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To the Editoi':

Angelman syndrome (AS, OMIM #105830) is a
neurodevelopmental disorder characterized by men-
tal retardation, ataxia, hypotonia, epilepsy, absence
of speech, and specific facial features. At least four
major mechanisms causing AS were validated: (9

an interstitial deletion of 15q11-q13 (70-75%), (i)~

uniparental disomy (2—3%), (iii) imprinting defects
(3—5%), (iv) UBE3A mutations (20%) [Clayton-Smith
and Laan, 2003]. Most deletions are similar in size
(approximate 4 Mb) and occur de novo through
" maternal unequal crossing over between low copy
repeats (LCRs). Paternal occurrence of similar dele-
tions, instead, results in Prader—Willi syndrome
(PWS, OMIM #176270). In PWS no coding mutations

have been found in contrast with UBE3A mutationsin -
AS, suggesting that PWS is caused by loss of function

of multiple genes.
- Different sized deletions associated with AS are
very rare. To our knowledge, at least three familial
atypical deletions were reported [Saitoh et al., 1992;
Buxton et al., 1994; Burger et al., 2002], but in one
family [Buxton et al., 1994] a microdeletion could not
be confirmed by another group [Sutcliffe et al., 1997).
In the remaining two families, microdeletions caused
AS in maternal inheritance but no PWS features in
paternal inheritance, enabling differentiation of the
PWS critical region (PWSCR) from the AS critical
region (ASCR).

We encountered a similar farmly with an atypical
microdeletion through microarray CGH analysis of
30 individuals with idiopathic mental retardation

[Miyake et al., 2006]. The family consisted of a boy,
who was later confirmed with AS, and an asympto-
matic mother and maternal grandfather (Fig. 1A). All
three had an atypical microdeletion. Methylation
PCR analysis [Kubota et al., 1997] of the proband
showed a normal pattern (data not shown).

The deletion was intensively " analyzed. FISH
analysis using RPCI-11 BAC clones (701H24, 171C8,
1081A4, 607F22,931B1, 2C7, 434021, 203C13, 638J6,
899B22, 58D7, and 142M24) on the proband’s
metaphase chromosomes revealed that 1081A4,
607F22, 931B1, 2C7, 434021, 203Cl13, 638]6
899B22, and 58D7 were deleted, 171C8 and
142M24 were partially deleted, and 701H24 was not

‘deleted (data not shown). Cosmid subclones con-

structed from BAC 171C8 were used for further FISH
analysis. Cosmid D-2 was partially deleted (data not
shown), indicating that the proximal deletion break-
point was located in a region between UCSC
coordinate chromosome 15 nucleotide 22,928,853
and 22,974,812 (end sequences of cosmid D-2).
Subsequently quantitative real-time PCR (qPCR)
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Fic. 1. A: Pedxgree of the family 'md phologmphs of the proband (arrow) and his mother. Proband. mother, and maternal g g,mndfalher (doned) hada deletion. His
father died of biliary atresia at 31 years old. B: Schematic presentation of genes (black boxes: genes expressed from paternal chromosome, gray boxes: genes expressed
from maternal chromosome, open boxes: genes expressed from both chromosomes), rare familial deletions, and result of quantitative real-time PCR (QPCR) analysis.
Deletion from HB{I-52 cluster to GABRB3 was confirmed. C: Deletion specific PCR analysis of the family. PCR using primers, DSF.and DSR, could successfully amplify a
2.6-kb product from grandfather (GFaJ, mother (Mo), and patient (P1), but not from grandmother (GMo). M: size markér, N: negative control. D: Sequence of deletion
breakpoints. The sequence in a2 middle row indicates the patiént’s sequence spanning the deletion. Upper and lower rows show normal sequences corresponding to

"-centromeric and telomeric 1o the deletion. Proximal and distil deletion breakpoints are marked with UCSC coordinate chromosome 15 nucleotide positions. Fifteen
nucleotides (in gray) were insertéd: Asterisks indicate nucleotides identical to normal chromosémel 15 sequence,

using DyNAmo HS SYBR Green gqPCR kit (Finn-
Zymes, Espoo, Finland) was conducted to determine
breakpoint locations according to the methods by

Boehm et al. [2004] with some modification. A totalof - -

six sets of primers (P3, P10, P8, P12, PG, and P9) astest
probes were designed within the cosmid D-2 region
along with a control r(?‘nmel set for FBNI locus. at
15g21.1. Rotor-Gene
Science, Sydney, Australia) could- demonstrate a
heterozygous deletion for primer-sets P12, P6, and
P9 (Fig. 1B). Similarly five sets of primers (D4 D7,
D6, D2, and DS) were selected from the region of
BAC 142M24 and three sets, D4, D7, and D6, implied
a deletion. Thus proximal and dlstal deleuon break-

