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Fig. 5. Mean (+S.E.M.) mRNA expression levels after single injections in prefrontal cortex (left side). The asterisks (* and **) represent a significant difference from
the mRNA expression level of the saline-treated contro! group (p<0.05 and p<0.01, respectively). N=4-6 in each group. Mean (+S.E.M.) mRNA expression levels
after six intermittent administrations of AMP or saline pretreatment in prefrontal cortex (left center). The asterisk (*) represents a significant difference from the mRNA
expression level of the naive control group (p<0.05). N= 4—6 in each group. Mean (+S.E.M.) mRNA expression levels after reversal treatment in prefrontal cortex
(right center). The asterisk (*) represents a significant difference from the mRNA expression level of the naive control group (p<0.05). N=4-6 in each group. Mean
(£S.E.M.) mRNA expression levels after challenge administration of AMP in prefrontal cortex (right side). The asterisks (***) represent significant differences from
the mRNA expression level of the naive control group (p<0.001). N=4--6 in each group.

0.042, NS}, D, receptor [F(2,9)=0.178, NS] and mGluR 1 [F(2,9)=
0.132, NS] mRNA expression levels after the AMP challenge.

4. Discussion

This study demonstrated (i) that AMP-induced stereotypy is
reversed by a D, agonist, and (ii) that the reversal effect of this
D, agonist on stereotypy lasts for 4 weeks.

4.1. Reversal of behavioral sensitization by D, agonist

Behavioral sensitization in rodents is characterized by
augmented ambulation and stereotypy, and, once established,
persists for a long time. It is difficult to reverse behavioral sensi-
tization once established; in our previous studies, chlorpromazine
(Hirabayashi and Tadokoro, 1993), haloperidol and “ceruletide
(cholecystokinin) (Kuribara, 1993a), D, and D, receptor antago-
nists, namely, SCH-23390 and YM-09151-2 (Kuribara, 1993b)
respectively, and MK-801, which is a noncompetitive N-methyl-D-
aspartate (NMDA) receptor antagonist (Ida et al., 1995), did not
reduce locomotor activity in behaviorally sensitized rats. To our
knowledge, there are no other reports on reversal treatment for
behavioral sensitization except for a few reports on locomotor
activity (King et al., 2000) (King et al., 2000; Li et al., 2000).

In this study, we were able to reverse AMP-induced stereotypy,

once established, using a D; receptor agonist. Stereotyped
behavior is an important indicator in this animal model. We
consider an increase in the rate of stereotypy as an important
indicator of sensitization, first because the rate of stereotypy
increased with repeated AMP administrations, and second because
the increase in-the rate of stereotypy prevented an increase in
locomotor count in our study.

In this study, the direct dopamine receptor agonist SKF
produced effects opposite to those of the indirect dopamine
receptor agonist AMP. However, from our data, it seems that the
effect of reversal treatment requires a selective stimulation of the

dopamine D, receptor, regardless of whether it is direct or indirect.
For example, as mentioned in the Introduction, pergolide, a direct
D, and D, dopamine receptor agonist, increases ambulation count
(Li et al., 2000) and enhances cocaine craving (Haney et al., 1998).
Moreover, in the cocaine relapse model, D; and D, class agonists
exert opposite effects (Self et al., 1996). D, agonists induce
cocaine-seeking behavior and enhance the priming effects of
cocaine, whereas D, receptor agonists inhibit cocaine-seeking
behavior triggered by priming injections of cocaine. De Vries et al.
(1998) demonstrated that the reinstatement of cocaine-seeking
behavior is associated with the expression of behavioral
sensitization (De Vries et al., 1998). It is therefore important that
AMP-induced stereotypy is also reversed by only D, receptor
stimulation.

Then how would D, stimulation reverse AMP-induced
stereotypy? It is difficult to interpret the reversal effect demonstrat-
ed here because it is associated with the AMP pharmacology. From
their electrophysiological study results, Li et al. (2000) suggested
that the reversal of locomotor sensitization occurs as a result of the
reversal of an underlying neuroadaptation, namely, the enhanced
response of neurons to D, receptor stimulation. Subsequently, their
group reported that D, receptor stimulation enhances mGluR1
phosphorylation (Chao et al., 2002ab) and mGluR1 surface
expression in rat neurons (Chao et al., 2002a,b). These results
suggest that reversal of stereotypy induced by D; stimulation also
requires a reversal “neuroplastic” process as does the development
and maintenance of behavioral sensitization (Wolf, 1998).

