:855-886
- Nishizuka Y. 1992. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science 258:607–614.
- Pilbeam CC, Harrison JR, Raisz LG. 1996. Prostaglandins and bone metabolism. In: Bilezikian JP, Raisz LG, Rodan GA, editors. Principles of bone biology. San Diego: Academic Press. pp 715-728.

- Schalaeppi JM, Gutzwiller S, Finlenzeller G, Fournier B. 1997. 1,25-dihydroxyvitamin D₃ induces the expression of vascular endothelial growth factor in osteoblastic cells. Endocr Res 23:213–229.
- Sudo H, Kodama H, Amagai Y, Yamamoto S, Kasai S. 1983.

 In vivo differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria.

 J Cell Biol 96:191–198.
- Tokuda H, Harada A, Hirade K, Matsuno H, Ito H, Kato K, Oiso Y, Kozawa O. 2003. Incadronate amplifies prostaglandin $F_{2\alpha}$ -induced vascular endothelial growth factor synthesis in osteoblasts. Enhancement of MAPK activity. J Biol Chem 278:18930–18937.
- Wang DS, Yamazaki K, Nohtomi K, Shizume K, Ohsumi K, Shibuya M, Demura H, Sato K. 1996. Increase of vascular endothelial growth factor mRNA expression by 1,25dihydroxyvitamin D₃ in human osteoblast-like cells. J Bone Miner Res 11:472-479.
- Weston CR, Davis RJ. 2002. The JNK signal transduction pathway. Curr Opin Genet Dev 12:14-21.
- Widmann C, Gibson S, Jarpe MB, Johnson GL. 1999. Mitogen-activated protein kinase: Conservation of a three-kinase module from yeast to human. Physiol Rev 79:143-180.

(-)-Epigallocatechin gallate suppresses endothelin-1-induced interleukin-6 synthesis in osteoblasts: Inhibition of p44/p42 MAP kinase activation

Haruhiko Tokuda^{a,b,*}, Shinji Takai^b, Yoshiteru Hanai^{a,b}, Rie Matsushima-Nishiwaki^b, Takayuki Hosoi^c, Atsushi Harada^d, Toshiki Ohta^e, Osamu Kozawa^b

^a Department of Clinical Laboratory, National Hospital for Geriatric Medicine, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan

^b Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan

Department of Internal Medicine, National Hospital for Geriatric Medicine, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan

Received 17 February 2007; accepted 22 February 2007

Available online 1 March 2007

Edited by Beat Imhof

Abstract We previously showed that endothelin-1 (ET-1) stimulates the synthesis of interleukin-6 (IL-6), a potent bone resorptive agent, in osteoblast-like MC3T3-E1 cells, and that protein kinase C (PKC)-dependent p44/p42 mitogen-activated protein (MAP) kinase plays a part in the IL-6 synthesis. In the present study, we investigated the effect of (-)-epigallocatechin gallate (EGCG), one of the major flavonoids containing in green tea, on ET-1-induced IL-6 synthesis in osteoblasts and the underlying mechanism. EGCG significantly reduced the synthesis of IL-6 stimulated by ET-1 in MC3T3-E1 cells as well primary cultured mouse osteoblasts. SB203580, a specific inhibitor of p38 MAP kinase, but not SP600125, a specific SAPK/JNK inhibitor, suppressed ET-1-stimulated IL-6 synthesis. ET-1-induced phosphorylation of p38 MAP kinase was not affected by EGCG. On the other hand, EGCG suppressed the phosphorylation of p44/p42 MAP kinase induced by ET-1. Both the IL-6 synthesis and the phosphorylation of p44/p42 MAP kinase stimulated by 12-O-tetradecanoylphorbol 13-acetate (TPA), a direct activator of PKC, were markedly suppressed by EGCG. The phosphorylation of MEK1/2 and Raf-1 induced by ET-1 or TPA were also inhibited by EGCG. These results strongly suggest that EGCG inhibits ET-1-stimulated synthesis of IL-6 via suppression of p44/p42 MAP kinase pathway in osteoblasts, and the inhibitory effect is exerted at a point between PKC and Raf-1 in the ET-1 signaling cascade.

© 2007 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

Keywords: Catechin; Endothelin-1; Interleukin-6; MAP kinase; Osteoblast

1. Introduction

Interleukin-6 (IL-6) is a pleiotropic cytokine that has important physiological effects on a wide range of functions such as

*Corresponding author. Address: Department of Clinical Laboratory, National Hospital for Geriatric Medicine, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan.

