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Abstract

The efficient screening of lead compounds or drug candidates for efficacy and safety is
critically important during the early stage of drug development. Compounds are usually screened
from a diverse ‘chemical space’ based only on its pharmacological effects, but this screening is not
enough to guarantee drug safety. To solve this problem, we devised a chemical space that takes into
account interaction information with proteins such as drug transporters. We also created and
evaluated a mathematical model for predicting compound-transporter interactions. This was
achieved by first generating an interaction correlation matrix based on drug transporters and their
corresponding inhibitor compounds. To implement a screening scheme that takes into account
interaction with drug transporters, we created a model using Canonical Correlation Analysis (CCA)
that makes use of the known information on interaction between drug transporters and their
corresponding inhibitors. Cross-validation of the model gave satisfactory test results and a
physiologically relevant chemical space was constructed based on the model.
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1. Introduction

During the drug development process it is important to screen compounds for efficacy and
safety at an early stage in order to prevent unnecessary and costly analysis later on. It is thought
that the diverse chemical space may contain as much as 10%° chemical structures or more. Searching
for a drug candidate with a good balance of efficacy and safety from this huge chemical space is
obviously very difficult, as evidenced from the fall in the number of new drug applications in recent
years [1]{2].

The previously used screening approach involved sampling a diverse chemical library for those
leads that display only promising pharmacological effects i.e. drug efficacy. It is important to select
a compound with excellent pharmacokinetic properties (drug safety), not just pharmacological
effects, when screening at the early stage of drug development. When analyzing the
pharmacokinetic properties of drug candidates, ligand interactions with Phase I enzymes such as
cytochromes P450, Phase II conjugation enzymes (e.g. GST and sulfotransferases), as well as
transporter proteins that play a crucial role in Phase ITI, must be considered [3]. Of these,
transporter proteins, which are important in facilitating absorption of compounds in the intestines as
well as the degree of penetration across the blood-brain barrier, play a central role in determining
the bioavailability of drugs. '

This paper focuses on transporter proteins that play an important role in drug pharmacokinetics.
The interaction studies were carried out based on information on the interactions of the compounds
and the transporter proteins. To implement a screening scheme that takes into account interaction
with drug transporters, we created a model using CCA that exploits the characterized interactions
between drug transporters and their corresponding inhibitors. The model is evaluated and then used
to create a physiologically relevant chemical space.

2. Method

2.1 Gathering of compound-transporter interaction data

The compound-transporter interaction data used in this study was extracted from the ADME
Database (developed by Fujitsu Kyushu Systems Engineering Ltd., Fukuoka, Japan) [4][5]{6]. The
database is a collection of information on drug transporters as well as drug metabolizing enzymes
found in the literature. Two kinds of transporter proteins were selected for this study; the ABC
transporter family and the SLC transporter family. Compounds that interact with these transporter
families were also extracted from the database. The compound-transporter interaction type
available in the database includes substrates, inhibitors, inducers and activators. However, for the
purpose of this study only the inhibitors were selected.

A total of 17 ABC transporter families and 110 different SLC transporter proteins were selected
for this study. Data concerning the interaction of these transporter proteins with known compounds
was extracted from the ADME Database. The database contains 5,860 compound-transporter
interactions between the selected 117 transporter proteins and their interacting 3,275 compounds.

The selected transporter proteins are as follows.
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Table 1. List of transporter proteins used in the study

ABCAI SLC1A1 SLC5A6 SLC7A7 SLCI15A1 SLC23A1
ABCA2 SLC1A2 SLC5A7 SLC7A8 SLCI19A2 SLC23A2
ABCA9 SLC1A3 SLC5AS8 SLCI10ALl SLC21A11 SLC26A2
ABCAI10 SLC1A4 SLC5A9 SLC10A2 SLC21A12 SLC26A3
ABCBI1 SLC1AS SLC6A1 SLC10A4 SLC21A14 SLC26A4
ABCB4 SLC1A6 SLC6AI11 SLC13A1 SLC21A2 SLC26A6
ABCB5 SLC1A7 SLC6AI12 SLCI13A2 SLC21A20 SLC26A7
ABCBL11 SLC2A1 SLC6A13 SLC13A3 SLC21A3 SLC26A8
ABCC1 SLC2A10 SLC6A14 = SLC13A4 SLC21A6 SLC26A9
ABCC2 SLC2A11 SLC6A2 SLCI13A5 SLC21A8 SLC27A4
ABCC3 SLC2A12 SLC6A3 SLC15A1 SLC21A9 SL.C28A1
ABCC4 SLC2A13 SLC6A4 SLC15A2 SLC22A1 SLC28A2
ABCCS SLC2A2 SLC6AS SLC15A4 SLC22A11 SLC28A3
ABCCI10 SLC2A3 SLC6A6 SLC16A1 SLC22A12 SLC29A1
ABCC11 SLC2A4 SLC6A9 SLC16A10 SLC22A16 SLC29A2
ABCGI1 SLC2A6 SLC7Al1 SLC16A3 SLC22A2 SLC29A4
ABCG2 SLC2A7 SLC7A10 SLC16AS SLC22A3 SLC32A1

SLC2A8 SLC7A11 SLC16A7 SLC22A4 SLC36A1

SLC4A4 SLC7A2 SLC17A1 SLC22A5 SLC38A1

SLCSAl SLC7A3 SLC18A1 SLC22A6 SLC38A4

SLCSA2 SLC7AS SLC18A2 SLC22A7 SLC38A5

SLC5A4 SLC7A6 SLCI18A3 SLC22A8 SLC43A2

2.2 Organizing the collected data

A correlation matrix of compound-transporter interactions was constructed based on the
collected compound-transporter interaction information. Here compounds that interact with a
transporter protein are flagged ‘1°, and those that do not interact are flagged ‘0’ as shown in Table2.

The similarity between transporter proteins was calculated based on this interaction correlation

matrix. The Tanimoto coefficient found below was used to evaluate similarity [7] .
C

Tanimoto (X,Y) =
A+B-C

A: No. of bits in X that were flagged ‘1’
B: No. of bits in Y that were flagged ‘1’
C: No. of flagged bits common to both X and Y
The interaction similarity of the compounds was also defined as Tanimoto coefficient based on
the correlation matrix. We used the distance measure transformed from the Tanimoto coefficient as

shown below:

Distance(X,Y) = 1 — Tanimoto(X,Y)
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Table 2. Excerpt from the correlation matrix of compound-transporter interactions.

