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reportedly enhance phosphorylation of serine residues of IRS-1 (3, 5, 16).  Although

S6K 1-deficient mice were shown to be resistant to age- and diet-induced obesity and
insulin resistance (26), we investigated the acute effect of transient inhibition of Raptor on
the impaired insulin signaling and glucose intolerance of K/KAy mice with genetic
obesity-associated insulin resistance. In the K/KAy mice, one of the obese rodent models,
IRS-1 S307 and IRS-1 S636/S639 phosphorylations are elevated (26).

Raptor contains a highly conserved, amino-terminal domain followed by several
HEAT repeats and seven carboxy-terminal WD40 repeats (4), and acts as an adaptor to
recruit substrates, p70S6K and 4E-BP1, to mTOR (2, 12, 23). The domains in Raptor and
mTOR that interact with each other have been clearly demonstrated, and suggest multiple
contact sites between these two proteins (4, 10), in contrast with the selective binding of
p70S6K to the N-terminal portion of Raptor (12). We were unable to detect the
associations of R;aptor and C terminally deleted Raptor (Raptor-ACT) with endogenous
S6K (data not shown). However, it was demonstrated that Raptor-ACT binds to a far
smaller amount of mTOR but not to IRS-1, while wild-type Raptor binds to both.  Indeed,
IRS-1 phosphorylation at Ser 636/639 was markedly decreased by Raptor-ACT

overexpression. These findings suggest that Raptor-ACT functions as a
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dominant-negative protein for mnTOR/S6K or mTOR/IRS-1 signaling.

Interestingly, we found that 4E-BP1 phosphorylations of both Thr37/46 and Thr70 in
the liver were significantly increased by Raptor-ACT overexpression. Thus, the inhibitory
effect of Raptor-ACT is specific for S6 kinase. This result was unexpected but is hoped to
provide useful information regarding how the Raptor/mTOR complex recognizes individual
downstream molecules. We speculate that S6 kinase, but not 4E-BP1, preferentially
associates with Raptor-ACT to full-length Raptor. If so, Raptor-ACT overexpression
would inhibit S6 kinase binding, but not that of 4E-BP1, with the mTOR/Raptor complex.
It is also possible that some unidentified molecule is required for this association between
S6 kinase and the Raptor/mTOR complex, and that Raptor-ACT binds to this as yet
unknown molecule. In this case, S6 kinase cannot bind the mTOR complex in the
Raptor-ACT-overexpressing cells, while 4E-BP1 phosphorylated is unaffected. Further
study is necessary to resolve this issue.

In this study, hepatic overexpression of Raptor-ACT strongly inhibited insulin
induced p70S6K activation and improved glucose intolerance and hyperinsulinemia.
Importantly, Akt phosphorylation was markedly enhanced not only under

insulin-stimulated but also basal conditions. Decreased IRS-1 Ser307 and Ser636/639
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phosphorylations and the resulting increases in tyrosine phosphorylation of IRS-1 and
subsequent PI 3-kinase activity can account for the increased Akt phosphorylation under
insulin stimulated conditions. However, this may not fully explain the mechanism leading
to markedly increased basal Akt phosphorylation, since basal PI 3-kinase activity was not
altered by Raptor-ACT. Thus, it is possible that other mechanisms, such as increased PDK
and/or Rictor activity, or even suppression of Akt dephosphorylation, are involved in the
increased basal Akt phosphorylation. Indeed, it has been reported that Raptor/mTOR and
Rictor/mTOR complexes regulate Akt phosphorylation in a reverse manner (22).  Further
study is necessary to clarify whether suppression of the Raptor/mTOR complex via
overexpression of Raptor-ACT leads to elevated Rictor/mTOR activity or suppressed Akt
dephosphorylation.

In summary, we demonstrated that hepatic p70 S6 kinase inhibition in diabetic mice
improves glucose tolerance by enhancing both basal and insulin-stimulated Akt
phosphorylations.  Although further experiments are needed to clarify the molecular
mechanisms of increased basal Akt phosphorylation, our results suggest that mTORC1

inhibition is a potential treatment strategy for obesity-related insulin resistance.
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Table 1
Control(LacZ) Raptor-ACT

Body Weight(day1,g) 36.3+1.04 36.6+12
Body Weight(day5,g) 36.9+1.1 37+1.27
Liver/BWx10%(day5) 4.87+0.44 5.12+0.34
Fat/BWx10?*(day5) 4+0.62 3.9+0.32
Heart/BWx10?(day5) 0.37£0.25 0.48+0.01
Kidney/BWx10?%(day5) 0.94+0.62 1.284+0.02
FBS(day1, mg/di) 1221+7.48 126+9.03
FBS(day5, mg/dl) 160+6.31 140£8.37
T-cho(day5, mg/di) 123+10.8 125+7.96
TG(day5, mg/dl) 197+83.2 200+48.2
NEFA(day5, mEq/l) 0.79+0.13 0.88+0.22
Insulin(day5, ng/mi) 2.36+1.78 0.91+0.34
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Table and Figure Legends

Table 1. Weights and Metabolic Profiles of control (L.acZ) and Raptor-ACT
overexpressing mice. The body weights, major organ weights, blood glucose levels, and
lipid concentrations of control (LacZ) and Raptor-ACT mice, before and 4 days after
adenovirus injection. FBS: fasting blood sugar, T-cho:total cholesterol, TG: triglyceride,