Fax: +81 562 46 8396. E-mail address: tokuda@ncgg.go.jp (H. Tokuda). of the MAP kinase superfamily [12], via protein kinase C (PKC), resulting in the IL-6 synthesis in osteoblast-like MC3T3-E1 cells. However, the mechanism of ET-1 behind the IL-6 synthesis in osteoblasts has not yet been precisely clarified.

It is well known that compounds in foods such as vegetables and fruits have beneficial properties on human beings. Among them, it has been reported that flavonoids possess antioxidative, antibacterial and antitumor effects [13,14]. Catechins are one of the major flavonoids, which are present in various species of plants such as green tea [14]. In bone metabolism, catechin has been shown to suppress bone resorption [15]. As for osteoblasts, it has been shown that catechin stimulates alkaline phosphatase activity, a mature osteoblast phenotype [5], and reduces apoptosis in osteoblast-like MC3T3-E1 cells [16]. However, the precise mechanism of catechin in osteoblasts is

promoting B cell differentiation, T cell activation and inducing

acute phase proteins [1-4]. The bone metabolism is regulated

by two functional cells, osteoblasts and osteoclasts, responsible

for bone formation and bone resorption, respectively [5]. The

formation of bone structures and bone remodeling results from

the coupling process, bone resorption by activated osteoclasts with subsequent deposition of new matrix by osteoblasts. It is

well recognized that IL-6 is one of the most potent osteoclas-

togenic factors in the bone metabolism [3,4]. Bone resorption

is mediated by the increased local production of inflammatory

cytokines such as tumor necrosis factor-α and IL-1. In osteo-

blasts [6-8], bone resorptive agents such as tumor necrosis fac-

tor-α and IL-1 have been reported to stimulate the synthesis of

IL-6. As for the bone metabolism, IL-6 has been shown to

stimulate bone resorption and induce osteoclast formation

[3,4,6,9]. Therefore, accumulating evidence indicates that IL-

6 secreted from osteoblasts plays a key role as a downstream

effector of bone resorptive agents. In previous studies [10,11],

we have shown that endothelin-1 (ET-1) induces the activation

of p44/p42 mitogen-activated protein (MAP) kinase, a member

In the present study, we investigated whether (-)-epigallocatechin gallate (EGCG), one of the major flavonoids containing in green tea, affects the ET-1-stimulated IL-6 synthesis in osteoblast-like MC3T3-E1 cells and the mechanism behind it. We herein show that EGCG reduces the ET-1-stimulated

not fully known.

0014-5793/\$32.00 © 2007 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved. doi:10.1016/j.febslet.2007.02.052

C Department of Advanced Medicine, National Hospital for Geriatric Medicine, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan Department of Restorative Medicine, National Hospital for Geriatric Medicine, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan

IL-6 synthesis via attenuation of p44/p42 MAP kinase pathway in these cells.

2. Materials and methods

2.1. Materials

ET-1 and 12-O-tetradecanoylphorbol 13-acetate (TPA) were purchased from Sigma Chemical Co. (St. Louis, MO). IL-6 ELISA kit was purchased from R&D Systems, Inc. (Minneapolis, MN). EGCG, SB203580 and SP600125 were obtained from Calbiochem-Novabiochem Co. (La Jolla, CA). Phospho-specific p38 MAP kinase antibodies, p38 MAP kinase antibodies, phospho-specific p44/p42 MAP kinase antibodies, p44/p42 MAP kinase antibodies, phospho-specific MEK I/2 antibodies, MEK I/2 antibodies, phospho-specific Raf-1 antibodies and β-actin antibodies were purchased from Cell Signaling Technology (Beverly, MA). ECL Western blotting detection system was purchased from Amersham Japan (Tokyo, Japan). Other materials and chemicals were obtained from commercial sources. SB203580 and SP600125 were dissolved in dimethyl sulfoxide. The maximum concentration of dimethyl sulfoxide was 0.1%, which did not affect either the assay for IL-6 activity or the Western blotting analysis.

2.2. Cell culture

The cloned osteoblast-like MC3T3-E1 cells, which have been derived from newborn mouse calvaria [17], were maintained as previously described [18]. Briefly, the cells were cultured in α -minimum essential medium (α -MEM) containing 10% fetal calf serum (FCS) at 37 °C in a humidified atmosphere of 5% CO2/95% air. The cells were seeded into 35-mm diameter dishes (5 \times 10⁵/dish) or 90-mm diameter dishes (5 \times 10⁵/dish) in α -MEM containing 10% FCS. After 5 days, the medium was exchanged for α -MEM containing 0.3% FCS. The cells were used for experiments after 48 h.