' 6200 HRM (Corbett Life -

" points seemed to exist .between ‘P8 and P12

and between D6. and D2, -respectively. Finally

~deletion breakpoints were successfully amplified

as an approximate 2.6-kb iproduct by .PCR using
LA-Taq (Takara Bio Inc.; Otsu, Japdn) and primers
(DSF: 5'-TATAACTAGGTATTGGACTCATACTGAG-
GA-3' and DSR: 5'-ACCTACAGCCTTCTAAGTACTG-
TATCCAT-3') from the patient’s DNA as well as his
mother and maternal grandfather, but not from his
maternal grandmother: (Fig. 1€) or 10 normal
controls. The PCR products were sequenced
(Fig. 1D). The proband; his mother, and maternal
grandfather- had exactly the same breakpoint
sequences. The deletion was 1,487-kb in size and
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contained HBII-52, HBII-438B, UBE3A, ATP10C,
and a part of GABRB3 (Fig. 1B). Proximal and distal
breakpoints were not related to any of PWS/AS-
related LCRs [Christian et al., 1999]. It was surprising
that the sequences were completely identical to
those found in the family previously described
[Greger et al., 1993). Relationship of the two families
could not be confirmed. However, coincidence of
proximal and distal deletion breakpoints as well as
inserted 15 nucleotides strongly suggests that the two
families originated from the same ancestor. Both
families indeed live in neighboring prefectures in
Japan.

Phenotype of the proband is compatible to ASand
was similar to that of the patient with the identical
deletion described by Saitoh et al. [1992] (detailed
clinical information was described by Sugimoto et al.
[1992]) (Table D. As his mother inherited the deletion
from his maternal grandfather, she may suffer from
some of PWS features if the deletion contains a
gene(s) for PWS. She was carefully evaluated
with regard to diagnostic criteria for PWS [Holm
et al, 1993]. Only one major criterion (genetic
microdeletion) and one minor (myopia) were
recognized, thus PWS was definitely unlikely. This

is consistent with the previous finding thata clinically
healthy mother of three AS sibs, all sharing an
identical deletion [Saitoh et al., 1992; Sugimoto et al.,
1992].

Recently brain-specific snoRNA HBII-52 was
found to regulate alternative splicing of serotonin
receptor 2C, possibly influencing the serotonine
response [Kishore and Stamm, 2006]. Clustering 47
copies of HBII-52 are maternally imprinted and are
suggested to play an important role in pathogenesis
of PWS [Cavaille et al., 2000]. However in this family
as well as the previously described family [Saitoh
et al,, 1992], two healthy mothers possessed the
microdeletion inherited from their fathers and the
deletion included the complete HBII-52 locus. Thus,
the normal phenotype of the mother described here
again supports that HB/I-52 does not play any roles
in PWS. Similarly the paternally inherited 570-kb
deletion in a healthy mother also included HBII-52
[Burger et al., 2002; Runte et al., 2005). Rare balanced
translocations involving paternal 15q11-q13 in PWS
and rare atypical microdeletions now delimit the
PWSCR to a 121-kb region covering HBII-438A and
HBII-85 clusters [Wirth et al., 2001; Gallagher et al.,
2002].

TABLE 1. Phenotype of the Proband and Cases Previously Reported

Patient Proband Patient 1* [Saitoh et al., 1992] B-5490 {Burger et al., 2002)
Psychomotor development

Mental retardation Severe Yes Yes

Absence of speech Yes Yes Yes

Able to speak single word No No No

Able to make sound Yes

Able to use sign language
Age walked alone
Neurological features

Yes (only at urination)
2 years 7 months

Hypopigmentation
Miscellaneous

Sleep

Mouthing

Dribbling/drooling

Other

Epilepsy Yes

EEG Abnormal

Ataxia (When excited/running) (not Yes

marked)

Wide-based gait Yes

Flapping hands (when excited/running) Yes (slightly)
Behavior

Happy disposition Yes

Characteristic laughter No
Physical features

Prominent mandible Yes

Small widely spaced teeth : Yes

Large mouth Yes

Protruding tongue Yes (slightly)

Small head (<25th percentile) Yes

Occiput Normal

Squint Yes

Weight Within 90 percentile

Height Within 90 percentile

No

Disrupted
No
Yes

1 year 6 months

Yes
Abnormal No
Yes Yes
Yes
Yes Yes
Mild
Yes
No
Yes Yes
Yes
Flat
Yes
—-0.28D
+0.8 SD
No No

Father is dead (Biliary atresia)

This table is made with reference to a paper by Fung et al. [1998].
*Clinical information of Patient 1 and his affected sibs was described in a paper by Sugimoto et al. (1992].
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In conclusion, a very rare identical 1,487-kb

deletion was found in two families possibly originat-
ing from the same ancestor. It should be stressed
that the deletion can be inherited without any
symptoms through paternal lines. Finally HBII-52
may not be important for PWS pathogenesis.

