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The baculovirus is an insect virus possessing a
large double-stranded circular DNA genome
packaged into a rod-shaped capsid. Among the
numerous baculoviruses, Autographa californica
multiple nucleopolyhedrovirus (AcMNPV) s
the species most frequently used for baculovirus
studies. The baculovirus can produce two
morphologically distinct forms of the virus at
different time points after infection: budded
virus (BV) and occlusion-derived virus (ODV).
ODV is occluded in a polyhedron within the
nucleus and initiates infection in the midgut epi-
thelium cells, whereas BV is produced after the
primary infection and buds through the plasma
membrane of infected cells. Owing to a high
infectivity to cultured cells and strong late-gene
promoters, BV has been commonly used as a

tool for the abundant expression of foreign genes

in insect cells (1. BV has also been shown to
enter a variety of mammalian cells in order to
facilitate the expression of foreign genes under
the control of the mammalian promoters,
without replication of the viral genome [2-4].

In addition to gene expression in insect cells
and gene delivery into mammalian cells, the bac-
ulovirus has also been used as a tool for the study
of viral particle assembly in both insect and
mammalian cells [56]. Furthermore, the baculo-
virus has been utilized as an ubiquitous and a
specific gene-transfer vector in the form of a
recombinant virus bearing foreign proteins on
the viral surface in addition to gp64, a major
envelope glycoprotein of the baculovirus {78,
and pseudotyped virus displaying ligands of
interest alone without gp54 [9], respectively.

10.2217/17460794.3.1.35 © 2008 Future Medicine Ltd iSSN 1746-0794

The baculovirus Autographa californica multiple nucleopolyhedrovirus has been widely
used not only to acheive a high level of foreign gene expression in insect cells, but also for
efficient gene transduction into mammalian cells. Recombinant and pseudotyped
baculoviruses possessing chimeric or foreign ligands have been constructed to improve the
efficiency of gene transduction and to conter specificity for gene delivery into mammalian
cells, respectively. Baculoviral DNA CpG motifs induce proinflammatory cytokines through a
Toll-like receptor (TLR9)/MyD88-dependent signaling pathway. Other baculovirus
components produce type | interferons via a TLR-independent pathway. Baculovirus exhibits
a strong adjuvant property and recombinant baculoviruses encoding microbial antigens
elicit antibodies to the antigens and provide protective immunity in mice. This review deals
with recent progress in the application of baculovirus vectors to gene delivery and vaccine
development, and discusses the fulure prospects of baculovirus vectors.

Following these advances, mechanisms of virus
entry into mammalian cells 7] and induction of
innate immunity by baculoviruses [10-12} have
also been elucidated. This paper reviews the
recent advances in baculovirus application in
mammalian cells and research for the purpose of
developing a novel viral vector for gene therapy
and vaccine development.

Gene transduction into

mammalian cells

The host range of baculovirus was once believed
to be strictly restricted to arthropods. Over
20 years ago, it was demonstrated that the bacu-
lovirus was taken up via endocytosis into verte-
brate cells [13], and a reporter activity was
detected in mammalian cells upon infection of a
recombinant baculovirus possessing a reporter
gene under the control of the mammalian
promoter, but de novo gene expression was not
confirmed (14]. However, 10 years later, recom-
binant baculoviruses encoding reporter genes
under the control of mammalian promoters
were shown to be capable of efficient gene trans-
duction into mammalian cell lines, especially in
human and rabbit hepatocytes [2.3]. Further-
more, we have shown that baculovirus can
deliver foreign genes into various cell lines,
including cells of nonhepatic origin, by using a
recombinant baculovirus carrying a foreign gene
under the control of a strong mammalian pro-
moter, CAG, which consists of cytomegalovirus
immediate-early (IE) enhancer, chicken B-actin
promoter and a rabbit 8-globin polyadenylation
signal {4].