Primary cultured mouse osteoblasts were obtained from neonatal balb/c mouse by sequential collagenase digestions as previously described [19]. In brief, the calvarias of the neonatal mice were aseptically dissected from neonatal mice. The calvarias which were divided into small pieces were sequentially digested with 5 ml of PBS containing 0.1% collagenase (Sigma, MO) for 5 min at 37 °C. The cells isolated in fractions 2-6 were seeded into 90-mm diameter dishes in α-MEM containing 10% FCS at 37 °C in a humidified atmosphere of 5% CO₂/95% air. The medium was exchanged at every 3 days. After reaching confluence, the cells were subcultured. After trypsinization using trypsin-EDTA (0.05%/0.53 mM), the cells were rinsed three times in 10 ml of PBS. The cells (1×10^5) were seeded into 35-mm diameter dishes in 2 ml of α-MEM containing 10% FCS. After reaching confluency, the medium was exchanged for α -MEM containing 0.3% FCS. The cells were used for experiments after 48 h. We confirmed that the cultured cells possessed the high alkaline phosphatase activity, a mature osteoblasts phenotype [20].

2.3. Assay for IL-6

The cultured cells were stimulated by ET-1 in 1 ml of α -MEM containing 0.3% FCS, and then incubated for the indicated periods. The conditioned medium was collected, and IL-6 in the medium was then measured by an IL-6 ELISA kit. When indicated, the cells were pretreated with EGCG, SB203580 or SP600125 for 60 min.

2.4. Analysis of Western blotting

The cultured cells were stimulated by ET-1 in α-MEM containing 0.3% FCS for the indicated periods. The cells were washed twice with phosphate-buffered saline and then lysed, homogenized and sonicated in a lysis buffer containing 62.5 mM Tris/HCl, pH 6.8, 2% sodium dodecyl sulfate (SDS), 50 mM dithiothreitol and 10% glycerol. The cytosolic fraction was collected as a supernatant after centrifugation at 125000 × g for 10 min at 4 °C. SDS-polyacrylamide gel electrophoresis (PAGE) was performed by Laemmli [21] in 10% polyacrylamide gel. A Western blotting analysis was performed as described previously [22] by using phospho-specific p38 MAP kinase antibodies, phospho-specific p44/p42 MAP kinase or p44/p42 MAP kinase with peroxidase-labeled antibodies raised in goat against rabbit IgG being used as second antibodies. The peroxidase activity on

PVDG membrane was visualized on X-ray film by means of the ECL Western blotting detection system. When indicated, the cells were pretreated with various doses of EGCG for 60 min.

2.5. Determinations

The absorbance of enzyme immunoassay samples was measured at 450 nm with EL 340 Bio Kinetic Reader (Bio-Tek Instruments, Inc., Winooski, VT). A densitometric analysis was performed using the Molecular Analyst/Macintosh software program (Bio-Rad Laboratories, Hercules, CA).

2.6. Statistical analysis

The data were analyzed by ANOVA followed by the Bonferroni method for multiple comparisons between pairs, and a P < 0.05 was considered significant. All data are presented as the means \pm S.E.M. of triplicate determinations. Each experiment was repeated three times with similar results.

3. Results

3.1. Effects of EGCG on the ET-1-stimulated IL-6 synthesis in MC3T3-E1 cells and primary cultured mouse osteoblasts

We have previously demonstrated that ET-1 stimulates IL-6 synthesis in osteoblast-like MC3T3-E1 cells [10]. We first examined the effect of EGCG on the ET-1-stimulated IL-6 synthesis. EGCG, which alone had little effect on the IL-6 levels, reduced the ET-1-stimulated synthesis of IL-6 in a dose-dependent manner in the range between 1 and 100 μM (Table 1). In addition, we also examined the effect of EGCG in primary cultured mouse osteoblasts, and found that EGCG (30 μM) significantly reduced the IL-6 synthesis induced by ET-1 (Table 2). EGCG (30 μM) caused about a 55% reduction in the ET-1-effect.

3.2. Effects of SB203580 or SP600125 on the ET-1-stimulated IL-6 synthesis in MC3T3-E1 cells

In our previous study [11], we reported that p44/p42 MAP kinase plays a part in the ET-1-stimulated IL-6 synthesis in MC3T3-E1 cells. Among the MAP kinase superfamily, p38

Table 1
Effects of EGCG, SB203580 or SP600125 on the ET-1-stimulated IL-6 synthesis in MC3T3-E1 cells

IL-6 (pg/ml)
16 ± 5
468 ± 38°
15 ± 10
419 ± 35
17 ± 8
414 ± 30
15 ± 10
347 ± 28**
23 ± 8
69 ± 12**
10 ± 7
85 ± 12**
15 ± 10
456 ± 29

The cultured cells were pretreated with various doses of EGCG, 10 μ M SB203580, 10 μ M SP600125 or vehicle for 60 min, and then stimulated by 0.1 μ M ET-1 or vehicle for 24 h. Each value represents the means \pm S.E.M. of triplicate determinations. Similar results were obtained with two additional and different cell preparations.