Transporter Name

ABCAI
ABCBLl!
ABCCI
ABCG2

Compound Name

Vérapamil -

A

,Cholyltaurme Taurochollc acid, Taurocholate

N

4 4'-Dusothlocyanostllbene -2, 2 -dlsulfomc acxd, DIDS

“ oy

Phloretin .

o|=jof=lo

'Bromosulfophtha]em, Sulfobromophthalem BSP )

£
flend

i

‘Cyclosporin A, Cyclospormc Cyc]osporm, Clclosporln
‘Probenecid -7+ . A

“Indomethacin”

Progesterone | :

Quinidine -~ ~

(= o|=e|={o|eole| ABCBI

Cimetidine.. © .~ - =+
“Phloridzin, Phiorizin - . -

' Pravastatin, Pravastatin acid e

)

:

. Rifampicin; Rifampin - --

[N I

: 1-Methy1 4-phenylpyr1d1mum MPP(+)

Holwlolo|o|o|o ||+ i]o|o|e|=]~] ABCCS

e,

Liglutamine, Gln: +

~L -Jeucine; L-Leu:

Foo:'ooooo.-‘-"--..—l..‘:-:..‘-\-:y—-oo..a.u,—. ABCC4
e or-'-;oooooo"——,o‘»-!-_‘o »:o’»j—ﬁroo ABCCS

[

" Methotrexate: .

‘MKS571, MK-57
‘Chlorpromazine’™ .~ 7. -
Desmnpramme De51pram1ne U

-Diclofenac

oooo»:ee.ooooooooooo‘g-foOO—;;-"ABCCW

oooooooooo.ﬁ-:ooooooooif—-‘o‘g—-oo

olojo|z|o|e|o|o|e|e|=~|ec|o|e|w|ole|~|olala|~]~
wizlololwlo|o|of=|e|=lo|o|o|=|=|~L=l=|o|=[=]{~=]~

vl B
ole|o|ol==|o|e|e|e|=|=|clo|o{=|o|e

oflofmlrllik]|o|o|om[m]=]
olo|o|o|=|x|o| oo i

oslo|o|o]
freg N PN 1SN
-

olo|lo|o|f

-Ketoprofen -+ < vy e

2.3 Canonical Correlation Analysis (CCA)

Next, CCA was performed using the collected compound-transporter interaction data. Dragon X
was used to calculate the compound descriptors [8]. A total of 929 descriptors were calculated.
Highly correlated descriptors were grouped together and then filtered to give a final total of 324
compound descriptors.

The transporter proteins were calculated as bigram (two amino acids) frequency in protein
sequences, and were used to generate a total of 400 protein descriptors. CCA was then performed,
which generated 324 components. CCA is a technique to extract common features from a pair of
multivariate data (chemical and protein descriptors). CCA finds a linear transformation of the
chemical and protein spaces such that the correlation coefficient is maximized. Therefore we can
construct the chemical space with the higher correlation to the protein space by extraction of the
some components with the higher correlation coefficients.

2. 4 Cross Validation

A 5-fold cross-validation test was performed using only the 44 CCA components with P value <
0.01 of correlation coefficient test. The whole training compound set was divided into five sets. The
first set was left out for testing and the remaining four sets were used to train a model. The
compounds from the first set were then used to evaluate the trained model. The model was
evaluated by setting a Euclid distance threshold from a test compound and using the closest
neighboring compounds within this threshold for prediction. The procedure was repeated for all
five sets, each time leaving out one set for testing, until all compounds from all five sets had been
evaluated. -
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3. Result

3.1 Analysis of compound-transporter interactions

A significant number of compounds were found to inhibit more than one transporter using the
collected compound-transporter interaction data. Indeed, out of these compounds, 183 were
identified as inhibiting five or more transporters. The list below shows the frequency for each
“Interaction count” of a compound.

Table 3. Frequency of Interaction count for a single compound

Interaction Count  Frequency

18 1
17 1
16 2
15 3
14 1
13 2
12 4
11 6
10 8
9 15
8 19
7 18
6 37
5 66
4 118
3 355
2 393
1 2226

Moreover, the similarity of each transporter protein was calculated from the interaction matrix
profile by using the Tanimoto coefficient. The result of clustering based on this similarity measure
is shown in Figure 1. As shown in the figure, ABCG1 and ABCB4 are similar by interaction pattern
even though the sequence similarity between both proteins is very low. Analogous results were
found for ABCG2, which was shown to be similar to ABCC1 and ABCC2.

Moreover, Cyclosporin A that interacts with 15 kinds of transporter proteins, and MK571 that
interacts with 11 kinds of transporter proteins were examined and compared as shown in Figure 2
[9][10]. Even though the two compounds share a low degree of structural similarity, they were
found to interact with the same 10 transporter proteins. Our results demonstrate that it is not
possible to explain all the similarities in interaction by simply comparing the structure of the
relevant compounds or by protein sequence alignments alone. We then performed CCA on the
collected interaction data to construct a correlation model for building a chemical space that
reflected the classification of the transporters.
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Figure 1. ABC transporters’ cluster analysis based on similarity of interaction
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Figure2. Chemical structures of MK571 and CyclosporinA

3.2 CCA Result

The correlation model was constructed by using canonical correlation analysis (CCA).
Performance of the model was evaluated using 5-fold cross-validation. CCA analysis and 5-fold
cross-validation were performed using the collected compound-transporter interaction data. Below
is the definition of the terms used in the evaluation of results.

Table 4. Definition of terms used in validation results
List of the total number of compounds (frequency) with corresponding numbers of transporter
interactions (interaction count)

Definition
The predicted transporter-interaction matches an observed
transporter-interaction of the test compound

TruePositive

The predicted NON- interaction matches an observed

TrueNegative NON:-interaction of the test compound

The predicted transporter-interaction do not match any of the

FalsePositive observed transporter-interaction of the test compound

The predicted NON- interaction matches an observed
transporter-interaction of the test compound

FalseNegative
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Sensitivity and Specificity are calculated as follows:

s TruePositive
Sensitivity = — -
TruePositive + FalseNegative
TrueNegative
Specificity=

TrueNegative+FalsePositive

FalsePositiveRate=1-Specificity

To evaluate the performance of the model, the ROC plot (x-axis=FalsePositiveRate,
y-axis=Sensitivity) is shown in Figure 3 below.

