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In order to reduce the frequency of the chromosomal integration of the
rep gene, Surosky et al. used a two-plasmid system: one plasmid is for the
expression of the Rep protein and the other is an ITR-linked transgene plas-
mid (Surosky et al., 1997). The idea is that the frequency of integration of a rep
plasmid is lower than that of an ITR-plasmid when the Rep protein is sup-
plied in trans. They concluded that six out of seven LacZ-positive colonies
had the LacZ transgene into the AAVSI site as revealed by Southern blot
analysis. Fluorescent in situ hybridization (FISH) confirmed that two out
of six clones had a LacZ signal on chromosome 19. They also showed that
Rep78 or Rep68 alone was sufficient for promoting A AVS1-specific integra-
tion and that one ITR sequence could target integration to the AAVS] site.
The full sequence of one AAVS1-integrant was determined and it was thus
shown that the whole plasmid was integrated at AAVS1 in tandem array.

The work by Pieroni et al. described the transfection of HeLa cells or
Huh-7 cells with a plasmid harboring the p5-rep gene and an ITR-flanked
GFP/Neo cassette, with the resulting generation of clones with the transgene
integrated in AAVS1 (7 to 25%), which were then analyzed by Southern
blot. AAVS1-specific integration was confirmed in one Huh-7 clone by PCR
amplification of the ITR-AAVS] junction sequence and in three HeLa cell
clones by FISH colocalizaiton of the GFP/Neo and AAVSI signals (Pieroni
et al., 1998).

By using an AAV vector plasmid similar to that of Shelling and Smith,
Tsunoda et al. tested site-specific integration in HeLa cells (Tsunoda et al.,
2000). In addition, their plasmid had a hygromycin resistance gene beside
the ITR-flanked p5-rep and Neo gene cassette. Southern blot analysis showed
that 22 out of 36 (61%) clones had the GFP/Neo gene in AAVS1. The junc-
tion sequence between the ITR and AAVS1 was amplified by PCR and this
showed that the junction occurred in the p5 promoter region. ARBS homolog
and trs homolog exist in the p5 promoter region, where Rep78 or Rep68 binds
and regulates the p5 promoter activity. The Rep-mediated amplification of
the AAV genome occurs via the RBS homolog (Nony et al., 2001; Tessier
et al., 2001; Tullis and Shenk, 2000), which is important for efficient pro-
duction of AAV progeny. In addition, the p5 element has been shown to be
sufficient for AAVS1-specific integration (Philpott et al., 2002a and 2002b).
All the junction sequences amplified had a partially deleted p5 portion, not
an ITR sequence (Tsunoda et al., 2000). This is probably partially because
cell survival depends on the inactivation of the rep gene. The Rep protein is
cytotoxic and anti-proliferative (see above). Tsunoda et al. also speculated
that the plasmid backbone was also simultaneously inserted into AAVS1 as
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well as the ITR-flanked rep/Neo cassette, an observation consistent with the
result of Surosky et al. (Surosky et al., 1997).

Kogure et al. applied the AAVSl-targeting system to K562 cells, a
hematopoietic cell line (Kogure et al., 2001). To limit the expression of Rep78,
they used a weak promoter derived from the long terminal repeat (LTR) of
mouse mammary tumor virus (MMTV) driving bicistronic expression of
GFP and Rep78. They transfected the rep plasmid and an ITR-Neo plasmid
into K562 cells, analyzed 17 clones by Southern blot and found that six clones
(22%) harbored the Neo gene in AAVS]. FISH analysis confirmed that five
out of six clones had a Neo gene on chromosome 19.