 $^{^{\}circ}P < 0.05$, compared to the control value. $^{\circ\circ}P < 0.05$, compared to the value of ET-1 alone.

Table 2 Effects of EGCG on the ET-1-stimulated IL-6 synthesis in primary cultured mouse osteoblasts

EGCG	ET-1	IL-6 (pg/ml)
_	_	248 ± 39
_	+	354 ± 26*
+	-	216 ± 8
+	+	263 ± 26°°

The cultured cells were pretreated with 30 µM EGCG or vehicle for 60 min, and then stimulated by 0.1 μ M ET-1 or vehicle for 24 h. Each value represents the means ± S.E.M. of triplicate determinations. Similar results were obtained with two additional and different cell preparations.

P < 0.05, compared to the control value.

MAP kinase and stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK) in addition to p44/p42 MAP kinase, which together play a crucial role as intracellular components to transduce the various signals of agonists [12]. We have previously shown that ET-1 also activates p38 MAP kinase and SAPK/JNK [23,24]. In order to clarify the involvement of the MAP kinases in the ET-1-stimulated IL-6 synthesis in these cells, we examined the effect of SB203580, a specific inhibitor of p38 MAP kinase [25], or SP600125, a specific SAPK/JNK inhibitor [26], on the IL-6 synthesis. SB203580, which by itself had little effect on the IL-6 levels, significantly suppressed the ET-1-stimulated synthesis of IL-6 (Table 1). On the other hand, SP600125 hardly affected the IL-6 synthesis induced by ET-1 (Table 1).

3.3. Effect of EGCG on the phosphorylation of p38 MAP kinase by ET-1 in MC3T3-E1 cells

In order to clarify whether p38 MAP kinase is involved in EGCG-effect on the ET-1-stimulated IL-6 synthesis in MC3T3-E1 cells, we examined the effect of EGCG on the ET-1-induced phosphorylation of p38 MAP kinase. However, EGCG had little effect on the ET-1-induced phosphorylation of p38 MAP kinase (Fig. 1).

3.4. Effect of EGCG on the phosphorylation of p44/p42 MAP kinase induced by ET-1 in MC3T3-E1 cells

In order to investigate whether EGCG-effect on the ET-1stimulated IL-6 synthesis is mediated through p44/p42 MAP kinase activation in MC3T3-E1 cells, we next examined the effect of EGCG on the ET-1-induced phosphorylation of p44/p42 MAP kinase. EGCG markedly attenuated the ET-1induced phosphorylation of p44/p42 MAP kinase (Fig. 2). According to the densitometric analysis, EGCG (100 µM) caused about 80% reduction in the ET-1-effect.

3.5. Effects of EGCG on the TPA-stimulated IL-6 synthesis in MC3T3-E1 cells

We previously reported that PKC functions at a point upstream from p44/p42 MAP kinase in the ET-1-stimulated IL-6 synthesis in osteoblast-like MC3T3-E1 cells [11]. We next examined the effect of EGCG on the IL-6 synthesis stimulated by TPA, a direct activator of PKC [27]. In our previous study [28], we found that TPA alone stimulates IL-6 synthesis in MC3T3-E1 cells. EGCG, which by itself had little effect on the IL-6 levels, significantly reduced the TPA-stimulated syn-

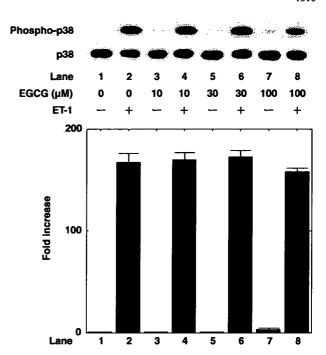


Fig. 1. Effect of EGCG on the phosphorylation of p38 MAP kinase induced by ET-1 in MC3T3-E1 cells. The cultured cells were pretreated with the indicated doses of EGCG or vehicle for 60 min, and then stimulated by 3 nM ET-1 or vehicle for 20 min. The extracts of cells were subjected to SDS-PAGE with a subsequent Western blotting analysis with antibodies against phospho-specific p38 MAP kinase or p38 MAP kinase. The histogram shows quantitative representations of the levels of ET-1-induced phosphorylation obtained from a laser densitometric analysis of three independent experiments. Each value represents the means ± S.E.M. of triplicate determinations. Similar results were obtained with two additional and different cell preparations.

thesis of IL-6 (Table 3). EGCG (100 µM) caused about an 80% reduction in the TPA-effect.

