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{1.08 ml, 14.7 mmol), and NaBH;CN (90%, 117 mg, 1.68 mmol)
were added at 0°C and the mixture was stirred at room
temperature for 73 h. Ten percent aqueous KOH (2.0 ml) was
added to pH 8-9 and the whole was extracted with CH,Cl,
{1 x5ml, 1 x 3ml, 2 x 2ml). The combined organic layer was
washed with brine and was dried over K,CO3. The solvent was
evaporated in vacuo and the residue was purified by column
chromatography (NH silica, benzene:AcOEt:MeOH = 20:2:0.75)
to give areddish brown oil (86 mg, 76%); IR (ATR, cm™1) 3200; 'H
NMR (400 MHz, CDCly) 5 (ppm): 1.05 (6H, d, ) = 6.2 Hz, 2 x CH3),
2.82 (1H, quint. ] = 6.2 Hz, CH), 2.94 (4H, 5, 2 x CH,), 3.85 (3H, s,
OCH;), 6.85(1H, dd,] = 8.8, 2.4 Hz, H-6), 6.98 (1H, d,] = 2.4 Hz, H-
4),7.06 (1H, d, ] = 2.4 Hz, H-2), 7.13 (1H, d, ] = 8.8 Hz, H-7), 8.51
(1H, s, NH, exchangeable with D,0); *C NMR (125 MHz, CDCl,)
3 (ppm): 22.8, 25.9, 47.4, 48.5, 55.9, 100.7, 111.8, 112.0, 113.4,
122.8, 129.8, 131.6, 153.7; HREIMS found: 232.1555 (calculated
for C13H,sN,0:232.1575). These analytical data supported the
conclusion that the synthesized compound was isopropyl-[2-
(5-methoxy-1H-indol-3-yl)ethylJamine  (5-methoy-N-isopro-
pyltryptamine, 5-MeO-IPT) {Fig. 1).

2.3.  Construction of CYP expression plasmids

CYP1A2 cDNA for subcloning in expression vector pGYR1 was
prepared by polymerase chain reaction (PCR) from pcDNA3.1/
CYP1A2 plasmid [7] as a template using the forward primer, 5'-
AAGCTTAAAAAAATGGCATTGTCCCAGTCT-3, and the reverse
primer, 5'-AAGCTTTCAGTTGATGGAGAAGCGCA-3'. The HindIIl
sites (marked with the solid lines) were introduced to the 5/-end
of the start codon and the 3'-end of the stop codon to facilitate
subcloning into pGYR1. A Kozak sequence (marked in italics)
was also introduced upstream of the start codon to achieve high
expression of the protein in yeast cells. CYP2C8 and CYP2C9
c¢DNAs were amplified from human adult normal liver Quick-
Clone cDNA (BD Biosciences Clontech, Mountain View, CA). The
nucleotide sequences used for the forward and reverse primers

Foxy

were 5'-CCCAAGCTTAAAAAAATGGAACCTTTTGTGGTCCTGG-
¥ and 5-TTCAAGCTTCTCGAGTTCAGACAGGGATGAAGCA-
GAT-3' for CYP2C8, and 5-AAGCTTAAAAAAATGGATTCTC-
TTGTGGTC-3' and 5'-AAGCTTTCAGACAGGAATGAAGCACA-Y
for CYP2C9. The PCR products were directly introduced into
PGEM-T vector (Promega, Madison, W1) using the TA cdloning
system, resulting in pGEM-T/CYP1A2, pGEM-T/CYP2C8 and
PGEM-T/CYP2C9. CYP2C19 cDNA cloned into pBluescript SK (+)
{(pBluescript/CYP2C19) was supplied by Dr. J. Goldstein (NIEHS,
Research Triangle, NC). The cDNA containing the HindIll sites
and Kozak sequence was amplified by PCR from pcDNA3.1/
CYP2C19 as a template using the forward primer 5'-CCCAAGCT-
TAAAAAAATGGATCCTTTTGTGGTCC-3' and the reverse primer
5'-GGAAAGCTTAGGAGCAGCCAGACCATCTGT-3'. The PCR pro-
duct was digested with HindIll and ligated into the same
restriction enzyme site of pcDNA3.1 (+), resulting in pcDNA3.1/
CYP2C19. pGEM-T/CYP1A2, pGEM-T/CYP2C8, pGEM-T/CYP2C9
and pcDNA3.1/CYP2C19 plasmids were sequenced in both the
forward and reverse directions using ABI BigDye terminator
cycle sequencing reaction kit v3.1 (Applied Biosystems, Pisc-
away, NJ) to confirm that there were no PCR errors. The DNA
fragments corresponding to CYP1A2, CYP2C8, CYP2C9 and
CYP2C19 were cut out with Hindlll from the pGEM-T or
pcDNA3.1 (+) plasmid and were subsequently subcloned into
the pGYR1 yeast expression vector digested with HindIIl. The
expression plasmids were sequenced to verify the correct
orientation with respect to the promoter for pGYR1. The
construction of CYP2D6 expression plasmid (pGYR1Y/CYP2D6)
was described previously [8]. CYP3A4 expression plasmid
(PGYRY/CYP3A4) was supplied by Dr. Y. Saito (National Institute
of Health Sciences, Tokyo, Japan).