Urabe et al. used a CMV-driven rep78 gene plasmid for AAVS1-specific
integration in HEK 293 cells (Urabe et al., 2003). To regulate the expres-
sion level of Rep78, they used decreasing amounts of rep78 plasmid. They
observed that approximately 20% of the clones analyzed by Southern blot
showed integration of the Neo gene into AAVSI. They also compared the
efficiency of targeted integration mediated by Rep78 and Rep68, and found
that Rep68 was superior to Rep78 in their experiment. Southern analysis
of G418-resistant clones obtained from transfection with the rep68 plasmid
showed that eight out of 20 clones (40%) had the integration of the Neo gene
into AAVSI. The presence of the Neo gene on chromosome 19 was confirmed
in all six clones.

Philpott et al. utilized the p5 promoter instead of the ITR as a cis ele-
ment for AAVS1-specific integration and successfully introduced the GFP
gene into AAVSI at a frequency of 94% (out of 47 HeLa cell clones), a
result comparable to data obtained with an ITR-plasmid (86%) (Philpott
et al., 2004). They observed that clones obtained by transfection of a plas-
mid harboring both a rep cassette and a GFP cassette showed a grad-
ual decrease in the transgene expression over 18 weeks, while clones
obtained from transfection with two plasmids (one for Rep expression,
and the other for transgene delivery) stably expressed the transgene
over time. :

Recombinant AAV vector is widely used as a gene transfer vector and is
being evaluated for some human applications including coagulation factor
IX deficiency, lipoprotein lipase deficiency, and Parkinson’s disease. Con-
ventional AAV vectors harbor the gene of interest flanked by the ITRs and

‘are thus devoid of the rep gene. Since the rep gene product is essential to
AAVS]1-specific integration, these AAV vectors are not able to preferentially
integrate into AAVS]. To achieve the AAVS1-specific integration of the AAV
vector genome, Huttner et al. infected HeLa cells with an AAV vector after
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transfection with a Rep-expression plasmid and reported that seven out of 10
clones showed site-specific integration of the AAV vector genome (Huttner
et al., 2003). Wong, Jr. et al. also performed Rep-mediated insertion of rAAV
by using a fusion protein consisting of Rep and VP22, a tegument protein
of herpes simplex virus (Wong et al., 2006). VP22 traffics intercellularly and
spreads over adjacent cells (Elliott and O’'Hare, 1997). The Rep protein has
a nuclear localization signal (NLS) sequence, which inhibits the spread of
the Rep-VP22 fusion protein. Removal of the NLS allowed the fusion pro-
tein to traffic intercellularly. The advantage of this strategy is that it can be
applied to cells easy to transduce with AAV vectors and hard to transfect
with plasmid DNA.

7. How to Regulate Rep Expression

The Rep protein affects numerous cellular phenomena as mentioned above.
In addition, infection with wild-type AAV or Rep-directed transgene inser-
tion into AAVS] appears to accompany the disruption and rearrangement of
the AAVS1 locus (Balague et al., 1997; Hamilton et al., 2004; Kotin et al., 1990;
Shelling and Smith, 1994; Urabe et al., 2003). Thus, it is necessary to regulate
the expression level of the Rep protein to as low as possible for applications
aimed at AAVSI-specific integration.

The regulation of Rep protein expression at the DNA level includes the
bacterial Cre/loxP system (Sauer and Henderson, 1988) and the yeast FLP
system (O’Gorman et al., 1991). The former was applied to the regulation
of the Rep protein (Satoh et al., 2000). The p5 promoter was moved down-
stream of the rep ORF on a plasmid and a loxP sequence was placed upstream
of the rep ORF and another was placed downstream of the p5 promoter.
Cre removes a stuffer sequence between the two loxP sites and the rep cas-
sette is circularized such that the p5 promoter is placed just upstream of
the rep ORF. Co-transfection of HEK293 cells was performed with a Rep-
expression plasmid, a Cre expression plasmid, and an AAV vector plasmid
on which a Neo gene and an expression cassette for a secreted form of alka-
line phosphatase (SEAP) were placed between the ITRs. Only by the use of
a Cre-expression plasmid could they obtain G418-resistant clones where the
Neo/SEAP gene was targeted into the AAVSI locus.