3.6. Effect of EGCG on the phosphorylation of p44/p42 MAP kinase induced by TPA in MC3T3-E1 cells

In order to investigate whether EGCC-effect on the TPAstimulated IL-6 synthesis is mediated through inhibition of p44/p42 MAP kinase activation in MC3T3-E1 cells, we next examined the effect of EGCC on the TPA-induced phosphorylation of p44/p42 MAP kinase. We previously found that TPA induces the phosphorylation of p44/p42 MAP kinase in these cells [29]. EGCC markedly suppressed the TPA-induced phosphorylation of p44/p42 MAP kinase (Fig. 3).

3.7. Effects of EGCG on the phosphorylation of MEK1/2 and Raf-1 induced by ET-1 or TPA in MC3T3-E1 cells

It is well known that p44/p42 MAP kinase is activated by an upstream kinase, MEK 1/2, which is activated by Raf-1 [12]. To clarify the exact mechanism of EGCG behind the IL-6 synthesis, we further examined the effects of EGCG on the phosphorylation of MEK1/2 and Raf-1 induced by ET-1 or TPA in MC3T3-E1 cells. The levels of ET-1 or TPA-induced phosphorylation of MEK1/2 were reduced by EGCG (data not shown). EGCG suppressed the levels of both ET-1- and TPA-induced the phosphorylation of Raf-1 (Fig. 4).

P < 0.05, compared to the value of ET-1 alone.

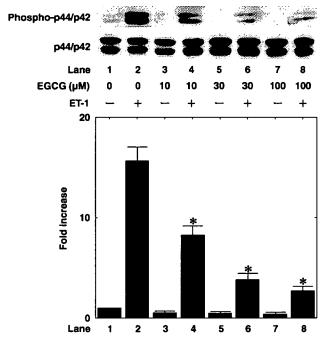


Fig. 2. Effect of EGCG on the phosphorylation of p44/p42 MAP kinase induced by ET-1 in MC3T3-E1 cells. The cultured cells were pretreated with the indicated doses of EGCG or vehicle for 60 min, and then stimulated by 3 nM ET-1 or vehicle for 5 min. The extracts of the cells were subjected to SDS-PAGE with a subsequent Western blotting analysis with antibodies against phospho-specific p44/p42 MAP kinase or p44/p42 MAP kinase. The histogram shows quantitative representations of the levels of ET-1-induced phosphorylation obtained from a laser densitometric analysis of three independent experiments. Each value represents the means ± S.E.M. of triplicate determinations. Similar results were obtained with two additional and different cell preparations. *P < 0.05, compared to the value of ET-1 alone.

Table 3
Effect of EGCG on the TPA-stimulated IL-6 synthesis in MC3T3-E1 cells

EGCG	TPA	IL-6 (pg/ml)
_	_	19 ± 7
_	+	415 ± 31°
+	_	29 ± 10
+	+	98 ± 17**

The cultured cells were pretreated with $100 \,\mu\text{M}$ EGCG or vehicle for 60 min, and then stimulated by $0.1 \,\mu\text{M}$ TPA or vehicle for 24 h. Each value represents the means \pm S.E.M. of triplicate determinations. Similar results were obtained with two additional and different cell preparations.

4. Discussion

In the present study, we showed that EGCG, which by itself had little effect on the levels of IL-6, significantly reduced the ET-1-stimulated IL-6 synthesis in osteoblast-like MC3T3-E1 cells. We found that EGCG reduced the IL-6 synthesis induced by ET-1 also in primary cultured mouse osteoblasts. It is likely that the inhibitory effect of EGCG on the IL-6 synthesis induced by ET-1 is not specific in a clonal osteoblast-like

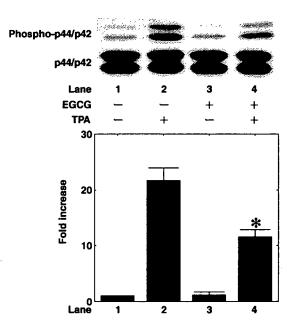


Fig. 3. Effect of EGCG on the phosphorylation of p44/p42 MAP kinase induced by TPA in MC3T3-E1 cells. The cultured cells were pretreated with 100 μ M EGCG or vehicle for 60 min, and then stimulated by 0.1 μ M TPA or vehicle for 60 min. The extracts of cells were subjected to SDS-PAGE with a subsequent Western blotting analysis with antibodies against phospho-specific p44/p42 MAP kinase or p44/p42 MAP kinase. The histogram shows quantitative representations of the levels of TPA-induced phosphorylation obtained from a laser densitometric analysis of three independent experiments. Each value represents the means \pm S.E.M. of triplicate determinations. Similar results were obtained with two additional and different cell preparations. *P < 0.05, compared to the value of TPA alone.