Transporter Inhibitor ROC

/"/-e—

e

sensitivity

]
i
{

00 01 02 03 04 05 06 07 08 09 1.0

0.00  0.01 0.02 0.03 0.04 0.05

false positive rate

Figure 3. ROC of transporter inhibitor
ROC was plotted the average point of the sensitivity and false positive rate calculated under each
condition of the maximum number of neighboring compounds (1,5,10,20) and the Euclid distance
thresholds (1, 10, 20, 40, 80, 160 and 200)
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This graph shows that the closer the curve inclines to the upper left comer the better is the
model performance. The closer the curve declines to the dotted line the poorer is the performance,
since the dotted line shows the performance curve of random models. The results show that our
model has a very high performance, as evidenced by the curve’s inclination to the upper left comer.

Then we identified 183 compounds that interact with more than 5 transporter proteins. A
similarity map of the compounds was constructed as shown in Figure 4; where x-axis represents the
similarity based on structural descriptors and y-axis represents similarity based on the interaction
correlation matrix (Table 1). Our similarity map shows two distinct groups of compounds. Group B
represents compounds with extremely low structural descriptor similarity, as exemplified by
Cyclosporin A and Vinblastine. In this group, Cyclosporin A and MK571 show relatively high
interaction similarity even though they have low structural descriptor similarity. For clarity, the
similarity map of group A is enlarged by excluding group B as shown in Figure 5. The figure also
shows that even though the compounds which interact with the subfamily of SLC22 and SLC28
have low structural similarity, they show high similarity with regards to interaction with SLC22 or
SLC28.

Furthermore, the same similarity map is reconstructed by plotting in the x-axis the similarity of
the compounds measured by CCA (instead of using the structural descriptors) as shown in Figure 6.
The figure shows that compounds with low structural similarity may have high similarity by CCA,
as shown by the Cyclosporin A and MK571 pair, as well as the SLC22 and the SLC28 interacting
compounds. Thus, it was shown that constructing a chemical space using information on
compound-transporter interaction is much better than simply using structural descriptors alone.

group A
1.2 o .
? ' ' “| Cyclosporin A,Vinblastine
‘- | and similarity with other

% compounds.(group B)
-
E
E
w .

'
% Cyclosporin A
= |

MKS571

10000 15000 20000 25000 30000 35000 40000
HIGH similarity LOW >

Figure 4. Two-dimensional map of structural similarity vs. interaction similarity
(Cyclosporin A and Vinblastine included in the map)
y-axis : Similarity in interaction pattern with a transporter protem
x-axis : Similarity in chemical structure
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Figure 5. Two-dimensional map of structural similarity vs. interaction similarity
(Cyclosporin A and Vinblastine excluded from the map)
y-axis : Similarity in interaction pattern with a transporter protein
x-axis : Similarity in chemical structure
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Figure 6. Two-dimensional map of similarity by CCA vs. interaction similarity
(Cyclosporin A and Vinblastine included in the training)
y-axis : Similarity in interaction with a transporter protein
x-axis : Similarity by CCA
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5. Discussion

It was found that the results of classifying the transporter proteins by similarity of interaction
pattern are different from the results obtained when classifying them by sequence similarity.
Moreover, it was found that compounds showing similarity in interactions with more than one
transporter protein may not necessarily have structural similarity at all.

These results show that it is difficult to predict the interaction between a compound and protein
(1.e. related to pharmacological and pharmacokinetic effects) based on chemical structural similarity
or protein sequence similarity alone. To create a physiologically relevant chemical space,
information on compound-protein interactions is required. By utilizing CCA, we built an
interaction model that was used to create a chemical space. Compounds that have high similarity in
terms of interaction with proteins, but that are not necessarily similar in terms of structure, were
clustered together. Thus a chemical space of transporter inhibitors was created, although this
technique can also be applied to construct a chemical space (or a focused library) of compounds
that interact with any specific target protein.

Moreover, a compound-transporter interaction model was constructed using CCA, which gave
good evaluation results. This technique can be extended to develop chemical spaces of not only the
inhibitors but also the substrates of transporter proteins. The resulting chemical spaces may be used
for in silico screening of compounds with good pharmacological characteristics as well as good
absorption, distribution and excretion properties.

The method described in this paper can also be extended to study toxicity related proteins. By
building chemical spaces for such proteins, drug candldates with a good balance of efficacy and
safety can be developed.
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Background. Glycan biosynthesis occurs though a multi-step process that requires a variety of enzymes ranging from
glycosyltransferases to those involved in cytosolic sugar metabolism. In many cases, glycan biosynthesis follows a glycan-
specific, linear pathway. As glycosyltransferases are generally regulated at the level of transcription, assessing the overall
transcriptional profile for glycan biosynthesis genes seems warranted. However, a systematic approach for assessing the
correlation between glycan expression and glycan-related gene expression has not been reported previously. Methodology.
To facilitate genetic analysis of glycan biosynthesis, we sought to correlate the expression of genes involved in cell-surface
glycan formation with the expression of the glycans, as detected by glycan-recognizing probes. We performed cross-sample
comparisons of gene expression profiles using a newly developed, glycan-focused ¢DNA microarray. Cell-surface glycan
expression profiles were obtained using flow cytometry of cells stained with plant lectins. Pearson's correlation coefficients
were calculated for these profiles and were used to identify enzyme genes correlated with glycan biosynthesis. Conclusions.
This method, designated correlation index-based responsible-enzyme gene screening (CIRES), successfully identified genes
already known to be involved in the biosynthesis of certain glycans. Our evaluation of CIRES indicates that it is useful for
identifying genes involved in the biosynthesis of glycan chains that can be probed with lectins using flow cytometry.