Regulation of the rep gene at the transcription level includes the use
of a weak promoter. The bacteriophage T7 promoter (Recchia et al., 1999)
and the combination of the mouse mammary tumor virus (MMTV) LTR
promoter and internal ribosome entry site (IRES) sequence of the encephalo-
myocarditis virus (Kogure et al., 2001) have been used for Rep expression.



Targeted Insertion of Transgene into a Specific Site on Chromosome 19 35

The native p5 promoter is weak enough for Rep expression. However, since
the p5 promoter encompasses an imperfect RBS and is thus a cis element of
AAVS1-specific integration (see above), it is desirable to avoid using the p5
promoter for Rep expression in order to minimize the frequency of rep gene
integration.

In general, RNA is more labile than DNA. Transfection of RNA encod-
ing Rep proteins may thus reduce the prolonged cytostatic effects of the
Rep protein. The delivery of the Rep protein may limit the duration of Rep
cytostatic action even more. Lamartina et al. transfected Hela cells with a
mixture of a recombinant Rep protein and an ITR-flanked plasmid by the
use of a lipid reagent (Lamartina et al., 1998). The analysis of pooled trans-
fected cells by PCR showed that AAVS] site-specific integration occured in
many cells. Three junctions were sequenced and confirmed the site-specific
integration.

Regulation of a protein function by a molecular switch is an attractive
tool for Rep protein. Rinaudo ef al. developed a chimeric protein between
Rep and the truncated form of the ligand binding domain (LBD) of the pro-
gesterone receptor (Rinaudo et al., 2000). The progesterone receptor (PR)
associates with heat shock proteins hsp70, hsp90, and several co-chaperone
proteins via its LBD. Binding of progesterone promotes conformational
changes in PR, resulting in its release from the chaperone complex, and then
its nuclear transport (McKenna ef al., 1999). The truncated LBD does not
bind endogenous progesterone but a synthetic antagonist, RU486 (Rinaudo
et al., 2000). In the absence of RU486, C-terminally truncated Rep (residue
1-491) fused to the LBD is predominantly in the cytoplasm, whereas in the
presence of RU485, the fusion protein moves into the nucleus. Following
cotransfection of HeLa cells with a Rep-LBD expression plasmid and an
ITR-flanked Neo plasmid and a 24-hour treatment with RU486, they obtained
G418-resistant clones. Southern analysis showed that seven out of 28 clones
harbored the Neo gene in the AAVST site. In addition, generation of AAVS1
rearrangement without insertion of the Neo gene was markedly reduced.
Another regulation system for the Rep protein was reported. The Rep pro-
tein functions as a hexameric complex. The Rep domain responsible for DNA
binding and nicking fused to a protein that multimerizes can target an ITR-
linked DNA into AAVS1. Oligomerization of Rep molecules on the RBS is

a prerequisite for Rep enzymatic activities, including nicking, helicase, and
ATPase activities. The N-terminal two thirds portion (1-224) of the Rep pro-
tein is able to target site-specific integration when it is fused C-terminally to
artificial multimerizing proteins (Cathomen et al., 2000).
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8. Vehicles to Deliver the Rep Gene into Cells

A number of strategies have been developed to incorporate DNA into target
cells. Plasmid transfection with the calcium phosphate precipitation method
or with lipofection is the simplest way to introduce DNA as well as electro-
poration. For “hard-to-transfect” cells, a viral vector is the second choice.