NEFA: non-esterified fatty acid  Control (LacZ): n=8, Raptor-ACT: n=8

Fig. 1. The adenovirus of dominant-negative Raptor, C terminally deleted Raptor
(Raptor-ACT). A: The expression levels of endogenous Raptor and overexpressed
Raptor-ACT in the livers of K/KAy mice and controls. B: Immunoblotting of
overexpressed Raptor-ACT in various tissues with anti-Flag tag antibody. Each tissue
(30ug), from Raptor-ACT overexpressing mice, was electrophoresed and immunoblotted
with anti-flag tag antibody. 1: Brain, 2: Lung, 3: Heart, 4: Spleen, 5: Pancreas, 6: Kidney,

7: Fat, 8: Muscle, 9: Testis, 10: Liver

Fig. 2. C terminus of Raptor is essential for binding with mTOR and IRS-1.
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For wild-type Raptor, Raptor-ACT and LacZ gene transfer into HepG2 cells, the cells were
incubated for 1 hour in DMEM containing recombinant adenovirus. Two days later, the
cells were collected and cell lysates were immunoprecipitated with flag-tag antibody. Cell
lysates and anti-flag tag immunoprecipitates were immunoblotted with each (IRS-1, mTOR,
and flag) antibody as a probe. Representative results are shown in the panel. LacZ:n=3,

Raptor:n=3, Raptor-ACT:n=3

Fig. 3. Insulin-induced p70S6K activity in hepatic Raptor-ACT mice. The effects of
Raptor-ACT overexpression on p70S6K and 4E-BP1 in the liver were investigated. A:
Immunoblotting of liver lysates with S6K and phospho-S6K (Thr389) antibodies revealed
that insulin-induced activation of p70S6K was significantly depressed in the livers of
Raptor-ACT mice. Three independent experiments were performed and the panel shown
is representative of the results. B: S6 kinase assay showed insulin-induced activation of
p70S6K to be markedly suppressed in the livers of Raptor-ACT overexpressing mice.
LacZ:n=8 (insulin+:n=4, insulin-:n=4), ACT:n=8 (insulin+:n=4, insulin-:n=4), ¥**:p<0.01
C:Liver lysates were immunoblotted with phospho-4E-BP1(Thr 37/46 and Thr 70)

antibodies in three independent experiments and representative results are shown in the
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panel. Both phosphorylations of 4E-BP1 are significantly enhanced by Raptor-ACT

overexpression.

Fig. 4. Significantly lower glucose levels in Raptor-ACT mice after GTT

Mice were fasted for 14h followed by blood sampling and intraperitoneal injection pf
glpcose (2g per kg body weight). A: Whole venous blood was obtained from the tail vein
at the indicated time points after the glucose load. B: AUCs (areas under the curve) for
glucose for each group were calculated and compared using the t-test. Intraperitoneal GTT
revealed hepatic Raptor-ACT overexpression to improve glucose tolerance.

Control(LacZ): n=4, Raptor-ACT: n=4, *:p<0.05

Fig. 5. Insulin-induced IRS-1 tyrosine residue, Ser307 and Ser636/639
phosphorylations in hepatic Raptor-ACT mice. Four days after adenovirus injection, the
livers were removed after insulin or saline administration, followed by immunoprecipitation
with IRS-1 antibody. SDS-PAGE and immunoblotting were then performed using the
appropriate antibody as a probe. A: There was no difference between Raptor-ACT and

control mice, in the expression of IRS-1 protein. B: Insulin-induced IRS-1 tyrosine
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phosphorylation was significantly increased in Raptor-ACT mice. C,D: Insulin-induced
IRS-1 Ser307 and Ser636/639 phosphorylations were markedly depressed in Raptor-ACT
mice. LacZ:n=8 (insulin+:n=4, insulin-:-n=4), ACT:n=8 (insulin+:n=4, insulin-:n=4),

*:p<0.05, **:p<0.01

Fig. 6. Insulin-induced PI3Kinase activity in hepatic Raptor-ACT mice. For PI 3-kinase
assay, supernatants containing equal amounts of protein were immuno- precipitated for 2 h
at 4 degrees C with anti-IRS-1 or 4G10 antibody and protein A- or G-Sepharose. PI
3-kinase activities in the immunoprecipitates were assayed. A, B: Insulin induced tyrosine
phosphorylation-associated PI3K activity and IRS-1-associated PI3K activity, were both
increased to approximately double those of LacZ mice. LacZ: n=8 (insulin+:n=4,

insulin-:n=4), ACT: n=8 (insulin+:n=4, insulin-:n=4),  *:p<0.05, **:p<0.01

Fig. 7. Insulin induced Akt phosphorylation in hepatic Raptor-ACT mice. Liver lysates
were immunoblotted with Akt and phospho-Akt Ser473 and Thr308 antibody. A: There
was no difference between these mice in Akt protein expression levels. B,C: Basal Akt

Ser473 and Thr308 phosphorylation as well as insulin-induced Akt Ser473 and Thr308
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phosphorylation, were also markedly increased in Raptor-ACT mice.

LacZ:n=8 (insulin+:n=4, insulin-:n=4), ACT:n=8 (insulin+:n=4, insulin-:n=4),

*:p<0.05, **:p<0.01
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