Future Virol. (2008} 3(1), 35-43 35
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The gene-transfer efficiency was enhanced
with the use of recombinant baculoviruses bear-
ing an envelope glycoprotein derived from other
viruses such as vesicular stomatitis virus {VSV),
rabies virus and mouse hepatitis virus in combi-
nation with their own envelope protein gpb4 8],
or an excess amount of gp64 (7] on the virion sur-
face. Furthermore, gene transcription by the
baculovirus in mammalian cells was enhanced by
treatment with histone deacetylase inhibitors,
such as butyrate, trichostatin A and valproic
acid [15]. In addition, viral adsorption in phos-
phate-buffered saline at low temperature [16] and
the treatment with a calciumn chelator for a tran-
slent depletion of extracellular calcium [17)
enhances the efficiency of gene transduction by
the baculovirus into mammalian cells. The cur-
rent status of our knowledge regarding the appli-
catlon of baculovirus vectors to enhance gene
transduction is shown in Box 1.

Box 1. Application for enhancement of gene transduction by

baculovirus vector.

Promoter

* Simian virus 40 [75)

» Rous sarcoma virus-long terminal repeat (RSV-LTR) 3]

= Cytomegalovirus immediate-early (CMV-IE} 12)

» Cytomegalovirus immediate early enhancer, chicken g-actin promoter and
a rabbit g-globin polyadenylation signal (CAG) (4.7

* Hepatitis B virus (HBV) (76)

» a-fetoprotein (AFP} [75]

Histone deacetylase inhibitor

< Butyrate [77-79]
» Trichostatin A (79
* Valproic acid [15)

Inoculation

= Adsorption in phosphate-buffered saline at low temperature [16)

» Calcium chelator for depletion of extracellular caicium 17}

Display _

+ Single-chain antibody fragment (scFv) against carcinoembryonic antigen (80}

» Synthetic IgG binding domain derived from Staphylococcus aureus [80.81)

= Arg-Gly-Asp motifs derived from coxsackievirus A9 and human
parechovirus 1 [55]

* Tumor-homing peptides (LyP-1, F3, CGKRK) [55-57)

Pseudotyping

* Vesicular stomatitis virus glycoprotein (7}

+ Extra gp64 [n

* Rabies virus glycoprotein (8]

Complement inhibitor

* Anti-C5 antibody (38}

*» Soluble complement receptor type 1 {39}

» Cobra venom factor [38]

» Decay accelerating factor [46)

+ 6-amidino-2-naphthyl 4-guanidincbenzoate [8]

36 Future Virol. (2008) 3(1)

Although it is generally considered that the
baculovirus does not replicate in mammalian
cells and does not induce severe cytotoxicity,
transcription of IE genes has been detected at a
low level in mammalian cells {18,19]. Recent DNA
microarray analyses confirmed the activation of
the IE genes in mammalian cells, and demon-
strated that the overexpression of the IE genes
induced activation of various baculovirus genes
120,211. However, only a marginal upregulation of
the B-actin gene 122,23) and no appreciable change
in the transcriptome profiles {22,23] was detected
by DNA microarray analysis upon infection with
baculovirus in mammalian cells. Nevertheless,
transcriptional activation of the IE genes raises
concerns regarding the safety of application of
baculovirus vectors for gene therapy.

Baculovirus has also been used as an ideal tool
for the production of virus-like particles (VLPs),
which generally require abundant expression of
viral structural- proteins for self-assembly. VLPs
of various viruses have been produced in insect
cells upon infection with recomnbinant baculovi-
ruses and have proven to be useful not only for
vaccines or diagnostic reagents, but also for the
study of virus—cell interactions i524]. Recently,
VLPs of hepatitis D virus (25,26 and hepatitis C
virus (HCV) i6] have been generated in mamma-
lian cells. The production of VLPs by infection
with recombinant baculoviruses is much higher
than that by transfection of plasmid or in stable
cell lines. In contrast to the VLP production by
replication-competent viral vectors, baculovirus
vectors have the advantage that VLPs will not be
contaminated with the infectious viral vectors.