Citation: Yamamoto H, Takematsu H, Fujinawa R, Naito Y, Okuno Y, et al (2007) Correlation Index-Based Responsible-Enzyme Gene Screening (CIRES),
a Novel DNA Microarray-Based Method for Enzyme Gene Involved in Glycan Biosynthesis. PLoS ONE 2(11): €1232. doi:10.1371/joumal.pone.0001232

INTRODUCTION

The biosynthesis of glycan chains is a muld-step process. First, free
sugars are biosynthesized by sugar-specific metabolic pathways.
Then, these sugar molecules are further metabolized to nucleotde
sugars, which serve as donors for glycosyltransferases [1]. Specific
transporters move the nucleotide sugars to the endoplasmic
reticulum (ER) or Golgi apparatus [2], where they are utilized
by glycosyltransferases for the tandem addition of sugars to the
termini of nascent glycan chains in a sugar- and linkage-specific
manner [3]. This lengthy glycosylation process requires a great
number of different enzymes operating at various levels of
synthesis.

Thus far, more than 300 enzymes and transporter genes have
been reported to be involved in the metabolism and biosynthesis of
different glycans in diverse cell types and at various stages. Each
glycan structure has its own specific biosynthetic pathway. The
introducton of cloning expression methodology [4,5] has led to
the successful cloning of a glycosyltransferase and to the
demonstration that overexpression of a glycosyltransferase cDNA
clone can confer the capability of glycan biosynthesis in over-
expressing cells [6]. This mechanism is in conwrast to that used by
protein kinases, which also act via pathway-like processes but are
often positively or negatively regulated by phosphorylation.

DNA microarray technology is very powerful because it can
simultaneously detect changes in the expression levels of a large
number of genes. In the field of glycobiology, extensive efforts
have been made to identify the genes involved in glycan
biosynthesis, and many have been shown to encode glycosyl-

@ PLoS ONE | www plosone.org

wransferases of the ER or Golgi apparatus. Many of these genes
have been cloned, including those encoding large enzyme families
[7]. Given the important role of gene wanscription in the
regulation of glycan biosynthesis, a glycan-focused cDNA micro-
array was developed to obtain the transcriptome of glycan-related
genes [8,9]. As the presentaton of glycomic information on a cell
surface is likely to be regulated at the level of transcriptdon of the
enzymes in biosynthetic pathways, a glycan-focused DNA micro-
array may prove useful in elucidating glycan expression [8,10].

In the present study, we analyzed the glycan-related gene
expression profiles for possible correlations with cellular glycan
expression profiles in a cross-sample manner, using Pearson’s
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correladon coefficient. This analysis successfully identified specific
genes encoding regulatory enzymes for the biosynthesis of specific
glycans, from among the candidate genes of the glycan bio-
synthesis pathways. We designated this method correlation index-
based responsible-enzyme gene screening, or CIRES (Figure 1).

RESULTS
Glycan-related gene-expression profiling using

cDNA microarrays :

The rat monoclonal antibody GL7 specifically stains germinal
center B cells upon T cell-dependent antigen immunization.
We recently demonstrated that GL7 recognizes the glycan
NeuSAcay 6-Galf_4-GleNAc-R and that the sialyltransferase
gene ST6GAL! is responsible for the biosynthesis of the glycan
epitope recognized by GL7 [11]. By analyzing the correlation
between the expression profiles for sialic acid (Sia) metabolism-
related genes and the expression profiles for the GL7 epitope in
a cross-sample manner, we showed that this type of correlation
analysis was useful in screening for genes involved in the
biosynthesis of the glycan epitope. In the present study, we further
developed this systematic methodology by analyzing the correla-
tions for cross-sample comparisons between the expression profiles
for glycan-related genes and the expression profiles for various
glycans, as determined by specific lectin binding (Figure 1).

The glycan-related gene expression profiles were obtained using
total RNA isolated from six human B-cell lines cultured under
optimal conditions, and cross-sample comparisons of these profiles
were made in relation to a commercially available universal
reference RNA consisting of a mixture of polyAH#) RNA from
various organs. The gene expression profiles were determined as
a ratio of the gene expression level to the universal reference
c¢DNA expression level on the glycan-focused microarray ([11]; the
complete relative gene expression profiles are shown in Table S1).
Thus, the glycan-related gene expression profiles are expressed as
the ratio of the gene expression signal at each spot on the
microarray relative to the reference RNA signal.

After staining the cells with various anti-glycan probes (lectins)
of known specificity, we determined the glycan expression profiles
using flow cytometry. For each cell line, the wranscriptional profile
of glycan-related genes was used for cross-sample correlaton
analysis with the glycan expression profile.

Cell-surface glycan expression profiling using flow

cytometric detection of lectin staining

Cell-surface glycan expression has been extensively studied using
plant lectins that recognize specific glycan epitopes. To evaluate
whether correlation analyses of lectin staining and glycan-related
gene expression might provide useful informaton, we first performed
lectin staining of a set of human B cells (Daudi, KMS-12BM, KMS-
12PE, Namalwa, Raji, and Ramos) to obtain their cross-sample
profiles of lectin epitope expression. We analyzed the strength of the
correladons using Pearson’s correlation coefficient, which is
a standard, well-established method for assessing correladon. To
prevent possible bias in the lectin choice, we used 15 plant lectins
supplied in two commercially available sets.

To evaluate the efficacy of the calculations, the lectins were first
divided into two groups based on the presence or absence of
previous reports assertng a correladon between cell surface
expression of a specific lectin epitope and expression of a certain
glycosylransferase gene. The lectins that lacked a reported
correlation were divided into highly specific (or narrow) and
broadly specific groups. The highly specific (narrow) lectins were
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further assigned to one of two subgroups according to the positon
of the epitope (terminal or interior) on the glycan chain.

CIRES correlation analyses of lectin staining profiles
obtained using lectins with epitopes regulated by

known biosynthetic enzyme genes

Phaseolus wvulgaris leukoaggulutinin (PHA-L4) PHA-L4
recognizes tri- or tetraantennary N-glycans with f_ branching
of N-acetylglucosamine (GlcNAc), which often correlates with
tumor progression [12). Histochemical and immunoblot analyses
have shown that PHA-L4 epitope expression correlates with the
expression of the MGATS (GnT-V) gene [13], and this lectin is
commonly used as a marker for B\_g-branched N-glycans. PHA-
L4 epitope expression is diminished in Mgat5-null mice [14], and
these mice exhibit enhanced rates of cytokine receptor
internalization and subsequent cytokine signaling [15]. MGAT35
expression was strongly correlated with the PHA-I4 staining
profile, as shown in Figure 2A. The possible values of Pearson’s
correlation coefficient range between 1 and ~1, where a value of 1
indicates complete correlation; therefore, the coefficient index
between PHA-L4 staining and MGATS5 expression (CI=0.93)
represents a highly significant correlaton. Other correlated
glycan-related genes were judged to be irrelevant to the
biosynthesis of this epitope and are listed in Table $2, which
contains the complete list of microarray-wide correlations for
glycan-biosynthesizing genes.