The Rep proteins are cytostatic as mentioned above and transient or
regulated expression of the Rep protein is favored. A number of attempts
have been made to create an adenoviral vector harboring the rep gene, which
turned to be unsuccessful due to low yields and instability of recombinant
rep-Ad vectors. AAV Rep proteins inhibit the replication of adenovirus at
different steps. The Rep78 and Rep68 proteins associate with the single-
stranded DN Abinding protein, an E2A gene product of adenovirus (Stracker
et al., 2004). Rep68 has been shown to bind the E2a promoter region (Casper
et al., 2005) and suppresses transcription (Casper et al., 2005; Jing et al., 2001;
Nada and Trempe, 2002). In addition Rep78 represses Ela, E2a, E4 promoter
activity, but trans-activates E1b and E3 promoters. By contrast, in the pres-
ence of Ela protein, Rep78 repressed all the promoters (Jing et al., 2001).
Rep78 and Rep68 inhibit the transcription from the Ad major late promoter
by the association with the TATA-box binding protein and binding to sites
adjacent to the TATA box (Needham et al., 2006). The regulation of rep gene
expression by the Cre/LoxP system (Ueno et al., 2000) or the tetracycline
inducible system (Recchia et al., 2004) succeeded in generating an Ad vec-
tor with the rep gene. In addition, a promoter derived from bacteriophage
T7 (Recchia et al., 1999) and the locus control region (LCR) of the human
B-globin gene (Wang and Lieber, 2006), which functions very weakly in
mammalian cells, have been shown to drive expression levels of the Rep
protein compatible with Ad vector production.

Another viral vector tested for incorporation of the Rep expression cas-
sette is herpes simplex virus (HSV) vector. The details are presented by
Fraefel et al. in the following chapter. HSV is also a helper virus for AAV and
support AAV replication. HSV appears to tolerate the anti-viral effect of the
Rep protein more than the adenovirus. A p5 promoter-driven Rep cassette
could be successfully packaged into an HSV mini-amplicon vector although
the titer of the recombinant HSVs was low. By using a hybrid amplicon vector
with a rep gene and a transgene cassette between the ITR sequences, AAVS1-
targeted integration of the transgene was achieved, which was confirmed by
amplification of junction sequences in HEK293 cells (Heister et al., 2002) or
by Southern blot and FISH analysis in fibroblasts obtained from transgenice
mice bearing human AAVS1 sequence (Bakowska et al., 2003).
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Baculovirus, an invertebrate virus that is widely used for the production
of recombinant proteins is also able to harbor the rep gene and to mediate
AAVS1-specific integration (Palombo et al., 1998). It was reported that the
rep gene and the ITRs were stable in the baculovirus genome and that titers
of rep-baculovirus were comparable to wild-type ones (Urabe et al., 2002).

9. Future Direction

Insertion of foreign DNA into a specific chromosome at a predetermined
site will become a prerequisite for human gene manipulation in the future.
AAV offers an attractive tool to achieve site-specific integration. Currently it
is impossible to insert transgene into AAVS] in all transfected cells. Ex vivo
gene therapy is a practical strategy to apply for AAVS]-targeted integration
since a cell clone that harbors the therapeutic transgene at the AAVS] site
can be selected and expanded for use.

Some challenges to develop better AAVSl-targeted integration sys-
tems include: 1) increasing the frequency of AAVS1-specific integration;
2) decreasing the frequency of disruption of non-AAVS1 sites; and 3) reduc-
ing the cytotoxicity of the Rep protein. Better understanding of AAV biology
will help us to refine the system.
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Abstract

Mesenchymal stem cells (MSCs) are considered to be a promising platform for cell and gene therapy for a variety of diseases. First, in the field of
hematopoietic stem cell transplantation, there are two applications of MSCs: 1) the improvement of stem cell engrafting and the acceleration of
hematopoietic reconstitution based on the hematopoiesis-supporting ability; and 2) the treatment of severe graft-versus-host disease (GVHD) based
on the immunomodulatory ability. Regarding the immunosuppressive ability, we found that nitric oxide (NO) is involved in the MSC-mediated sup-
pression of T cell proliferation. Second, tumor-bearing nude mice were injected with luciferase-expressing MSCs. An in vivo imaging analysis
showed the significant accumulation of the MSCs at the site of tumors. The findings suggest that MSCs can be utilized to target metastatic tumors
and to deliver anti-cancer molecules locally. As the third application, MSCs may be utilized as a cellular vehicle for protein-supplement gene therapy.
When long-term transgene expression is needed, a therapeutic gene should be introduced with a minimal risk of insertional mutagenesis. To this end,
site-specific integration into the AAVS1 locus on the chromosome 19 (19q13.4) by using the integration machinery of adeno-associated virus (AAV)

would be particularly valuable. There will be wide-ranging applications of MSCs to frontier medical treatments in the near future.