Entry of baculovirus into

mammalian cells

Mammalian cells of various origins exhibit sus-
ceptibility to baculovirus entry, suggesting that
the baculovirus utilizes a cell-surface molecule(s)
ubiquitously expressed on mammalian cells.
However, the precise mechanisms of baculovirus
entry are still poorly understood. Pretreatments
of insect cells with proteases or inhibitors of
Mlinked glycosylation reduced the virus bind-
ing, suggesting the involvement of a cellular
glycoprotein(s) in virus adsorption 27.28].
Electrostatic interactions through heparan sul-
fate moieties are also suggested to be required for
the binding of the baculovirus to mammalian
cells {29]. Baculovirus is considered to enter both
insect and mammalian cells via an endosomal
pathway upon interaction of gp64 with its recep-
tor(s). Information on the role of gp64 on the
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membrane-fusion activity in insect celis has been
accumulated {30-32}. We previously demonstrated
that a recombinant baculovirus possessing
1.5-fold higher amounts of gpb4, compared with
a wild-type baculovirus, exhibits a 100-fold
increase in reporter gene expression in various
mammalian cells, and digestion of phospholipids
from the cells markedly reduced the gene trans-
duction by the baculovirus [7]. Furthermore,
infection of the baculovirus was inhibited by
negatively charged lipids such as phosphatidic
acid and phosphatidylinositol (PI), and was
reduced in a mutant CHO cell line deficient in
PI synthesis. These results suggest that the inter-
action of gpb4 with cell surface phospholipids
plays a crucial role in the entry of baculoviruses
into cells.

Baculovirus has been shown to enter hepato-
cytes via clathrin-mediated endocytosis and mac-
ropinocytosis by using confocal and electron
microscopy [33]. It has also been shown that actin
filaments play a role in the cytoplasmic transport
. of baculovirus nucleocapsids during entry into
cells [34-36), and the amount of the nucleocapsids
was increased in the nucleus by treatment with
microtubule depolymerizing agents, suggesting
that the nucleocapsids are transported into the
nucleus through a microtubule network {37). Fur-
ther studies on the entry of baculovirus, includ-
ing identification of cellular receptor(s), are
needed for the development of vectors suitable
for the application to gene therapy.

In vivo gene delivery

Baculovirus has been shown to be an ideal vector
for efficient gene deltvery in vitro. However,
application of the baculovirus for in vivwo gene
transfer has been hampered by serum comple-
ment-mediated inactivation. To circumvent this
problem, inhibitory reagents against the comple-
ment systern, such as antibody against the
complement component 5 18], cobra venom
factor [38), a soluble protein of complement
receptor type 1 {39) and a inhibitor for protease-
activating complement (FUT-175) (8}, have been
used to improve in vitro gene transduction by
the baculovirus in the presence of animal sera.
Direct inoculation of the baculovirus into rodent
brain [8,40-42], mouse skeletal muscle {43], testis (8]
and eye [44], or rabbit carotid artery by using a
silastic collar to avoid contact with complement
components [45) was also successful for the deliv-
ery of foreign genes. Recombinant baculoviruses
bearing chimeric gp64 proteins fused with a
decay accelerating factor (DAF), which blocks
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complement at the central step of both the classi-
cal and alternative pathways, exhibited some
resistance to complement inactivation [46].
HIV-based lentivirus vectors pseudotyped with
gp64-DAF fusion proteins also conferred resist-
ance to complement inactivation {47]. Further-
more, the recombinant baculoviruses possessing
rhabdovirus envelope proteins exhibited more
resistance to complement inactivation by sera of
humans, rabbits, guinea pigs and mice compared
with the unmodified baculovirus 8]. The recom-
binant baculoviruses possessing the VSV enve-
lope G (VSVG) protein also gave rise to a
significantly higher gene expression than the
unmodified virus in mouse skeletal muscle [43]
and brain (8.48]. Recently, recombinant baculo-
virus encoding the Diphtheria Toxin A gene
under the control of the modified promoter were
shown to eliminate malignant glioma cells in the
rat brain (49]. Although recombinant baculovi-
ruses bearing VSVG proteins exhibited more
resistance to complement inactivation compared
with the unmodified virus {8, lentiviral vectors,
including feline immunodeficiency virus (FIV)
pseudotyped with gp64 proteins, exhibited more
resistance to human and mouse complements
than FIV pseudotype bearing VSVG proteins
(50,51]. This discrepancy in the sensitivity to com-
plement system may be attributable to the differ-
ences in glycosylation of gp64 proteins expressed
in insect or mammalian cells. Gene transduction
into mammalian cells and in mice (50}, and a per-
sistent expression of a transgene in mouse nasal
epithelia /7 vivo (52] by the FIV pseudotype bear-
ing gpb4 proteins was significantly higher than
that bearing VSVG proteins. Further studies on
the pseudotype viruses bearing gp64 proteins
will need to be carried out in order to realize
gp64-mediated gene delivery in vivo.