The CIRES analysis correctly predicted that the MGATS5 gene
was responsible for expression of the PHA-L4 epitope. This
prediction was confirmed by retrovirus-mediated gene expression
in Namalwa B cells (Figure 2B). When a modified murine stem cell
virus (MSCV) vector carrying genes for MGATS and enhanced
green fluorescent protein (EGFP) divided with internal ribosomal
entry site (IRES) (MGAT35-IRES-EGIFP) was introduced into
Namalwa cells, the level of PHA-L4 epitope expression was
higher in the EGFP-positive populatdon than in the EGFP-
negative population. T rule out the possibility that viral infection
somehow altered the cell surface glycan independendy of
glycosyltransferase expression, the vector carrying only IRES-
EGFP was used as a negative control. In Namalwa cells expressing
only EGFP, the EGFP-positive and EGFP-negative populations
expressed identical levels of the PHA-L4 determinant (Figure 2B).

Sambucus sieboldiana aggulutinin (SSA) SSA recognizes
%9g-linked Sia bound to galactose (Gal) or N-acetylgalactosamine
(GalNAc). We previously showed that SSA epitope expression is
induced in CHO cells by stable transfection with the rat ST6GALI
gene [11]. The deledon of Stfgall in mice eliminated the
expression of the Sambucus nigra agglutinin (SNA) epitope [16],
which is also recognized by SSA. In the present study, the
correlation index was assessed to determine whether ST6GALI
gene expression correlated with SSA epitope expression, as
determined by flow cytometry, in six B-cell lines. Although SSA
staining in the six B-cell lines varied in intensity (Figure 2C), the
staining profiles correlated with the gene expression profiles for
ST6GALI and a few other GlcNAc-transferase genes, including
two B¢ GlcNAc transferases and B3GNTS5, which is involved in
the biosynthesis of N-acetyllactosamine (LacNAc) units on glycan
chains, These findings indicate that the SSA epitope detected by
flow cytometry might be located at the terminus of poly-LacNAc
units, which are often found on the f§,_ branch, and might extend
beyond the glycocalyx of the cell surface.

Arachis hypogaea agglutinin (PNA) PNA recognizes the Gal-
exposed core-1 swucture (Galf| 3GalNAc-Thr/Ser), and the
capping of this epitope by sialylation severely reduces the affinity
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Figure 1. Schematic of the CIRES concept. The expression pattems of about 1000 glycan-related genes were profiled in a set of six different cell lines
(A=F) by comparing the microarray binding of cellular cDNA and reference polyA(+) RNA and calculating the relative expression values (T able S1). The
polygons in the left web graphs represent the relative gene expression profiles of eight glycan-related genes selected as examples. In these graphs,
the difference in relative gene expression is expressed on a log scale, where the edge of the polygon corresponds to the strongest expression in each
cell line (A-F). The same set of six cell lines were examined for cell-surface glycan expression using fluorescently labeled plant lectins and flow
cytometry; the strength of the glycan expression is plotted as relative values among the six lines, where the edge of the polygon represents the
strongest expression (web graph on top right). The glycan expression profiles were analyzed for correlations with the glycan-related gene expression
profiles. Similarities and dissimilarities between the profiles were assessed using Pearson’s correlation coefficient, which has values ranging from -1
(no correlation) to 1 (perfect correlation). A complete list of the genes found to be positively or negatively correlated with plant lectin staining
patterns is presented in Table S2. Genes known to affect the biosynthesis of an epitope were selected from among the correlated genes (shown for
each lectin in the tables on the right in Figures 2-6). A correlated gene identified by CIRES was confirmed as the gene responsible for regulating the
biosynthesis of a particular glycan by transferring the gene into another cell line of the set, via gene transfer techniques such as retrovirus-mediated
overexpression, and looking for a related change in epitope expression.

doi:10.1371/journal.pone.0001232.g001
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Figure 2. CIRES analyses of staining profiles obtained using lectins with known epitope expression-regulating enzymes. (A, C, D) Expected
glycan structures for lectin recognition (left), web graphs of the lectin staining profiles (depicted as polygons) obtained using a set of six B-cell lines
(middle), and the correlation indexes (Cl, Pearson’s correlation coefficient for profile matching) of the relevant genes that correlated with the plant
lectin staining profiles and the P values of the correlations (right). The correlation orders of the glycan-related genes selected from the complete list
of correlated genes (Table S2) are indicated as numbers in parentheses in the box for each gene, with a smaller number indicating a stronger
correlation between gene expression and glycan expression profiles. Genes with a negative correlation are indicated by an N before the order
number. The lectins used were (A) PHA-L4, (C) SSA, and (D) PNA. Lectin epitopes shown in the figures are taken from the literature unless otherwise
specified [17,51]. (B) Namalwa cells were infected with MSCV harboring MGATS-IRES-EGFP. Control cells were infected with empty vector ({RES-EGFP)
or the same vector encoding B3GNT2 or MGAT3. Flow cytometry results for PHA-L4 staining were compared between EGFP-positive cells (solid line)
and EGFP-negative cells (dashed line).

doi:10.1371/journal.pone.0001232.g002

of the interacdon [17]. Diminished PNA epitope expression ST3GAL! expression profile (Figure 2D). Thus, our correlation
reportedly coincides with an increase in 2.3 sialylransferase index analysis is able to not only identify a positive correlation but
actvity, which sialylates the Gal residue [18]. This change was also reliably predict a negative correlation for a gene involved in
shown to occur during thymocyte maturation, in which PNA- the expression of a lectin glycan epitope.
positive cortex cells mature into PNA-negative medulla thymocytes. Taken together, these results suggest that correlation indexing
In a mouse model, the deletion of St3gall caused a deficiency inthe  can be used to identify genes responsible for regulating cell surface
derepression of PNA reactvity during thymocyte development and expression of glycan epitopes, as determined by flow cytometry
eventually resulted in deficient CD8" T cell matwration [19]. based on lectin binding. We designated this methodology as
The above findings suggest that the expression pattern of the correlation index-based responsible-enzyme gene screening, or
PNA epitope might be positively affected by core-l glycan CIRES. After confirming that CIRES could be used to predict the
biosynthesis and negatively affected by capping. Indeed, we found ~ genes involved in the biosynthesis of the glycan epitopes for these
a negative correlation between PNA epitope expression and the lectins (Figure 2), we used CIRES to assess the genes responsible
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for the staining profiles of other plant lectins, as determined by
flow cytometry.