© 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

In bone marrow, there are different types of tissue stem
cells (adult stem cells); i.e. hematopoietic stem cells and mes-
enchymal stem cells (MSCs). MSCs account for a small pop-
ulation of cells in bone marrow as a non-hematopoietic
component with the capacity to differentiate into a variety of
cell lineages, including adipocytes, osteocytes, chondrocytes,
muscles, and stromal cells [1]. Recent studies demonstrated
that MSCs are capable of supporting hematopoiesis and of
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regulating immune response [2]. In addition, since MSCs
can be readily isolated and expanded in vitro, they are ex-
pected to be a source of cell therapy. Interestingly, MSCs
have the ability to accumulate at the site of: 1) tissue/organ
damage; ii) inflammation; and iii) cancer when administered
in vivo. Therefore, MSCs can be utilized for: 1) regenerative
therapy; ii) treatment of graft-versus-host disease (GVHD)
and Crohn disease; and iii) platform of cancer gene therapy
(targeted delivery of anti-cancer agents). Another unique fea-
ture of MSC:s is little or low immunogenicity due to the lack of
expression of co-stimulatory molecules. This phenomenon
makes it possible to administer MSCs without HLA matching
for cell therapy. A single lot of expanded MSCs from one
healthy donor can be utilized for treatment of many patients.
Although clinical applications of MSCs have been conducted
for the suppression of severe acute GVHD in allogeneic stem
cell transplantation [3,4] and for regenerative therapy [S,6],
molecular mechanisms underlying the biological effects of



122 K. Ozawa et al. / Journal of Autoimmunity 30 (2008) 121—127

MSCs remains obscure. Finding key molecules for differenti-
ation, immunosuppression, and hematopoietic support of
MSCs would be valuable for further augmenting the efficacy
of MSCs in a wide range of clinical applications. In this re-
gard, development of the technology for genetic manipulation
of MSCs is also important research project. Site-specific inte-
gration of a therapeutic gene into a safe locus in the genome
should be investigated from the safety standpoint.

2. Microarray analysis of genes responsible for
differentiation of mesenchymal stem cells

Genes regulating the differentiation of MSCs remain ob-
scure and it is technically difficult to do high-throughput anal-
ysis using primary MSCs, because such cells contain
heterogeneous populations. To overcome the problems related
to the heterogeneity of primary MSCs, we utilized MSC-like
cell lines. It has been shown that 10T1/2 cells, derived from
C3H mouse embryo cells, differentiate into adipocytes, osteo-
cytes, and chondrocytes with a treatment of 5-azacytidine. We
previously established two sub-lines from 10T1/2, designated
as A54 for a preadipocyte cell line and M1601 for a myoblast
cell line [7]. Under appropriate culture conditions, A54 and
M1601 cells terminally differentiate into adipocytes and myo-
tubes, respectively, while parental 10T1/2 cells remain undif-
ferentiated under the same culture conditions. Therefore,
10T1/2 cells can be utilized as a model of MSCs, and A54
and M1601 are used as committed mesenchymal progenitors.
Gene expression profiles of these cell lines were compared by
microarray analysis before and after differentiation.