There was no significant decrease in locomotor activity after
SKF treatment in this study. As shown in Fig. 2, repeated SKF
treatments did not significantly reduce the sensitized locomotor
response, as shown by the time course data. There are three
possible reasons the SKF treatment did not reverse the sensitized
locomotor response. First, as mentioned above, locomotor activity
and stereotyped behavior were viewed as competing behaviors. A
decrease in the time of stereotyped activity may lead to the increase
in locomotor count. Second, we used a challenge dose that was the
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same as the pretreatment dose so as to evaluate the effect for
stereotypy. If we had used a very low challenge dose (0.1 mg/kg,
for example) to minimize stereotyped behavior, we might have
been able to produce a reversal effect for locomotor activity similar
to that previously reported by Li et al. (2600). Finally, the rats were
observed for 3 h in the test cages. Measuring locomotor activity for
a longer period may yield different results.

In this study, we were also able to still reduce the reactivity of
stereotypy to AMP 4 weeks after the SKF treatment, suggesting
that this is not a temporary phenomenon and that the reversal
effect lasts for a long time. This is very important because, if the
same condition occurs in clinical situations, it would not be
necessary to continue medication to remove the acquired
vulnerability to AMP. Wada (2000) suggested that abusers have
psychological problems after the cessation of drug abuse and
most of them have no chance of receiving continuous
medication in Japan. Unfortunately, it is indicated that the
reversal effect of SKF becomes weaker with time, because the
degree of stereotypy after 4 weeks of withdrawal is the same as
that obtained after six AMP pretreatments in our study.

4.2. Reversal of behavioral sensitization by D; and D,
antagonists

In this study, D, and D, antagonists did not exert a reversal
effect when administered alone. The results of our study are in
agreement with those of previous studies showing that
sensitization, once established, is not changed by treatment
with D; and D, antagonists (Kuribara, 1995b). A coadminis-
tration of the D, agonist SKF and the D, antagonist SCH
cancelled the reversal effect induced by SKF, while that of SKF
and the D, antagonist YM maintained it. Therefore, it is
suggested that the reversal of AMP-induced stereotypy requires
D, receptor stimulation.

4.3. D, receptor, D, receptor, mGluRl and arc mRNA
expression levels in PFC

The expression levels of dopamine D, and D, receptor
mRNAs were not changed by our pretreatment schedule of six
intermittent AMP injections (1.0 mg/kg, i.p.). As mentioned in
the Introduction, Schmidt-Mutter et al. (1999) reported that
repeated exposures to cocaine (20 mg/kg) for 10 days followed
by a 14-h withdrawal period, induced increasing effects on D,
and D, dopamine receptor mRNA expression levels in PFC.
Similarly, Lu et al. (1999) reported that the mGluR1 mRNA
level increased on the 3rd day of withdrawal from five daily
injections of AMP (5 mg/kg/day). Nevertheless, the mGluR1
mRNA expression level showed no change in our study.
Experiments using various AMP doses and time periods for
withdrawal and decapitation may help explain this discrepancy.

As mentioned in the Introduction, we analyzed the expression
pattern of the neuroplasticity-related gene arc to gain insight into
the molecular mechanism of behavioral sensitization. Arc
expression level reportedly increases as a result of subchronic
administrations of AMP (Klebaur et al., 2002; Gonzalez-Nicolini
et al., 2002), MAP (Fujiyama et al., 2003; Yamagata et al., 2000;

Kodama et al., 1998) and cocaine (Samaha et al., 2004; Yuferov
et al, 2003; Freeman et al., 2002; Fosnaugh et al., 1995).
Similarly in this study, repeated administrations of AMP
enhanced arc expression in the cerebral cortex.