CIRES correlation analyses of lectin staining profiles
obtained using lectins that recognize specific
terminal glycan structures and have unknown
epitope expression-regulating enzyme genes

Lens culinaris aggnlutinin (LCA) We assessed the staining
profiles of lectins that recognize terminal swuctures of glycan
chains. LCA recognizes the biantennary N-glycan chain with core
%, linked fucose (Fuc) attached to the chitobiose [20]. The
presence of a core Fuc in the N-glycan of the Fc region of IgG
severely represses the antibody-dependent cellular cytotoxicity
activity of the antibody [21]. The expression of FUT8 has been
shown to be responsible for the biosynthesis of a core Fuc on N-
glycans [22], but a correlation between FUT8 gene expression and
cell surface LCA staining has not been demonswrated in flow
cytometry experiments.

Our analysis of the LCA staining profile and FUT8 expression
profile revealed a correlation (Figure 3A), although it was weaker
than those for the three lectins described above (Figure 2). We also
noted that MGAT4b gene expression negatively correlated with the
LCA staining profile (Table $2). Considering that the presence of
additional antennae on the N-glycan inhibits LCA binding [17],

this type of negative correlaton could be quite informative; '

however, in this case, no evidence was reported indicating that
MGAT4b expression reduces the detection of the LCA epitope by

Ramos

A Lca epitope

FUT8
BN KMS-PE

Al

B UEA-I epitope
e m-<

, ST3GAL6?
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flow cytometry. Nevertheless, CIRES is useful in predicting the
genes involved positively or negatively in the biosynthesis of glycan
epitopes.

Ulex europaeus agglutinin-1 (UEA-I) UEA-I recognizes
a;-g-linked Fuc on type-2 LacNAc, which is involved in forming
the epitope of H-type human red blood cell antigen [23]. UEA-I
staining did not reveal a significant positive correlation with the
expression of the gene for #,_5 fucosylransferase, which is involved
in the biosynthesis of this linkage (Figure 3B). Instead, a prominent
negative correlation was found with the expression profile of
ST3GALS6, which has a preference for type-2 LacNAc substrates on
both glycoproteins and glycolipids {24].

In theory, UEA-I binding should be affected by the expression
of FUTI or FUT?, as they encode the proteins responsible for H
antigen biosynthesis, and by the expression of A or B transferase,
which can cap the H antigen to reduce the affinity {25]. However,
the sequence similarity between the A and B (and also O)
transferase genes prevented their differentiation in the microarray
experiments. Redundant regulation by FUTI and FUT2 in these
cells may be the reason that no positive correlation with UEA-I
epitope expression was observed. Alternatively, these data may
suggest that negatively correlated ST3GALS, which utlizes the
same substrate as fucosylransferases, may compete with the
biosynthesis of this epitope by prior sialylatdon of the fucosyl-
transferase. substrate(s).

Ricinus communis aggitinin (RCA120) RCAI120
preferentally recognizes terminal LacNAc structures found in
various classes of glycans. These LacNAc structures are
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Figure 3. CIRES analyses of staining profiles obtained using lectins that recognize terminal glycan structures and have unknown epitope-
expression-regulating enzymes. Presentation is the same as in Fig. 2 except that the plant lectins used were (A} LCA, (B) UEA-), and (C) RCA 120.ND.
in the gene order list indicates that no gene was determined to have a comelation with the lectin staining.

doi:10.1371/journal.pone.0001232.9g003
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biosynthesized by a large group of B4GalT {26] and proximal
GlcNAc-transferase family enzymes. The RCA120 staining profile
revealed no obvious correlation with the genes for the enzymes
known to be involved in this biosynthetic pathway (Figure 3C).
Given our earlier correladon results idendfying a terminal
glycosylransferase as being responsible for LacNAc expression
(te., sialyltransferase for SSA), this result was not surprising. It
indicates that the abundant expression of LacNAc structures
ensures the detection of a correlation between a terminal enzyme
expression profile and the expression of a terminal glycan detected
by flow cytometry. Moreover, capping of LacNAc should have
a negative effect on its recognition by RCA120, which would make
the detection of epitope expression more complex. It was clear that
this procedure is not universally effective for lectin epitopes but
that the effectiveness of the procedure depends on the type of
glycan recognized by a lectin.

CIRES correlation analyses of lectin staining profiles
obtained using lectins that recognize specific
internal glycan structures and have unknown

epitope expression-regulating enzyme genes
Datura stramonium agglutinin (DSA) DSA recognizes tri-
and tetraantennary N-glycans. It is specific for GlcNAc §,_4-Man
a)_g-branched triantennary N-glycan [27,28], which is
biosynthesized by MGAT4a and MGAT4b. In our experiments,
the DSA staining profile resembled that of PHA-L4, and thus the
two lectins correlated with similar genes, most prominenty
MGAT5 (Figure 4A). This result could be explained by the fact
that the addition of a ,_g branch increases the preference of DSA
for a ligand, even though MGAT4a/b activity is required. Thara et
al. have reported that DSA staining correlates with the expression
level of MGATS5 in in witro-differendated GOTO cells [29],
suggesting that MGAT5 may also be involved in the biosynthesis
of the optimal DSA epitope, with a tetraanntenary glycan.
Consistent with this idea, the ntroducton of MGAT5 into
Namalwa cells resulted in a 60% increase in DSA staining (Mean
fluorescence intensity (MFI), 1986), compared with control (MFI,
1247) (Figure 4B). Interestingly, when MGAT3 was introduced into
Namalwa cells, DSA epitope expression was subty suppressed (MFI,
961) compared with control expression (MFI, 1222), possibly due to
the compettive reladonship between MGAT3 and MGATS5 [30)
(Figure 4B). These effects appeared to be specific, because no obvious
shift was seen in cells with introduced B3GNT2.