Targeting vector

Recombinant baculoviruses bearing heterologous
peptides or proteins [53,54], an RGD-motif that
recognizes oV integrin 155,561 and tumor-homing
peptides {57} fused with gp64 or VSVG proteins
exhibited efficient binding and gene transduction
to target cells. However, these recombinant
viruses exhibit no specificity for gene transduc-
tion owing to the retained gp64 proteins that rec-
ognize molecule(s) ubiquitously expressed on the
cell surface. A pseudotyped virus system bearing
heterologous ligands (e.g., viral envelope proteins
or receptors) in place of the endogenous viral
envelope protein has been developed in retro-
viruses [58] and rhabdoviruses (59) for gene
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targeting. To confer specificity on gene delivery
by the baculovirus, a pseudotyped baculovirus
bearing only a ligand of interest, but lacking
gpb4, was generated by using a gp64-nuil bacu-
lovirus 9. The gpb64-null baculovirus revealed
that gpb4 is necessary for cell binding [60], mem-
brane fusion [30] and efficient virion budding
from the infected cell surface {61]. Although
pseudotyped baculoviruses bearing VSVG or
fusion envelope proteins from other baculovi-
ruses exhibited a high infectivity to insect celks,
gene transduction into mammalian cells has yet
to be explored {62,631. During amplification of the
pseudotyped baculovirus in an insect cell line
stably expressing gp64, breakthrough viruses
incorporating the gp64 gene readily emerged
after more than three passages {9]. Therefore, we
generated pseudotyped baculoviruses by trans-
fection of a bacmid encoding a full-length
recombinant baculovirus — possessing a ligand of
interest in place of gp64 - into insect cells with-
out amplification in a cell line expressing gp64.
Pseudotyped baculoviruses bearing receptors for
the measles virus, CD46 or SLAM, exhibited a
specific gene transduction into target cells
expressing measles virus envelope proteins f9].
Although we have to overcome the problem of
emergence of the replication-competent rever-
tants incorporating the gp64 gene during the
amplification, the pseudotyped baculovirus has
important potential as a targeting vector.

Induction of immune response &
advantages for use as vaccine vectors
Beside the efficient gene delivery into mamma-
lian cells, only a few definitive findings have
been reported on the induction of host immune
response by the baculovirus. Intramuscular
injection of recombinant baculoviruses encod-
ing the pseudorabies virus gB protein [64] and
HCV envelope glycoprotein E2 [65] and intra-
muscular, intraperitoneal or intranasal inocula-
tion with those expressing hemagglutinin (HA)
of the influenza virus (IFV) {11] elicited humoral
immune responses in mice. Although mice
intramuscularly or intraperitoneally immunized
with the recombinant baculovirus produced
higher levels of anti-HA antibodies than those
immunized intranasally, protection from a lethal
challenge with IFV was only achieved by the
intranasal immunization. Furthermore, recom-
binant baculoviruses bearing the chimeric gp64
proteins of Plasmodium berghei circumsporo-
zolte [66], Plasmodium falciparum circumsporo-
zoite 671, Theila parva sporozoite [68], rinderpest
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virus [69], foot-and-mouth disease virus {70} and
avian influenza virus [71] elicit an effective
antibody response.

To our surprise, a sufficient protective immu-
nity against a lethal IFV challenge was induced in
mice intranasally inoculated with a wild-type bac-
ulovirus, as evaluated by reductions in virus titer,
inflammatory cytokine production, and pulmo-
nary consolidations [11]. Mouse macrophage cell
lines, primary peritoneal macrophages (PECs)
and CDllc-positive dendritic cells (CD1lc*
DCs) inoculated with a wild-type baculovirus
produced a large amount of proinflammatory
cytokines, such as IL-12, [1.-6, TNF-a and type-I
IFNs 111.121. These observations suggest that bac-
ulovirus has an immunostimulatory activity to
produce pro-inflammatory cytokines and type-I
IFNs in immunocompetent cells, by which the
spread of IFV infection is suppressed. A similar
phenomenon has been reported that a 67 kDa
glycoprotein purified from the culture superna-
tants of insect cells infected with AcMNPYV,
which is probably identical to gp64, induced I[FN
production in cultured cells and protected from a
lethal encephalomyocarditis virus infection in
mice [10]. However, several lines of evidence sug-
gest that gpb4 is not a principal actor in the
immunostirnulatory properties of the baculovi-
rus. It was shown that a recombinant gp64 pro-
tein produced in insect cells and the gp64-nuli
baculovirus exhibited no production of pro-
inflammatory cytokines and type-I IFNs in
mouse macrophage cell lines [12], suggesting that
a viral component(s) other than gp64 participates
in the immune activation by the baculovirus.