Interestingly, both single and repeated administrations of SKF
significantly increased the arc expression level. How does D,
stimulation enhance arc expression? It is suggested that D,
receptor stimulation activates adenylyl cyclase (Cristina et al.,
1998) by stimulating Gs proteins coupled to the D, receptor, and
adenylyl cyclase activates the cAMP/protein kinase A (PKA)/
cAMP-responsive element binding protein (CREB) signal
transduction pathway, and CREB phosphorylation induces arc
in dentate granule cells (Ying et al., 2002). This hypothesis is in
agreement with the set of molecular mechanisms involved in
learning: the stimulation of dopamine D, receptors, the activation
ofthe cAMP/PKA/CREB signal transduction pathway, a transient
burst of altered gene expression, and synaptic reamrangement
(Berke and Hyman, 2000; Di Chiara, 2000; Dani et al., 2001).
This raises the possibility that arc plays a role in multiple forms of
synaptic plasticity, i.e., not only in AMP-induced behavioral
sensitization, but also in neurobehavioral adaptations associated
with the reversal effect induced by D, receptor stimulation.

Arc levels were elevated after AMP challenges in sensitized
rats, compared with those after single AMP injection, although
there was no significant difference in arc expression level
between the saline and SKF treatment groups after the AMP
challenge. Therefore arc expression level in the homogenate of
mPFC does not correlate with the reversal effects of SKF in
AMP sensitization. There is nevertheless the possibility that
SKF treatment has formed novel neural circuits which are
associated with the reversal effects and which also express arc
after AMP challenge. Therefore topographical information on
arc induction in the brain and the quantification of other
cytoskeleton and synapse-associated genes will provide further
insight into this finding. In addition, various time periods for
decapitation will provide further information.

Noteworthily, repeated treatments with saline after AMP
pretreatment showed an increase in arc expression level, suggesting
a cross sensitization between AMP and stressful stimulants.

In summary, we have evaluated the effects of a Dy agonist on
AMP-induced behavioral sensitization (locomotor activity and
stereotyped behavior) and the mRNA expression levels of the D,
and D, receptors, mGluR 1 and arc in the prefrontal cortex of rats.
In the SKF treatment group, stereotyped behavior rate signifi-
cantly decreased after both 3-day and 4-week withdrawal periods.
SKF+SCH treatment inhibited the decreasing effect of SKF
treatment. AMP administration significantly increased arc
expression level. The SKF treatment group showed a marked
increase in arc expression level after both the single SKF injection
and the repeated treatments with AMP during the pretreatment
period compared with the control groups. Arc expression level
was further augmented by the treatment with saline after the AMP
pretreatment.

There was no significant difference in arc expression level,
between the saline treatment group and the SKF treatment
group after the AMP challenge suggesting that arc was a non-
specific marker in this investigation.
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Abstract

Aims. A missense mutation in the low density lipoprotein receptor-related protein 6
gene (LRP6) was recently shown to be responsible for a disorder characterized by
early-onset coronary artery disease as well as diabetes mellitus (DM), hyperlipidemia,
hypertenSion, and osteoporosis. Mice deficient in LRPS, a closely related paralog of
LRP6, manifest a marked impairment in glucose tolerance. The aim of the present study
was to examine whether common variants of LRPS5 and LRP6 are associated with Type
2 DM or dyslipidemia in Japanese individuals. Methods. 13 single nucleotide
polymorphisms (SNPs) of LRP6 and nine SNPs of LRP5 were genotyped in a total of
608 Type 2 DM patients and 366 nondiabetic control subjects (initial study). An
association analysis was then performed for each SNP and for haplotypes. For some of
SNPs, we provided another sample panel of 576 cases and 576 controls for the
replication study. The relation to clinical characteristics was also examined in diabetic
subjects. Results. In the initial study, three SNPs of LRP6 were found to be associated
with susceptibility to Type 2 DM. However, this association was not detected in the
replication panel. None of SNPs in LRP5 were associated with Type 2 DM in the initial
panel. Neither LRP6 nor LRP5 was associated with body mass index, HOMA-B,
HOMA-IR or serum lipid concentrations. Conclusions. We found no evidence for a
substantial effect of LRP5 or LRP6 SNPs on susceptibility to type 2 diabetes or clinical
characteristics of diabetic subjects in Japanese population.