Phaseolus vulgaris erythroagglutinin (PHA-E4) The
staining profile of PHA-E4 was similar to those of PHA-L4 and
DSA. This result was unexpected because PHA-E4 recognizes
bisecting GlcNAc—containing biantennary N-glycans, which
comprise a type of glycan distnct from the PHA-L4 epitope.
Owing to the similarity among the staining patierns of these three
lectins, a correlation was also found between PHA-E4 staining and
MGATS5 (Table S2), but PHA-E4 staining did not correlate with
MGAT3 (GnT-IID), which is the GlcNAc wansferase gene expected
to correlate by virue of its known epitope specificity (Figure 4C).
However, when we overexpressed MGAT3 in Namalwa cells, the
MFT value of PHA-E4 staining increased, from 873 in the control
populaton to 1868 in the EGFP-positive population (Figure 4D).
Thus, the expression level of AMMGAT3 appears to be important for
PHA-E4 epitope biosynthesis, as expected. The overexpression of
MGATS5 had no effect on PHA-E4 binding; the MFI value was 899 in
the control population and 866 in the EGFP-positive population.

When we stained the membrane fractions from the six B-cell
lines using PHA-E4 in lectdn-blot analyses, the blot and FACS
signal strengths differed, as seen in the shape of the staining profile
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(Figure 4E), and MGAT3 expression did not correlate with the
signal swength on the lectin blot. Somewhat consistent with our
result, Miyoshi et al. reported that AMGAT3 expression levels did
not necessarily correlate with cell-surface staining of the PHA-E4
ligand in flow cytometry experiments, although co-expression was
found in lectin-blot experiments [31]. Thus, our results support the
suggestion of Miyoshi et al. that the cell-surface expression level of
the PHA-E4 ligand epitope may be regulated by factor(s) other
than MGAT3 expression. Consistent with this idea, they also
reported that the presence of bisecting GlcNAc negatively affected
the sorting of glycoproteins to the cell surface {32].

CIRES correlation analyses of lectin staining profiles
obtained using lectins that recognize multiple

glycan structures

Some of the lectins used in the present study had mixed or
heterologous specificity. We assessed the correlaton indexes for
the staining profiles of these lectins.

Maackia amurensis lectin (MAM) MAM is a mixwre of
two lectin subunits, MAL and MAH. MAL binds to Sia 9.3~
LacNAc structures [33], whereas MAH preferentially recognizes
disialylated structures found in O-glycans [34]. Of the known
sialyltransferases, ST3GAL3, ST3GAL4, or ST3GAL6 may
synthesize the MAL epitope, and ST8 may synthesize
disialylated glycans. Correlaton-index analyses showed that
ST3GAL3 and B3GNT2 may be responsible for the expression of
the epitope in the six B-cell lines (Figure 5A). This is consistent
with a previous report that repeating LacNAc units enhance MAL
binding [35]. The MAL binding preference seemed to be more
important than that of MAH in this CIRES prediction based on
MAM staining and flow cytometry. As expected from its positive
correlaton with BIGNT2 expression, the MAM epitope showed
increased levels in Namalwa cells overexpressing BIGNT2,
whereas overexpressed MGAT3 was negatvely correlated with
the MAM staining profile, owing to the suppression of MAM
epitope expression (Figure 5B). Thus, the MAM epitope may be
preferentially biosynthesized on LacNAc units of the 1_g branch
of N-glycans. Alternatively, MGAT3 expression may change the
sorting of the protein carrying the MAM epitope. Taken together,
these results indicate that the expression of correlated genes can
have an additve regulatory effect (positive or negative) on the cell-
surface presentation of a lectin epitope.

Triticumm vulgaris agglutinin, wheat germ agglutinin
(WGA) WGA is thought to preferendally recognize clustered
N-acetyl groups found in N-acetylneuraminic acid (Neu5Ac),
GlcNAc, and GalNAc. NeuSAc is often a major WGA ligand
because the Sia density on the termini of glycan chains tends to
increase for the highly branched N-linked glycans [17]. The affinity
of WGA for Sia was exploited in the isolation of Lec mutants in
CHO cells [36]. The density of the N-acetyl group can also be high
in the I-branched f1_¢ GlcNAc-containing glycans [17].

The WGA staining profile correlated swongly with the
expression profile of the ST6GAL! gene and weakly with that of
the ST3GAL3 gene (Figure 5C). (These genes were previously
known as STAV and ST3N, respectively [37].) Since WGA binding
to sialylated glycans increases with the degree of sialylaton, this
correlation pauntern seems to indicate that the supply of the
substrate LacNAc is ample and that expression of the terminal
sialylransferases determines the expression level of the WGA
epitope. Among these sialyltransferases, ST6GALI appeared to
play a more prominent role in biosynthesis in the B-cell lines used
in this study. In additon to the I-branching B¢ GlcNAc
wansferase [38], GCNT2 expression also correlated with WGA
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Figure 4. CIRES analyses of staining profiles obtained using lectins that recognize intemal glycan structures and have unknown epitope-
expression-regulating enzymes. Presentation is the same as in Fig. 2 except that the plant lectins used were (A, B) DSA and (C-E) PHA-E4. ND. in the
gene order list indicates that no significant comelation was detected. (B, D) Flow cytometric staining pattems for EGFP-positive Namalwa cells are
shown in bold lines, and those for EGFP-negative (control} cells are shown in gray dashed lines. The overexpression of MGATS resulted in a subtle
(60%) increase in DSA staining. The overexpression of MGAT3 resulted in a 2-fold increase in PHA-E4 staining. (E) PHA-E4 lectin blotting was
performed using the membrane fraction of the same set of cell lines. A plot of the quantified signals reveals differences in the PHA-E4 staining profile
among the six cell lines (C, E), as discussed in the text.