Each of parent 10T1/2, A54, and M1601 cell lines showed
a distinctive and unique gene expression profile despite
morphological similarity (Fig. 1) [8]. Parental 10T1/2 cells
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had 105 elevated genes including ones encoding Activin,
DIk, Nov, Grb10, p15, and many functionally unknown mol-
ecules. DIk and Nov are known to be involved in Notch sig-
naling pathway and were reported to have the ability to inhibit
differentiation into adipocytes and osteoblasts [9]. In preadi-
pocyte AS54 cells, 201 genes were up-regulated, including
genes known to be involved in adipocyte differentiation
such as genes encoding C/EBPo, C/EBP3, PPAR-y, PAL],
and Frizzled-1 [10]. Myoblasts M1601 cells showed 137 up-
regulated genes, including ones related to skeletal muscle
differentiation such as genes encoding MyoD, MLCIF, a-
skeletal actin, myosin heavy chain, and myosin light chain
[11] as well as genes related to cardiac muscle differentiation
such as genes encoding a-cardiac actin, cardiac troponin C,
and troponin T2 [12].

Previous studies have shown that preadipocytes have
a higher ability to support hematopoiesis than other kinds of
stromal cell components in vitro [12,13]. Our results of gene
expression profile revealed up-regulation of critical cytokines
for hematopoiesis such as SCF and SDF-1 in preadipocyte
A54 cells. In addition, many chemokines, such as CXCL-1
and CCL-7, were also up-regulated. Since Ang-1 was reported
to be indispensable for the self-renewal of hematopoietic stem
cells {14], we performed real-time PCR analysis of Ang-1
along with SCF, SDF-1, CEBP-3, IGF-1, and CXCL-1. The
expression of these genes was highest in A54 cells among
the three cell lines. Moreover, protein expression of Ang-1
was only detected in A54 among three cell lines and the level
of this protein decreased after adipocyte differentiation.

To examine the effects of these three lines on hematopoie-
sis, we co-cultured mouse hematopoietic stem cell fraction
with these three stromal cell lines. The cells in Lin(—)Sca-
1(+) fraction were plated on 10T1/2, A54, or M1601 cells.
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Fig. 1. Proposed model for the hierarchy of the bone marrow stromal system [8].
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After 6 days of co-culture, hematopoietic progenitors were de-
tected only on the A54 cells. These results suggest that only
A54 cells have the ability to support hematopoietic cell growth
among these three cell lines, consistent with the previous re-
port. Hematopoietic cell proliferation was not observed on
the layer of the terminally differentiated A54 adipocytes, sug-
gesting that A54 cells lose the ability for hematopoietic cell
support after adipocyte differentiation. To understand the mo-
lecular mechanisms of this observation, we examined the ex-
pression levels of SCF, SDF-1, and Ang-1 during adipocyte
differentiation by RT real-time PCR. The expression levels
of Ang-1 and SCF decreased immediately after the induction
of adipocyte differentiation, and that of SDF-1 decreased grad-
ually. In contrast to this, the level of adipocyte differentiation
marker, CEBP-9, was unchanged.

The analysis of functionally unknown molecules is currently
underway. In addition, cell-to-cell contact is also believed to be
crucial in the interaction between hematopoietic stem cells and
MSCs. We are currently investigating the cellular and molecu-
lar events in the interactive communication between hemato-
poietic stem cells and MSCs.

3. Nitric oxide (NO) plays a critical role in suppression
of T-cell proliferation by mesenchymal stem cells

There is a case report of severe steroid-resistant GVHD after
bone marrow transplantation, in which intravenous infusion of
MSCs greatly improved clinical manifestations [3]. Moreover,
multi-institutional clinical trial of MSC-treatment of severe
grade III-1V acute GVHD in Europe revealed very high overall
response rate (about 70%) (Le Blanc et al., ASH meeting
2006). The molecular mechanisms by which MSCs suppress
T-cell proliferation are complicated, and whether a soluble fac-
tor plays a major role remains controversial. Transforming
growth factor-f (TGF-), hepatocyte growth factor (HGF), in-
doleamine 2,3-dioxygenase (IDO), and prostaglandin E,
(PGE,) have been reported to mediate T-cell suppression by
MSCs [15--17]. In addition, some reports have shown that a sol-
uble factor is the major mediator of suppression, whereas some
reports have demonstrated that T-cell-MSC contact is required
for this suppression.