Key words: LRP5, LRP6, single nucleotide polymorphism, association study, Type 2

diabetes mellitus



Introduction
The common form of Type 2 diabetes mellitus (DM) re‘sults from a complex interaction
between genetic background and the environment. Identification of susceptibility genes
for Type 2 DM has proven difficult because of the multifactorial nature of the disease.
Genes responsible for monogenic disorders are potential contributors to similar
conditions with a multifactorial etiology. A missense mutation (R611C) in the low
density lipoprotein (LDL) receptor—related protein 6 gene (LRPG6) was recently shown
to be causally linked to a dominant form of early-onset coronary artery disease in an
Iranian family. This mutation was also linked to DM, hyperlipidemia, hyperteﬁsion, and
osteoporosis in the same family [1]. Mice deficient in LRPS, a closely related paralog of
LRP6, manifest a marked impairrnenf in glucose tolerance [2]. LRPS and LRP6 are
members of the LDL receptor family [3] and function as co-receptors for Wnt ligands,
playing an important role in Wnt signaling [4]. The transcription factor 7-like 2 gene
(TCF7L2) shows a reproducible as;ociation with Type 2 DM [5] in multiple
populations, and the encoded protein also plays a role in Wnt signaling [6].

These various observations suggest that LRP5 and LRP6 are potenﬁal
susceptibility genes for Type 2 DM. We therefore examined whether common variants
of LRP5 and LRP6 might be associated with Type 2 DM or dyslipidemia in Japanese

individuals.



Subjects and Methods

Subjects

‘A total of 608 unrelated individuals with Type 2 DM and 366 unrelated nondiabetic
control subjects were enrolled for the initial study. We provided another sample panel
of 576 cases and 576 controls for the replication study (replication panel). In the initial
panel, the mean + SD of age, body mass index (BMI), and HbA . were 61.3 £ 9.9 years, |
23.8 + 3.4 kg/m’, and 7.9 + 1.8%, respectively, for the diabetic subjects and 75.4 + 8.1
years, 21.5 + 3.6 kg/m, and 5.0 + 0.4%, respectively, for the control subjects. In the
replication panel, those for the cases were 60.2 = 11.5 years, 23.9+4.2 kg/mz, and 7.8 +
3.5 %, respectively and, for the controls, 67.3 £ 6.5 years, 23.0 +2.9 kg/m’, and 5.0 +
0.4%, respectively. The diagnosis of Type 2 DM was based on the criteria of the
American Diabetes Association (1997). The nondiabetic subjects were selected
according to the following criteria: age of >60 years (only for the initial panel), no past
history of glucose intolerance, HbA . content of <5.7%, and no family history of DM.
The study was performed with written informed consent from all subjects and was
approved by the Ethics Committee of Kobe University Graduate School of Medicine or
. of Gifu University School of Medicine.

Clinical assessment

The BMI of each individual was directly measured at the time of collection of blood

samples. The fasting plasma glucose concentration (FPG), fasting plasma
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immunoreactive insulin concentration (FIRI), serum concentrations of total cholesterol
and high density lipoprotein (HDL)—cholesterol, and HbA . level were determined by
standard laboratory techniques calibrated with uniform standards. Indices of basal
insulin secretion and resistance were derived by homeostasis model assessment
(HOMA). The HOMA of B cell function (HOMA-B) was calculated as [FIRI (pmol/l) x
20)/[FPG (mmol/l) — 3.5] x6, and that of insulin resistance (HOMA-IR) was calculated
as [FPG (mmol/1) x FIRI (pmol/1)}/22.5%6 [7]. The serum concentration of
LDL-cholesterol was calculated as [total cholesterol (mmol/1) — HDL-cholesterol
(mmol/l) - [triglyceride (mmol/1)/5]] [8]. Among the 608 diabetic subjects of the initial
panel, the 467 individuals who had not been treated with insulin were evaluated for
HOMA-IR, HOMA-B, and FPG, whereas the 422 individuals who had not taken
lipid-lowering drugs were evaluated for lipid parameters.