2.4.  Expression of CYP enzymes

The pGYR1 vectors containing CYP cDNAs were used to
transform Saccharomyces cerevisiae AH22 by the lithium acetate
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Fig. 1 - Major metabolic pathways of 5-MeO-DIPT.
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method, and the cultivation of yeast transformants was
performed as described [5]. Microsomes from yeast were
prepared as described previously [10]. The yeast cell micro-
somal content of each recombinant CYP enzyme was as
follows: CYP1A2 (13.5 pmol/mg protein), CYP2C8 (95.3 pmol/
mg protein), CYP2C9 (76.0pmol/mg protein), CYP2C19
(41.8 pmol/mg protein), CYP2D6 (65.0 pmol/mg protein) and
CYP3A4 (49.1 pmol/mg protein).

25.  Measurement of oxidation activities of 5-MeO-DIPT

A typical reaction mixture consisted of G-6-P (10 mM, final
concentration), NADPH (1 mM), MgCl, (10 mM), EDTA (0.2 mM),
microsomal fraction from human liver or yeast cells expressing
CYP enzyme (0.08-0.12 mg protein) and the substrate (0.1-
1000 pM) in 50 mM potassium phosphatebuffer (pH7.4)ina 1.5-
ml Eppendorf-type tube (a final volume of 200 ul). Following
preincubation at 37 °C for S min, the reaction was started by
adding microsomal fractions from human livers or yeast cells
expressing CYP enzymes, continued for 5-10 min, and stopped
by adding aqueous 2M phosphoric acid (10 ul) and 20 mM
ascorbic acid (20 pl), vigorously mixing with a Vortex mixer, and
chillingin an ice bath for 10 min. The tube was then centrifuged
at 14,000 x g at 4 °C for 10 min, and the supernatant was passed
through a 0.45- pm membrane filter (Millipore, Billerica, MA). An
aliquot (20 pl) was subjected to high-performance liquid
chromatography (HPLC) under the conditions described below.
Calibration curves of 5-OH-DIPT and 5-MeO-IPT were made by
spiking ice-cold reaction medium with known amounts of the
synthetic compounds, followed by the addition of aqueous 2 M
phosphoric acid and 20 mM ascorbic acid and treatment as
described above. The detection limits for 5-OH-DIPT and 5-MeO-
IPT were 0.5 and 1.0 pmol/ml, with a signal-to-noiseratio of 3in
both cases. The intra- and inter-day coefficients of variation did
not exceed 10% for any assay.

26. HPLC conditions

The HPLC apparatus consisted of a Hitachi L-2130 pump, an L-
2480 fluorescence detector, an L-2300 column oven, a D-2000
system manager (version 1.1) and a Rheodyne type 772Si
injector. Other conditions were as follows: column, Inertsil C8
(150 mm x 4.6 mm id., GL Sciences, Co. Ltd., Tokyo, Japan);
column temperature, 40 °C; detection, fluorescence excita-
tion/emission wavelength, 280/340nm. The mobile phase
used was a linear gradient system consisting of (A) 20 mM
ammonium acetate (pH 4.0)/acetonitrile (92:8v/v) and (B)
20 mM ammonium acetate (pH 4.0)/acetonitrile (80:20) as
follows: 0-3 min, (A) 100%; 3-15 min, from (A) 100% to (B) 100%;
15-25 min, (B) 100%; 25-30 min, from (B) 100% to (A) 100%; 30~
40 min, (A) 100% at a flow rate of 0.9 ml/min.