Although the baculovirus induces a strong
innate immune response in mice, the precise
mechanisms of the induction remain unclear.
Toli-like receptors (TLRs) have been shown to
play a crucial role in the recognition of viral and
bacterial components {72l. Upon infection of a
microorganism, TLRs recruit a set of adaptor
molecules, including MyD88, TolV/interleukin-1
receptor (TIR)-domain-containing adaptor pro-
tein (TIRAP), TIR-domain-containing adaptor-
inducing IFN-8 (TRIF) and TIR-domain-con-
taining adaptor inducing IFN-B-related adaptor
molecule (TRAM]}, which trigger the activation of
transcription factors such as NF-«B that are
essential for the expression of proinflammatory
cytokines and type-l IFNs 7z1. Production of
proinflammatory cytokines was severely impaired
in PECs and CD1lc* DCs derived from mice
deficient in MyD88 or TLRY after cultivation
with the baculovirus, suggesting that the
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baculovirus produces proinflammatory cytokines
in immune competent cells via  the
TLR9/MyD88-dependent  signaling pathway
{11.12). By contrast, a significant amount of IFN-a
still remained in the cells derived from MyD88-
or TLRO9-deficient mice after stimulation with
baculovirus, suggesting that a TLR-independent
signaling pathway participates in the production
of IFN-a by the baculovirus. Further studies are
needed to elucidate the precise mechanisms of the
induction of TLR-independent type-I IFNs by
baculovirus. TLR has been shown to be respon-
sible for the stimulation of the immune system by
oligodeoxynucleotides containing unmethylated
CpG motifs that are present in bacterial and some
viral DNAs 1731. The amounts of bicactive CpG
sequences in the genome of baculovirus have been
shown to be similar to those of Fscherichia coli and
herpes simplex virus type I [12]. Transfection of the
purified baculovirus DNA with lipasome resulted

in the production of TNF-a, but not in the
absence of Hposome, and the pretreatment with
inhibitors for endosomal maturation diminished

 the induction of the immune response by the bac-
ulovirus [12]. These results indicate that membrane
fusion with gpb4 and uncoating of viral DNA via
endosomal maturation, which leads to release of
viral DNA int6 the cellular compartments
expressing TLRY, are involved in the induction of
innate immunity by baculovirus in vitre. Recently,
it was shown that baculovirus has a strong
adjuvant activity in mice, which promotes adap-
tive immune responses against coadministered
antigen {74. Immunization with ovalbumin
(OVA) plus baculoviral DNA in cationic lipo-
somes, but not with OVA in combination with
either viral DNA or liposome, was sufficient to
induce a cytotoxic T-lymphocyte response, sug-
gesting that the viral genome is responsible for the
adjuvant activity of baculovirus [74].

Figure 1. Baculovirus as a versatile vector.

Efficient gene transduction
(recombinant virus)
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Ubiquitous or specific
Viral envelopes or receptors

Targeting

(Pseudotype virus)

Recombinant baculoviruses possessing an extra ligand such as another viral envelope protein in combination with gp64, exhibit more
efficient gene transduction both in vivo and in primary cells. Pseudotyped baculoviruses bearing only a single ligand, such as a specific
receptor, exhibit gene targeting. Baculovirus can be harnessed as a vector for gene therapy and vaccine development by the transduction
of deficient, suicide and neutralizing antigen genes. Furthermore, baculovirus is capable of inducing a strong innate immune response in
immmune cells, suggesting that it can be used as an adjuvant-containing vaccine vector against infectious diseases by transduction of
neutralizing antigen in immune competent cells.
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Conclusion & future perspective -