ACKNOWLEDGMENTS

Research grant from the Ministry of Health, Labour
and Welfare for N.M., Grant-in-Aid for Scientific
Research on Priority Areas (Research on Pathome-
chanisms of Brain Disorders) for N.M., Research
Promotion Fund from Yokohama Foundation for
Advancement of Medical Science for N.M., Natural
Science Research Fund from the Mitsubishi Founda-
tion for N.M., and SORST from Japan Science and
Technology Agency (JST) for N.N.

REFERENCES
Boehm D, Herold S, Kuechler A, Liehr T, Laccone F. 2004. Rapid

detection of subtelomeric deletion/duplication by novel real-.

time quantitative PCR using SYBR-green dye. Hum Mutat
23:368-378.

Burger J, Horn D, Tonnies H, Neitzel H, Reis A. 2002. Familial
interstitial 570 kbp deletion of the UBE3A gene region
causing Angelman syndrome but not Prader—Willi syndrome.
Am ] Med Genet 111:233-237.

Buxton JL, Chan CT, Gilbert H, Clayton-Smith J, Burn J, Pembrey
M, Malcolm S. 1994. Angelman syndrome associated with a
maternal 15q11-13 deletion of less than 200 kb. Hum Mol
Genet 3:1409-1413.

Cavaille J, Buiting K, Kiefmann M, Lalande M, Brannan (I,
Horsthemke B, Bachellerie JP, Brosius J, Huttenhofer A. 2000.
Identification of brain-specific and imprinted small nucleolar
RNA genes exhibiting an unusual genomic organization. Proc
Natl Acad Sci USA 97:14311-14316.

Christian SL, Fantes JA, Mewborn SK, Huang B, Ledbetter DH.
1999. Large genomic duplicons map to sites of instability in the
Prader-Willi/Angelman syndrome chromosome region
(15q11-q13). Hum Mol Genet 8:1025-1037.

Clayton-Smith J, Laan L. 2003. Angelman syndrome: A review of
the clinical and genetic aspects. ] Med Genet 40:87-95.

Fung DC, Yu B, Cheong KF, Smith A, Trent RJ. 1998. UBE3A
“mutations” in two unrelated and phenotypically
different Angelman syndrome patients. Hum Genet 102:
487-492.

Gallagher RC, Pils B, AlbalwiM, Francke U. 2002. Evidence for the
role of PWCR1/HBII-85 C/D box small nucleolar RNAs in
Prader—Willi syndrome. Am J Hum Genet 71:669-678.

Greger V, Woolf E, Lalande M. 1993. Cloning of the breakpoints of
a submicroscopic deletion in an Angelman syndrome patient.
Hum Mol Genet 2:921-924.

Holm VA, Cassidy SB, Butler MG, Hanchett JM, Greenswag LR,
Whitman BY, Greenberg F. 1993. Prader-Willi syndrome:
Consensus diagnostic criteria. Pediatrics 91:398—402.

Kishore S, Stamm §. 2006. The snoRNA HBII-52 regulates

alternative splicing of the serotonin receptor 2C. Science
311:230-232.

Kubota T, Das S, Christian SL, Baylin SB, Herman JG, Ledbetter
DH. 1997. Methylation-specific PCR simplifies imprinting
analysis. Nat Genet 16:16-17.

Miyake N, Shimokawa O, Harada N, Sosonkina N, Okubo A,
Kawara H, Okamoto N, Kurosawa K, Kawame H, Iwakoshi M,
Kosho T, Fukushima Y, Makita Y, Yokoyama Y, Yamagata T,
Kato M, Hiraki Y, Nomura M, Yoshiura K, Kishino T, Ohta T,
Mizuguchi T, Nijkawa N, Matsumoto N. 2006. BAC array CGH
reveals genomic aberrations in idiopathic mental retardation.
Am ] Med Genet Part A 140A:205-211.

Runte M, Varon R, Horn D, Horsthemke B, Buiting K. 2005.
Exclusion of the C/D box snoRNA gene cluster HBII-52 from a
major role in Prader—Willi syndrome. Hum Genet 116:228-
230.