We also investigated the molecular mechanisms using pri-
mary murine MSCs, and focused on nitric oxide (NO), because
it is known to inhibit T-cell proliferation. NO is produced by
NO synthases (NOSs), of which there are 3 subtypes; i.e. in-
ducible NOS (iNOS), endothelial NOS, and neuronal NOS. It
has been known that macrophages suppress T-cell prolifera-
tion, and that this suppression is caused by NO-mediated inhi-
bition of Stat5 phosphorylation [18]. We investigated whether
MSCs can also produce NO and whether NO is involved in
their ability to suppress T-cell proliferation [19].

T cells proliferated in response to PMA and ionomycin,
which act downstream of the T-cell-receptor complex by acti-
vating protein kinase C and inducing Ca®* influx, respectively.
Such T-cell proliferation was suppressed by the presence of
MSC, suggesting that MSCs influence signals downstream
of protein kinase C and Ca®" influx. The expression of the

activation markers CD25 and CD69 on CD4 or CD8 T cells
did not change even in the presence of MSCs. MSCs sup-
pressed the production of IFN-y but not IL-2.

Although T cells from Stat5 ~/~ mice do not proliferate upon
stimulation with anti-CD3, they up-regulate CD25. Because
this phenotype is similar to the status of activated T cells in
the presence of MSCs, we hypothesized that MSCs suppress
Stat5 phosphorylation. Indeed, Stat5 phosphorylation in acti-
vated T cells was diminished in the presence of MSCs. We
found that MSCs caused a significant and cell-dose-dependent
production of NO only when co-cultured with activated T cells.
The induction of iNOS was readily detected in MSCs but not in
T cells. RT-PCR and Western blot analysis detected iNOS ex-
pression in MSCs cocultured with activated splenocytes but not
in MSCs or splenocytes.when cultured alone. The immunofiu-
orescence studies showed that iINOS was exclusively expressed
in CD45~ adherent cells, which correspond to MSCs, but not in
CD45™T cells. Next, we investigated the effects of N-nitro-L-
arginine methyl ester (L-NAME), a specific inhibitor of
NOS. As expected, L-NAME dose-dependently inhibited the
production of NO by MSCs in the presence of activated T cells.
Importantly, L-NAME restored T-cell proliferation and Stat5
phosphorylation, indicating that NO is involved in the inhibi-
tion of T-cell proliferation and Stat5 phosphorylation. More-
over, MSCs from inducible NOS™~ mice had a reduced
ability to suppress T-cell proliferation.

In the presence of direct interaction between T cells and
MSCs, there was a high level of NO production accompanied
by a strong suppression of T-cell proliferation. In contrast,
both NO production and T-cell suppression were reduced in
a transwell system, in which T cells were separated from
MSCs by a 1-um-pore membrane. There are two possible ex-
planations for the difference in T-cell suppression between the
presence and absence of the transwell system. First, the
amount of NO produced in the transwell system was lower
than that in the presence of direct interaction. This finding sug-
gests that direct interaction is critical for efficient production
of NO as well as for strong suppression of T-cell proliferation.
A second possible explanation is that, because NO is highly
unstable, it can lose its activity before it reaches T cells in
the transwell system.

Because TGF-B, IDO, and PGE, were reported as media-
tors of T-cell suppression by MSCs, we compared the effects
of L-NAME with inhibitors of each mediator. Indomethacin
(inhibitor of PGE, production) but not 1-methyl-pL-tryptophan
(1-MT: inhibitor of IDO) or an anti-TGF-f-neutralizing anti-
body restored T-cell proliferation as effectively as L-NAME;
however, the effects of L-NAME and indomethacin were not
additive, suggesting that the NO and PGE,; share signaling
pathways leading to T-cell suppression.