A summary of baculovirus vectors is shown in
Pigure 1. Since the initial discovery of efficient
gene transduction into mammalian cells by
recombinant baculoviruses, numerous efforts
have been made to harness baculovirus as a vec-
tor for gene delivery and vaccine development.
One of the advantages of the baculovirus vector
over other viral vectors is that it has a large capac-
ity to accommodate foreign genes and demon-

strates efficient gene transduction into a wide

variety of cell lines as well as primary cells, with-
out severe cytotoxicity. Although construction of
recombinant and pseudotyped baculoviruses,
and the use of inhibitors for complement activa-
tion have been achieved to improve the effi-
ciency of gene transduction, the efficacy of gene
delivery by baculovirus vectors in vivwo is not

sufficient for clinical gene therapy at the
moment. Further innovation to establish replica-
tion-competent cell lines capable of supporting
the propagation of pseudotyped viruses without
the possibility of replication-competent virus
breakthrough by Incorporation of gp64, and to
optimize the conditions necessary for the effi-
cient incorporation of ligands into recombinant
baculovirus particles in order to improve the effi-

. clency of gene transduction by baculovirus

vectors is needed. For future in vivo applications
of baculovirus vectors for gene targeting to spe-
cific organs or virus-infected cells as a method of
treatinent for inherited or infectious diseases, it
is imperative to exhaustively study the transcrip-

" tion of baculoviral genes in mammalian cells for

the certification of safety. In addition, structural
analyses of gp64 and identification of its cellular

Executive summary

Baculoviruses can transduce foreign genes into mammalian cells without replication

» Recombinant baculoviruses efficiently transduce foreign genes into a broad range of mammafian cells.

* Recombinant baculoviruses bearing vesicular stomatitis virus envelope G or other viral envelope proteins enhance gene transduction.
* Various reagents are used for enhancement of gene transduction by the baculovirus.

+ Immediate-early genes of the baculovirus are expressed at a low level in mammalian cells.

Advantages of baculoviral vectors

* Recombinant baculoviruses can be easily prepared in insect cells by a convenient system.

« The baculovirus genome has a large capacity to accommodate foreign genes.

« Baculoviruses can transduce foreign genes into mammalian cells without replication and cytopathic effect.
Entry mechanisms of baculovirus into mammalian cells

* Baculovirus enters into mammalian cells using gp64, via endocytosis.
+ Cell-surface phospholipids are involved in the entry of baculovirus.

* The nucleocapsid of baculovirus transiocates into the nucleus through the microtubule network.
in vivo gene delivery '

* In vivo gene delivery by the baculovirus is hampered by the inactivation by serum complement.

» Measures to inhibit activation of the complement improve in vitro gene transduction.

« Direct injection of baculovirus into rodent brain, muscle, testis and eye can defiver reporter genes.
+ Moadifications of gp64 improve in vivo gene delivery.

Targeting vector

» The presence of heterologous proteins in addition to gp64 on the virion surface enhances specific binding to the target cells.
* Pseudotype baculovirus bearing a ligand of interest alone in place of gp64 exhibits the ability to perform a specific gene
transduction into target cells.

Induction of immune response by baculovirus

* Recombinant baculoviruses elicit humoral immune responses and protective immunity in mice.

» Baculovirus produces an innate immune response in immune competent cells.

» CpG motifs in the baculovirus genome produce proinflarmmatory cytokines thorough a Toll-like receptor-dependent pathway.
* Baculovirus components other than DNA produce type-| interferons via a Toll-like receptor-independent pathway.

» Baculovirus exhibits a strong adjuvant property promoting an adaptive response against coadministered antigen in mice.
Future prospects for baculoviral vectors

» Further characterization of cellular receptor(s) for baculovirus and the interaction with gp64 is needed for the construction of
vectors sufficient for a future gene therapy.

+ Elucidation of mechanisms to induce innate immunity in immune-competent cells by baculovirus is required for the development
of a future vaccine vector. '
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receptor(s) are required to gain more insight on
the display system and the entry mechanisms of
baculovirus vectors. Although baculovirus can-
not replicate in mammalian cells, a potent innate
immune response is induced by baculovirus in
immune competent cells such as macrophages
and dendritic cells, and this stimulation is essen-
tial for the later induction of adaptive immuine
responses. The ability of baculovirus to induce
innate immunity makes it a promising candidate
for a future adjuvant-containing vaccine vehicle
against infectious diseases.
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