Saitoh S, Kubota T, Ohta T, Jinno Y, Niikawa N, Sugimoto T,
Wagstaff J, Lalande M. 1992. Familial Angelman syndrome
caused by imprinted submicroscopic deletion encompassing
GABAA receptor beta 3-subunit gene. Lancet 339:366—
367.

Sugimoto T, Yasuhara A, Ohta T, Nishida N, Saitoh S, Hamabe ],
Niikawa N. 1992. Angelman syndrome in three siblings:
Characteristic epileptic seizures and EEG abnormalities.
Epilepsia 33:1078-1082.

Sutcliffe JS, Jiang YH, Galijaard RJ, Matsuura T, Fang P, Kubota T,
Christian SL, Bressler ], Cattanach B, Ledbetter DH, Beaudet
AL. 1997. The E6-Ap ubiquitin-protein ligase (UBE3A) gene is
localized within a narrowed Angelman syndrome critical
region. Genome Res 7:368—377.

Wirth J, Back E, Huttenhofer A, Nothwang HG, Lich C, Gross §,
Menzel C, Schinzel A, Kioschis P, Tommerup N, Ropers HH,
Horsthemke B, Buiting K. 2001. A translocation breakpoint
cluster disrupts the newly defined 3’ end of the SNURF-SNRPN
transcription unit on chromosome 15. Hum Mol Genet 10:
201-210.



J Hum Genet (2007) 52:1-12
DOI 10.1007/s10038-006-0078-1

Recent progress in genetics of Marfan syndrome

and Marfan-associated disorders

Takeshi Mizuguchi - Naomichi Matsumoto

Received: 31 August 2006/ Accepted: 26 September 2006/ Published online: 24 October 2006

© The Japan Society of Human Genetics and Springer-Verlag 2006

Abstract Marfan syndrome (MFS, OMIM #154700) is
a hereditary connective tissue disorder, clinically pre-
senting with cardinal features of skeletal, ocular, and
cardiovascular systems. In classical MFS, changes in
connective tissue integrity can be explained by defects
in fibrillin-1, a major component of extracellular mi-
crofibrils. However, some of the clinical manifestations
of MFS cannot be explained by mechanical properties
alone. Recent studies manipulating mouse Fbnl have
provided new insights into the molecular pathogenesis
of MFS. Dysregulation of transforming growth factor
beta (TGFp) signaling in lung, mitral valve and aortic
tissues has been implicated in mouse models of MFS.
TGFBR2 and TGFBRI1 mutations were identified in a
subset of patients with MFS (MFS2, OMIM #154705)
and other MFS-related disorders, including Loeys—
Dietz syndrome (LDS, #OMIM 609192) and familial
thoracic aortic aneurysms and dissections (TAAD2,
#OMIM 608987). These data indicate that genetic
heterogeneity exists in MFS and its related conditions
and that regulation of TGFp signaling plays a signifi-
cant role in these disorders.
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Introduction

Marfan syndrome (MFS, OMIM #154700) is a con-
nective tissue disorder with autosomal dominant
inheritance. MFS is clinically diagnosed according to
the Ghent criteria, which describe pleiotropic mani-
festations affecting multiple organs (De Paepe et al.
1996). Typical MFS can affect the skeletal system
(marfanoid’ habitus including arachnodactyly, dolich-
ostenomelia, pectus deformity and scoliosis), the ocu-
lar system (ectopia lentis) and the cardiovascular

system (aortic aneurysm/dissection and mitral regur-

gitation), as well as other systems, including lung, skin,
integument, and dura mater. Significant phenotypic
variability of MFS is commonly observed between af-
fected members of different families and even among
affected members within a single family. Neonatal
MFS (nMFS) is the most severe type of MFS and is
characterized by severe atrioventricular valve dys-
function, arachnodactyly, joint contracture, crumpled
ears and pectus deformity. In addition to classic MFS,
incomplete forms of MFS are seen, in which symptoms
overlap with those of MFS but the phenotypes do not
satisfy the Ghent criteria.

This review focuses on the recent advances in the
genetics of MFS and its associated conditions, includ-
ing Loeys-Dietz syndrome, non-syndromic thoracic
aortic aneurysms and dissections, and Shprintzen-
Goldberg craniosynostosis syndrome. Abnormal

a Springer
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transforming growth factor beta (TGFp) signaling will
be discussed as the core pathogenesis of MFS.