MC3T3-E1 cells but it is common in osteoblasts. We next investigated the mechanism of EGCG underlying the suppressive effect on the IL-6 synthesis. It is generally known that the MAP kinase superfamily plays a pivotal role in cellular functions including proliferation, differentiation, and cell death in a variety of cells [12]. Three major MAP kinase, p44/p42 MAP kinase, p38 MAP kinase, and SAPK/JNK are known as central elements used by mammalian cells to transduce the diverse messages [12]. We have previously reported that ET-1-activated p44/p42 MAP kinase acts as a positive regulator in ET-1-induced IL-6 synthesis in osteoblast-like MC3T3-E1 cells [11]. In addition, we demonstrated that p38 MAP kinase and SAPK/JNK are activated by ET-1 in these cells [23,24]. In the present study, we showed that SB203580 [25], markedly suppressed the ET-1-induced IL-6 synthesis while SP600125 [26], failed to affect the IL-6 synthesis. We previously showed that ET-1-induced both synthesis of vascular endothelial growth factor and phosphorylation of SAPK/JNK are significantly suppressed by 10 μ M SP600125 in MC3T3-E1 cells [24]. It thus seems unlikely that SAPK/JNK is involved in the ET-1induced IL-6 synthesis in osteoblast-like MC3T3-E1 cells. Based on our results, it is probable that ET-1 stimulates the synthesis of IL-6 via p38 MAP kinase in addition to p44/p42 MAP kinase in osteoblast-like MC3T3-E1 cells.

We further investigated the involvement of p38 MAP kinase and p44/p42 MAP kinase in the inhibitory effect of EGCG on the IL-6 synthesis. EGCG attenuated the ET-1-induced phosphorylation of p44/p42 MAP kinase without affecting the p38 MAP kinase phosphorylation. Therefore, our findings strongly

 $^{^{\}bullet}P < 0.05$, compared to the control value.

P < 0.05, compared to the value of TPA alone.

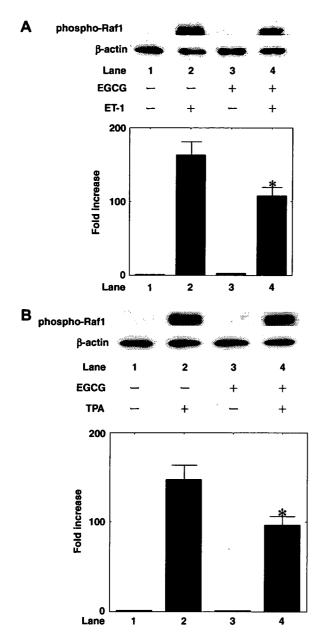


Fig. 4. Effects of EGCG on the phosphorylation of Raf-1 induced by ET-1 or TPA in MC3T3-E1 cells. The cultured cells were pretreated with 100 μ M EGCG or vehicle for 60 min, and then stimulated by 0.1 μ M ET-1 (A), 0.1 μ M TPA (B) or vehicle for 60 min. The extracts of cells were subjected to SDS-PAGE with a subsequent Western blotting analysis with antibodies against phospho-specific Raf-1 or β -actin. The histogram shows quantitative representations of the levels of ET-1- (A) or TPA-induced phosphorylation (B) obtained from a laser densitometric analysis of three independent experiments. Each value represents the means \pm S.E.M. of triplicate determinations. Similar results were obtained with two additional and different cell preparations. *P < 0.05, compared to the value of ET-1 (A) or TPA (B) alone.

suggest that EGCG inhibits the ET-1-induced IL-6 synthesis via the down-regulating p44/p42 MAP kinase pathway in osteoblast-like MC3T3-E1 cells. In our previous studies [10,11], we demonstrated that p44/p42 MAP kinase acts at a point downstream of PKC in ET-1-stimulated IL-6 synthesis in MC3T3-E1 cells. To clarify whether the effect of catechin

is exerted at a point downstream of PKC or not, we additionally examined the effect of EGCG on the IL-6 synthesis by TPA [27]. We have found that TPA alone stimulates IL-6 synthesis in MC3T3-E1 cells [28]. We herein presented that EGCG reduced the TPA-stimulated IL-6 synthesis as well as the TPAinduced phosphorylation of p44/p42 MAP kinase in these cells, suggesting that the effect of EGCG is exerted at a point upstream of p44/p42 MAP kinase. Furthermore, we found that EGCG actually suppressed the levels of both ET-1- and TPA-induced phosphorylation of MEK1/2 and Raf-1. Taking our findings into account as a whole, it is most likely that EGCG down-regulates ET-1-stimulated IL-6 synthesis in osteoblasts, and that the effect is exerted at a point between PKC and Raf-1. Further investigations are necessary to clarify the precise mechanism of catechin underlying the down-regulation of IL-6 synthesis in osteoblasts.