doi:10.1371/journal.pone.0001232.9004

staining, probably reflecting the GlcNAc-binding aspect of WGA. Canavalia ensiformis lectin (Con-A) The modification of
In a case such as this one, the correlation of the genes identdfied by ~ N-glycans occurs following the transfer of lipid-linked Gles-Mang-
CIRES may appear to be additive, but a lack of exclusivity tends GlcNAc; to nascent N-glycosylated protein by oligosaccharyl-

to reduce the correlation index for each gene. transferase in the ER [39]). Con-A recognizes mannose (Man)
*@D. PLoS ONE | www.plosone.org 7 November 2007 | Issue 11 | 1232



Genetical Glycobiology

A MAM
MAL epitope KMS-PE Namalwa
ST3GAL3 BIGNT2 Ci | pvalue |GENE (Order)
o) 0.80 | 5.60E-02 | BIGNT2 (2)
(oo R W 0.73 | 9.95€.02 | ST3GAL3 (4)
0.81] 5.07E-02 | MGAT3 (N5)

MAH epitope
%ﬂ&SeﬂT hr

B MGAT3, Yector
R

B3GNT2

’: Sia @: Gal [J: GalNac
Il: GleNAc ©: Man A Fuc

Relative cell number

4 L2
10° u')‘ 10° 1;3 |>o‘;_
MAM

C WGA epitopes
:cluster of N-acetyl groups

GONT2 KMS-PE
Wpex’
L [ R

KMS-BM

-

p value | GENE (Order)

3.64E-02 | ST6GALT1 (2)

4.57E-02 | GCNT2 (4)

9.26E-02 | ST3GAL3 (7}

™\ ST3GAL3
D con-A epitopes
KMS-PE
Asn

MAN1B1? MAN2A27?  KMS-BM

Asn

p value | GENE (Order)

8.15E-02 | MAN1B1 (N12)

7.33E-02

MAN2A2 (N14)
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glycans (upper diagram in {D)) bind best to this lectin. (B) Namalwa cells were infected with retroviruses encoding various GIcNAc transferases. The
MAM staining patterns of the EGFP-positive populations of each infectant are shown. MGATS overexpression did not shift the staining pattern in

comparison with the vector control (data not shown).
doi:10.1371/journal.pone.0001232.g005

containing N-glycans to various degrees; it binds preferentally to
high-mannose N-glycans, followed by hybrid-type N-glycans, and
has the least affnity for complex-type N-glycans. In theory,
oligosaccharylransferase actvity is required for the expression of
the Con-A epitope, whereas mannosidase expression is inhibitory.
Con-A stining profiles revealed a subte but significant negative
correlation with the expression of the mannosidase genes AMANIBI
and MAN242 (Figure 5D). Thus, the mannosidases encoded by these
genes may control the expression of high-mannose N-glycans on the
cell surface. Alternatvely, other factors such as the expression of the
protein moiety of the glycoconjugate could determine the expression

@ PLoS ONE | www.plosone.org

of the Con-A epitope, given that the number of proteins reported to
carry high-mannose glycans is limited.

Agaricus bisporus aggulutinin (ABA) ABA recognizes Gal-
exposed core-1 structures that are similar to the PNA epitope, but
in contrast to PNA, ABA can recognize sialylated structures [40].
In B cells, ABA staining was similar to PNA staining and was
negatively correlated with ST3GALI expression (Figure 6A).
Consistent with this negative correlation, ABA binding was
increased in Daudi cells weated with sialidase (Figure 6B),
similar to the enhanced binding of PNA observed upon sialidase
treatment. This effect occurred with both a broad-range sialidase
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(Arthrobacter ureafaciens sialidase, AUS) and the % s-linked Sia-
specific Satmonella typhimurium sialidase (Figure 6B), indicating that
sialylation, which probably occurs on the core-1 Gal residue,
somehow inhibits recognition by ABA.

B3GNT5 expression positively correlated with ABA staining. In
fact, a recent study has shown that ABA has dual specificity for
glycan chains, recognizing both Gal-exposed O-glycans and
GlcNAc-exposed N-glycans [41]. Whether the GlcNAc residue
biosynthesized by the GlcNAc transferase is uncapped on the cell
surface is unknown, but some ABA binding to GlcNAc may
contribute to the increased correlation index of BIGNT5 as
compared with that for PNA, which showed an otherwise similar
staining profile for the correlated genes.

Overall findings

As confirmed by staining with various plant lectins, CIRES
successfully identified enzyme genes known to be involved in the
biosynthesis of lectin-binding determinants. When an unbiased set
of 15 lectins was analyzed for binding to six B-cell lines, 12 of the
lectins showed significant staining. Correlation assessment of these
staining profiles identfied the enzyme genes that are apparently
responsible for the expression of the specific epitopes for nine
lectins. In general, lectins that recognize terminal structures of the
glycan chain tended to yield the most reliable correlation with the
responsible genes.

A ABA epitopes
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Interestingly, CIRES also found negative correladons for some
epitopes, which is consistent with the fact that CIRES results are
highly dependent on the regulatory mechanisms of glycan epitope
expression, some of which are negative (i.c., capping of an epitope by
further glycosylation). Finding negative relationships is difficult in
normal biological experimental setups but may have been possible
using CIRES because of the unbiased correladon coefficient
calculation resultng from the large set of cross-sample comparisons.

DISCUSSION
CIRES correlation analysis of glycan-related gene
expression and binding of anti-glycan probes such

as lectins

The functional glycans expressed on a cell surface can encode
biological information. Although glycan-glycan interactions are
important in determining the biological consequences of some
glycosylations [42], glycan-binding proteins are the major target of
functional glycans. Thus, the binding of glycan-specific proteins
can be highly informative in decoding the glycomic informaton of
an organism [43), making glycan-binding proteins a rational
choice for the analysis of glycan expression. Although the
identfication of the proteins that bind best to each glycan is no
doubt important given the role of glycan-binding proteins in
glycan recognition in an organism [44,45], here we opted to
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Figure 6. CIRES analyses of staining profiles obtained using the lectin ABA. (A) Presentation is the same as in Fig. 2 except that ABA was used. (B)
Effect of sialidase treatment on the binding of ABA and PNA in B cells. (See text for the specificity of the sialidase and Fig. 2D for the PNA epitope))
Mean fluorescence intensity (MFI) values for the staining with each lectin (bold tines) are shown at the top. Dashed lines indicate the results from the

non-staining control.
doi:10.1371/journal.pone.0001232.g006
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