DNA analysis

We selected 13 single nucleotide pc;lymorphisms (SNPs) of LRP6 (Figure 1A) and nine
SNPs of LRPS5 (Figl'lre 2A) from the HapMap database (http://www.hapmap.org )
according to the inclusion criteria as follows: minor allele frequencies > 0.10 (except a
nonsynonymous polymorphism, rs2302685 in LRP6) and linkage disequilibrium (LD)
by # < 0.8 in the Japanese data (JPT). Genomic DNA was extracted from blood with
the use of a QIAamp DNA Blood Maxi Kit (Qiagen, Valencia, CA), and genotypes fdr
the SNPs were determined with the TagMan procedure (Applied Biosystems, Foster
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City, CA). The polymerase chain reaction was performed with ABsolute QPCR ROX
Mixes (ABgene, Epsom, UK) and an ABI HPRISM 7700 Sequence Detector System
(Applied Biosystems); the amplification protocol included incubation at 95°C for 15
min followed by 40 cycles of 92°C for 15 s and 60°C for 1 min. Sequencing of exon 9
of LRP6 was performed with the use of a Big Dye Terminator Cycle Sequéncing FS
Ready Reaction Kit (Applied Biosystems) and an automated DNA capillary seciuencer ,
(model 3100, Applied Biosystems).

Statistical analysis

We assessed association and Hardy- Weinberg equilibrium with the chi-square test.
Linkage dise?milibrium and haplotype analyses including permutation tests were
performed with SNPAlyze version 5.1 pro software (Dynacom, Mobara, Japan).
Haplotype estimation was performed by the expectation-maximization algorithm [9]. If
we assume a minor allele frequency of 0.24, odds ratio of | 1.3, and type I error
probability (o) of 0.05, the power of our initial sample (608 cases and 366 controls)
computed by the PS program [10] is 0.82. In case of combined sample (1184 cases and
942 controls), the power is 0.98. Averaged data are presented as means = SD, and
differences between groups were analyzed by ANOVA; if necessary, data were log
transformed. Statistical analysis was performed with StatView .softwa:e version 5.0-J

(SAS Institute, Cafy; NC). A P value of <0.05 was considered statistically significant.



Results

LRP6
For analysis of LD in the LRP6 genomic region, we genotyped 13 SNPs in 92
nondiabetic control subjects. The D' and 7 values for the 92 control subjects are shown
in Figure 1B. Two SNPs (SNP6-3, SNP6-8) were excluded from further genotyping
because of their absolute LD. The remaining 11 SNPs, including a nonsynonymous
polymorphism (11062V, SNP6-11), were genotyped in all 608 Type 2 DM subjects and
366 control subjects. All SNPs with the exception of SNP6-13 were in Hardy-Weini)erg
ciluilibrium (P> 0.01). Association results for the 11 genotyped SNPs are shown in
Table 1. We found associations between three SNPs (SNP6-1, SNP6-2, SNP6-7) and
susceptibility to Type 2 DM. SNP6-7 showed the strongest association (odds ratio =
0.74, 95% confidence iptewal =0.59 to 0.93, P =0.008). SNP6-2 and SNP6-7 were in
strong LD with each other (* = 0.94) in the 92 control subjects tested for LD. We also
sequenced exon 9 of LRP6, which ;ontains the previously identified missense mutation
R611C [1]. No polymorphism was detected in the 24 diabetic and 24 control subjects
subjected to such direct sequencing.

An LD block spanning SNP6-2 to SNP6-7 (Figure 1B) encompassed a region
containing exons 2 and 3 c;f LRP6 but did not include exon 9. Although we performed

haplotype analysis with SNP6-7 and the other SNPs, we did not detect an association

with Type 2 DM more significant than that of SNP6-7. A haplotype comprising SNP6-5
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= A and SNP6-7 = G showed an association with Type 2 DM similar to that of SNP6-7
alone (estimated haplotype frequencies of 0.19 and 0.24 in diabetic and control subjects,
respectively; permutation P value computed by 10,000 permutations = 0.006).

When we consider multiple testing for the number of SNPs (P < 0.05 /9 SNPs;
where four of 13 SNPs are not counted because of strong LD of 7 > 0.8), the LD block
including SNP6-7 is the most likely to be associated with the susceptibility to Type 2
DM. Therefore, we didn’t include SNP6-1 for further analysis (P value of SNP6-1 =
0.042). In order to examine a replication for the association of the SNPs or the LD
blocic, SNP6-5 and SNP6-7 were genotyped in an independent sample panel (replication
panel). However, none of these two SNPs or haplotypes were associe;ted with Type 2
DM in the replication panel (Table 2 for SNPs, data not shown for haplotypes). No
association was apparent when we combined the initial panel and the replication panel
(Table 2).

Finally, we examined the relation of SNP6-7 to clinical characteristics in the
diabetic subjects of the initial panel. However, no apparent association was found with

BMI, HOMA-IR, HOMA-B, or serum lipid parameters (Table 3).