IL-6 is well recognized to be a potent bone resorptive agent and induces osteoclast formation [4,6]. On the other hand, catechin reportedly has an inhibitory effect on bone resorption [15]. In addition, it has recently been shown that catechin increases cell viability and alkaline phosphatase activity, a marker of mature osteoblast phenotype [5], in osteoblast-like MC3T3-E1 cells and apoptosis of these cells is suppressed by catechin [16]. Taking our results into account, it is probable that catechin-induced suppression of p44/p42 MAP kinase activation plays an effect against bone resorption via downregulating IL-6 synthesis in osteoblasts. Our present data therefore provide new insight into the pharmacological effects of catechin action on bone cells. Further investigations are required to elucidate the exact role of catechin in the bone metabolism.

In conclusion, these results strongly suggest that catechin inhibits the ET-1-stimulated synthesis of IL-6 via suppression of p44/p42 MAP kinase pathway in osteoblasts, and this effect is exerted at a point between PKC and Raf-1 in the ET-1 signaling cascade.

Acknowledgements: We are very grateful to Yoko Kawamura and Seiko Sakakibara for their skillful technical assistance. This investigation was supported in part by Grant-in-Aid for Scientific Research (16590873 and 16591482) for the Ministry of Education, Science, Sports and Culture of Japan, the Research Grants for Longevity Sciences (15A-1, 15C-2 and 17A-3), Research Grant on Proteomics and Research Grant on Fracture and Dimentia from the Ministry of Health, Labour and Welfare of Japan.

References

- Akira, S., Taga, T. and Kishimoto, T. (1993) Interleukin-6 in biology and medicine. Adv. Immunol. 54, 1-78.
- [2] Heymann, D. and Rousselle, A.V. (2000) gp130 Cytokine family and bone cells. Cytokine 12, 455-1468.
- [3] Kwan Tat, S., Padrines, M., Theoleyre, S., Heymann, D. and Fortun, Y. (2004) IL-6, RANKL, ET-1-alpha/IL-1: interrelations in bone resorption pathophysiology. Cytokine Growth Factor Rev. 15, 49-60.
- [4] Blair, H.C., Robinson, L.J. and Zaidi, M. (2005) Osteoclast signalling pathways. Biochem. Biophys. Res. Commun. 328, 728-738.
- [5] Nijweide, P.J., Burger, E.H. and Feyen, J.H.M. (1986) Cells of bone: proliferation, differentiation, and humoral regulation. Physiol. Rev. 66, 855-886.
- [6] Ishimi, T., Miyaura, C., Jin, C.H., Akatsu, T., Abe, E., Nakamura, Y., Yamaguchi, Y., Yoshiki, S., Matsuda, T., Hirano, T., Kishimoto, T. and Suda, T. (1990) IL-6 is produced by