Genetics of Marfan syndrome and its related disorders
FBNI mutation-related disorders
Marfan syndrome

Molecular diagnosis of MFS became possible after
mutations had been identified in the FBNI gene (Dietz
et al. 1991; Lee et al. 1991). FBNI is a 230 kb gene,
containing 65 exons, which encodes the structural
protein fibrillin-1 (Corson et al. 1993). More than 600
FBNI mutations are registered in the UMD-FBNI
database for MFS and its associated disorders (http://
www.umd.be:2030/) (Collod-Beroud et al. 2003). The
mutation detection rate of FBNI in MFS varies among
studies, ranging from 9% to 91% (Katzke et al. 2002;
Loeys et al. 2004; Tynan et al. 1993). This variability
could be explained, in part, by the different techniques
used, but the most significant influencing factor is likely
to be sample bias. The frequencies are quite different
between patients fulfilling the Ghent criteria and those
not fulfilling them (Biggin et al. 2004; Halliday et al.
2002; Loeys et al. 2001; Rommel et al. 2002, 2005;
Tynan et al. 1993).

Extensive mutational analyses failed to show FBN1
involvement in almost 10% or more of patients with
MFS satisfying the Ghent criteria. Although one pos-
sible explanation could be due to so-called missing
mutations in the promoter region or in other non-
coding sequences, the existence of a second locus for
MFS (MFS2) was hypothesized (Collod et al. 1994;
Dietz et al. 1995; Gilchrist 1994). In 2004, patients with
MEFS2 were shown to have mutations in the TGFBR2
gene, which encodes the transmembrane receptor
type II of TGFf (Mizuguchi et al. 2004). TGFBR2
mutations were later linked to other clinically over-
lapping syndromes, described below (Kosaki et al.
2006; Loeys et al. 2005; Pannu et al. 2005a).

Other fibrillinopathies

FBNI mutations were also found in incomplete forms
of MFS as well as in several other MFS-related disor-
ders such as nMFS, isolated ectopia lentis, Shprintzen—
Goldberg craniosynostosis syndrome (SGS), familial
thoracic aortic aneurysms and dissections (TAAD),
and autosomal dominant Weill-Marchesani syndrome
(Table 1) (Faivre et al. 2003; Francke et al. 1995;
Kainulainen et al. 1994; Milewicz et al. 1996; Sood

) Springer

et al. 1996). This resulted in the recognition of “fi-
brillinopathies” caused by FBNI aberrations (Char-
bonneau et al. 2004).

TGFBR mutation-related disorders
Marfan syndrome type 2

In 1993 Boileau et al. (1993) reported a large French
family (MS1 family) with a Marfan-like phenotype that
was not linked to the FBNI locus. The syndrome was
subsequently designated Marfan syndrome type 2
(MFS2, OMIM #154705). In this review we are defining
MFS2 genetically (not clinically) as the classic MFS
phenotype (based on the Ghent criteria) caused by
mutation in the TGFBR?2 locus.

Marfan-like symptoms observed in this family con-
sisted of severe cardiovascular findings, including sud-
den death of affected members at young age, probably
due to a thoracic aortic dissection, and typical MFS
skeletal features, but no significant ocular findings were
seen. However, one affected family member (IV-83
from the large French family, MS1) was recently re-
ported to suffer from ectopia lentis, which is clinically
compatible with classic MFS according to the Ghent
criteria but surprising in light of the absence of the
condition in other family members (Mizuguchi et al.
2004). Clinical re-evaluation of this individual as well
as other affected members is warranted.

Genetic analysis of the French family enabled a
successful mapping of the second locus for MFS
(MFS2) to 3p24.2-p25 (Collod et al. 1994). A Japanese
boy with MFS was later shown to have de novo com-
plex chromosomal rearrangements involving 3p24.1,
which is close to the MFS2 locus (Mizuguchi et al.
2004). Detailed genomic analysis revealed that the
3p24.1 breakpoint disrupted the TGFBR2 gene. Sub-
sequent TGFBR2 sequence analysis in the MS1 family
identified in all affected members a nucleotide substi-
tution ¢.1524G > A (p.Q508Q) of TGFBR2, which is

Table 1 Marfan syndrome-related disorders and mutated genes

Disorder Gene

Marfan syndrome

Neonatal Marfan syndrome

Familial thoracic aortic
aneurysms and dissections

FBNI1, TGFBRI, TGFBR2
FBN1 .
FBNI1, TGFBRI1, TGFBR2

Isolated ectopia lentis FBN1

Shprintzen-Goldberg FBN1, TGFBR2
craniosynostosis syndrome

Autosomal dominant FBN1

Weill-Marchesani syndrome

Loyes-Dietz syndrome TGFBRI1, TGFBR2