LRPS
Nine SNPs including a non-synonymous SNP (A1330V, SNP5-8) were genotyped in 92

control subjects. The D’ and 72 values for these subjects are shown in Figure 2B. Then
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all polymorphisms were genotyped in the initial panel of 608 Type 2 DM subjects and
366 control subjects. They were in Hardy-Weinberg equilibrium (P>0.01).
The results of association tests for susceptibility to Type 2 DM were shown in Table 4.
No association between SNPs of LRPS5 and Type 2 DM was apparent in this panel.
Next, we assessed the relations befween all SNPs and clinical characteristics, BMI,
HOMA-IR, HOMA-B, or serum lipid parameters in the diabetic subjects. However, no
association was detected (data not shown).
Discussion
We found no evidence for a substantial effect of LRPS5 or LRP6 SNPs on susceptibility
to type 2 DM in Japanese population. The association of rs2417086 (SNP6-7) or
haplotype analysis in LRP6 observed in the 1mt1al panel cduld be false positive due to
the small sample number. A previous study showed that a mutation in LRP6 was
genetically linked with a familial disorder characterized by early-onset coronary artery
disease as well as hyperlipidemia, I;ypertension, DM, and osteoporosis [1]. Genes that
cause rare monogenic disorders might also confer susceptibility to similar conditions
with a multifactorial etiology, although we failed to detect such a case. For example,
genes respohsible for maturity-onset diabetes of the young, an autosomal dominant
monogenic form of DM, have also been associated with Type 2 DM [11-14].

LRPS5 and LRP6.are co-receptors for Wnt ligands '[4, 15]. Wnt signe_lling is

necessary for embryogenesis but also plays important roles in postnatal development
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and tissue homeostasis. Mouse embryos homozygous for an insertion mutation in Lrp6
exhibit a variety of severe developmental abnormalities, including midbrain defects,
truncation of the skeleton, and limb anomalies [4]. Lrp6 mutations cause early-onset
osteoporosis in mice [16]. Lrp5™ " mice exhibit low bone density and frequent bone
fractures. In human, mutations in LRP5 cause the autosomal recessive disorder -
osteoporosis-pseudoglioma syndrome (OPPG) [17, 18]. Recently, some reports showed
that polymorphisms of LRP5 were assoqiated with bone mineral density [19-21].
Meanwhile, LRPS plays an important role in glucose and lipid metabolism, with Lrp5
knockout mice showing a marked impairment in glucose tolerance as a result of a
reduced level of glucose-induced insulin secretion. Maintenance of these knockout mice
on a high-fat diet also increases the plasma concentration of cholesterol to levels greater
than those apparent in similarly fed normal mice [2]. We assessed whether
polymorphisms of LRP5 or LRP6 were associafed with HOMA-IR, HOMA-, or lipid
parameters in patients with Type 2 DM. However, no such association was detected.
We did not evalﬁate whether the polymorphisms were associated with osteoporosis or
cardiovascular disease because information was not available for these disorders.
Recently, Guo et al showed that a haplotype including rs4988300 (SNP5-2) in LRP5
was associated with BMI in the Caucasian diabetic subjects [22]. Although we
investigated association between BMI and this polymorphism or haplotypes comprising
SNP5-1 to SNP5-3, there was no association (data not shown).
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To date, TCF7L2 (also known as TCF4) has been the gene most reproducibly
associated with Type 2 DM [5]. TCF7L2 is a transcription factor that partners with
B-catenin in the canonical Wnt signaling pathway [6]. Wnt signaling and B-catenin are
necessary for the proliferation of pancreas including f cells in mice [23-25]. Elucidation
of the mechanisms by whiph this signaling pathway contributes to regulation of glucose
metabolism may provide insight into the pathogenesis of Type 2 DM.

Iﬁ conclusion, our results failed to reveal an association between Type 2 DM
and SNPs or haplotypes of LRP5 and LRP6. Furthermore, we found no association
between these genes and any clinical characteristics such as serum LDL-cholesterol in
the subjects with Type 2 DM. Similar studies are needed to clarify whether variants of
LRPS5 and LRP6 may be associated with coronary artery disease, hyperlipidemia,

hypertension as well as Type 2 DM.
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