- osteoblasts and induces bone resorption. J. Immunol. 145, 3297-3303.
- [7] Helle, M., Brakenhoff, J.P.J., DeGroot, E.R. and Aarden, L.A. (1988) Interleukin-6 is involved in interleukin-1-induced activities. Eur. J. Immunol. 18, 957-959.
- [8] Littlewood, A.J., Russil, J., Harvey, G.R., Hughes, D.E., Russel, R.G.G. and Gowen, M. (1991) The modulation of the expression of IL-6 and its receptor in human osteoblasts in vitro. Endocrinology 129, 1513-1520.
- [9] Roodman, G.D. (1992) Interleukin-6: an osteotropic factor? J. Bone Miner. Res. 7, 475-478.
- [10] Matsuno, M., Kozawa, O., Suzuki, A., Tokuda, H., Kaida, T., Matsuno, H., Niwa, M. and Uematsu, T. (1998) Involvement of protein kinase C activation in endothelin-1-induced secretion of interleukin-6 in osteoblast-like cells. Cell. Signal. 10, 107-111.
- [11] Kawamura, H., Otsuka, T., Tokuda, H., Matsuno, H., Niwa, M., Matsui, N., Uematsu, T. and Kozawa, O. (1999) Involvement of p42/p44 MAP kinase in endothelin-1-induced interleukin-6 synthesis in osteoblast-like cells. Bone 24, 315-320.
- [12] Widmann, C., Gibson, S., Jarpe, M.B. and Johnson, G.L. (1999) Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol. Rev. 79, 143-180.
- [13] Jankun, J., Selman, S.H., Swiercz, R. and Skrzypczak-Jankun, E. (1997) Why drinking green tea could prevent cancer. Nature 387, 561.
- [14] Harbourne, J.B. and Williams, C.A. (2000) Advances in flavonoid research since 1992. Phytochemistry 55, 481-504.
- [15] Delaisse, J.M., Eeckhout, Y. and Vaes, G. (1986) Inhibition of bone resorption in culture by (+)-catechin. Biochem. Pharmacol. 35, 3091-3094.
- [16] Choi, E.-M. and Hwang, J.-K. (2003) Effects of (+)-catechin on the function of osteoblastic cells. Biol. Pharm. Bull. 26, 523-526.
- [17] Sudo, H., Kodama, H., Amagai, Y., Yamamoto, S. and Kasai, S. (1983) In vivo differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria. J. Cell Biol. 96, 191-198.
- [18] Kozawa, O., Tokuda, H., Miwa, M., Kotoyori, J. and Oiso, Y. (1992) Cross-talk regulation between cyclic AMP production and phosphoinositide hydrolysis induced by prostaglandin E₂ in osteoblast-like cells. Exp. Cell Res. 198, 130-134.
 [19] Ishisaki, A., Tokuda, H., Yoshida, M., Hirade, K., Kunieda, K.,
- [19] Ishisaki, A., Tokuda, H., Yoshida, M., Hirade, K., Kunieda, K., Hatakeyama, D., Shibata, T. and Kozawa, O. (2004) Activation

- of p38 mitogen-activated protein kinase mediates thyroid hormone-stimulated osteocalcin synthesis in osteoblasts. Mol. Cell. Endocrinol. 214, 189–195.
- [20] Robinson, R.J., Doty, S.B. and Cooper, R.R. (1973) Electron micrography of mammalian bone in: Biological Mineralization (Zipkin, I., Ed.), pp. 257-296, Academic Press, NY.
- [21] Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685
- [22] Kato, K., Ito, H., Hasegawa, K., Inaguma, Y., Kozawa, O. and Asano, T. (1996) Modulation of the stress-induced synthesis of hsp27 and αB-crystallin by cyclic AMP in C6 glioma cells. J. Neurochem. 66, 946-950.
- [23] Kawamura, H., Otsuka, T., Matsuno, H., Niwa, N., Matsui, N., Kato, K., Uematsu, T. and Kozawa, O. (1999) Endothelin-1 stimulates heat shock protein 27 induction in osteoblasts: involvement of p38 MAP kinase. Am. J. Physiol. 277, E1046– E1054.
- [24] Wang, X., Tokuda, H., Hirade, K. and Kozawa, O. (2002) Stress-activated protein kinase/c-Jun N-terminal kinase (JNK) plays a part in endothelin-1-induced vascular endothelial growth factor synthesis in osteoblasts. J. Cell. Biochem. 87, 417-423.
- [25] Cuenda, A., Rouse, J., Doza, Y.N., Meier, R., Cohen, P., Gallagher, T.F., Young, P.R. and Lee, J.C. (1995) SB203580 is a specific inhibitor of a MAP kinase homologue which is stimulated by cellular stresses and interleukin-1. FEBS Lett. 364, 229-233.
- [26] Bennett, B.L., Sasaki, D.T., Murray, B.W., O'Leary, E.C., Sakata, S.T., Xu, W., Leisten, J.C., Motiwala, A., Pierce, S., Satoh, Y., Bhagwat, S.S., Manning, A.M. and Anderson, D.W. (2001) SP600125, an anthrapyrazolone inhibitor of Jun Nterminal Kinase. Proc. Natl. Acad. Sci. USA 98, 13681-13686.
- [27] Nishizuka, Y. (1986) Studies and perspectives of protein kinase C. Science 233, 305-312.
- [28] Kozawa, O., Suzuki, A., Tokuda, H. and Uematsu, T. (1997) Prostaglandin F_{2α} stimulates interleukin-6 via activation of PKC in osteoblast-like cells. Am. J. Physiol. 272, E208–E211.
- [29] Tokuda, H., Harada, A., Hirade, K., Matsuno, H., Ito, H., Kato, K., Oiso, Y. and Kozawa, O. (2003) Incadronate amplifies prostaglandin F₂α-induced vascular endothelial growth factor in osteoblasts: enhancement of MAP kinase activity. J. Biol. Chem. 278, 18930–18937.