In summary, our hypothesis that NO is produced by MSCs
and that it suppresses T-cell proliferation in part through in-
hibition of Stat5 phosphorylation was supported by the fol-
lowing facts: (1) NO was readily detected in the medium
in the co-culture of MSCs and activated T cells; (2)
L-NAME restored T-cell proliferation as well as StatS phos-
phorylation; and (3) MSCs from iNOS ™'~ mice had markedly
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reduced ability to suppress T-cell proliferation. This hypoth-
esis was further confirmed by the finding that iNOS expres-
sion was detected only in MSCs co-cultured with activated
T cells.

In our scenario (Fig. 2), when MSCs are administered to the
patients with severe acute GVHD, MSCs are considered to ac-
cumulate at the site of inflammation. Upon interaction with
activated T cells, MSCs express iNOS and produce NO, which
suppresses T-cell proliferation via inhibition of STAT5 phos-
phorylation. Systemic adverse effects of NO do not occur
due to local production of NO with very short half-life. This
is a very important point, because conventional treatment of
acute GVHD causes severe systemic immunosuppression,
which sometimes leads to life-threatening infections. Since
MSC treatment causes just local immunosuppression, it should
be much safer.

4. Interferon-y and NF-kB mediate nitric oxide
production by mesenchymal stem cells

Human MSCs were reported to suppress Thl differentia-
tion and augment Th2 differentiation. Therefore, we investi-
gated whether mouse bone-marrow-derived MSCs and the
10T1/2 cell lines have the same effect on Thl and Th2. We
found a reverse correlation between NO production and T
cell proliferation in Th1/Th2 conditions, where NO production
was highly induced in the presence of MSCs in Thl but it was
only minimally induced in Th2. In particular, primary MSCs
and the AS54 preadipocyte cell line, which induce strong T
cell suppression in Thl, produce high levels of NO in Thl
condition. These results suggest that NO also plays a major
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role in the preferential suppression of Thl proliferation by
MSCs.

To determine what inhibits the production of NO in Th2
condition, the two differentiation factors that support Th2
differentiation, anti-IFN-y antibody and IL-4, were investi-
gated. As a result, anti-IFN-y antibody clearly inhibited the
production of NO, whereas suppression by IL-4 was less evi-
dent. These results suggest that IFN-v is a key regulator of NO
production by MSCs.

Interestingly, cell supernatant collected from activated T
cells had the ability to induce NO production by MSCs.
IFN-v is critical for NO production; however, in a T cell-
free environment, IFN-y alone does not induce NO produc-
tion from primary MSCs. IFN-y in combination with LPS,
but not IL-2, stimulates NO secretion from primary MSCs,
suggesting that both the IFN-y and the signal from Toll-like
receptor-4 (TLR4) are required for NO induction by MSCs.
The addition of flagellin induced NO production in combina-
tion with IFN-y. While, synthetic double strand RNA,
poly(I:C), and CpG-oligonucleotide did not induce NO. Fla-
gellin is a protein component of bacteria known to induce
NO production from macrophages via TLRS in the presence
of either a TLR4 or IFN-v signal. In addition to these factors,
IL-1B and TNF-a induce NO when provided in combination
with IFN-v. As NF-kB is a downstream target of the signaling
cascades activated by LPS, flagellin, IL-1B, and TNF-a, we
hypothesized that activation of NF-kB is required for NO in-
duction by MSCs. Bay-11-7085, a specific inhibitor of NF-
kB, suppressed induction of iNOS in MSCs, thus suggesting
that NF-kB is involved in NO production by MSCs as well
as IFN-vy {20].

STAT S
phosphorylation

Nitric Oxide

Fig. 2. MSC treatment of acute GVHD and the molecular mechanisms of T-cell suppression. MSCs are considered to accumulate at the site of inflammation and
systemic adverse effects may not appear due to the local production of NO, which has very short half-life.