2.7. LC/MS conditions

LC/MS analysis was performed using a JMS-700 MStation
(EOL, Tokyo, Japan). HPLC conditions were: column, Inertsil
ODS-3 (150mm x 2.1 mm id.,, GL Science); mobile phase,
aqueous 0.1% TFA/acetonitrile (84:16 v/v); column tempera-
ture, 40° flow rate, 0.2 ml/min; injection volume, 20 pl;
detection, fluorescence excitation/emission wavelength,

280/340nm. MS conditions were: ionization mode, ESI{+);
needle voltage, 2.0 kV; ring voltage, 45 V; orifice voltage, 0V;
the temperatures of the orifice and desolvating plate were 80
and 220 °C; the resolution of the mass spectrometer was set at
1000 or 3000; collision gas, He.

28. Others

Total holo-CYP contents in yeast cell microsomal fractions
were spectrophotometrically measured by assessing the
reduced carbon monoxide spectra according to the method
of Omura and Sato [11] using 91 mM~! cm™! as the absorption
coefficient. Protein concentration was determined by the
method of Lowry et al. [12]. Kinetic parameters (apparent K,
and Vp,, values) were estimated by analyzing Michaelis-
Menten plots or Eadie-Hofstee plots using the computer
program Prism ver. 4.0 software (GraphPad Software, San
Diego, CA).

3. Results

First, we examined the in vitro oxidative metabolism of 5-
MeO-DIPT using pooled human liver microsomes from
Caucasians. When 50 pM 5-MeO-DIPT was used as the
substrate, two major metabolite peaks [M — 1 (retention time
of 10.3 min) and M - 3 (15.1 min)] were observed on the HPLC
chromatogram (Fig. 2). Because the retention times and
fragmentation profiles of M- 1 and M -3 coincided with
those of 5-OH-DIPT and 5-MeOH-IPT synthetic standards in
LC/MS analysis, M — 1 and M — 3 were identified as S-OH-DIPT
and 5-MeOH-IPT, respectively (Fig. 3).

Furthermore, two metabolite peaks [M — 2 (retention time
12.0min) and M -4 (17.7 min) in HPLC] were analyzed by
LC/MS. The fragment ions were as follows: M - 2; m/z 291
(M + 1, 100%), 181 (42%), 140 (85%), 124 (18%): M — 4, m/z 305
(M+1, 64%), 278 (18%), 204 (55%), 144 (100%). From the
molecular ion (m/z 291), M - 2 is thought to be a monohy-
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Fig. 2 - A typical HPLC chromatogram of 5-MeO-DIPT and
its metabolites. The reaction mixture containing human
liver microsomes and 5-MeO-DIPT (50 M) was incubated
in the presence of an NADPH-generating system and the
metabolites formed were examined by HPLC under the
conditions described in Section 2.
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Fig. 3 - Mass fragment ions of M — 1 and M — 3, LG/MS
conditions are given in Section 2.

droxylated 5-MeO-DIPT. It is feasible that M — 4 is a dehy-
drogenated product of dihydroxylated 5-MeO-DIPT.

It is reasonable to think that the formation of these
metabolites was catalyzed by CYP enzymes in the liver
microsomal fractions. We therefore examined what kinds of
CYP enzymes were involved in the formation of M — 1 and
M - 3 from 5-MeO-DIPT in human liver microsomes in the
second step of this study. For this, we used six human
recombinant CYP enzymes expressed in yeast cells: CYP1A2,
CYP2C8, CYP2C9, CYP2C19, CYP2D6 and CYP3A4.

In this experiment, we employed two substrate concentra-
tions (1 and 50 uM). All of the CYP enzymes except for CYP3A4
exhibited the capacity to oxidize 5-MeO-DIPT (Fig. 4). CYP3A4
expressed in yeast cells did not produce any metabolites in
detectable amounts even at 50 uM substrate under the
conditions used. We further examined the metabaolic capacity
of commerdially available insect cell microsomal fractions
(Supersomes) expressing CYP3A4, OR and cytochrome bs.
Interestingly, Supersomes co-expressing CYP3A4 with cyto-
chrome bs exhibited considerable 5-MeO-DIPT N-deisopropy-
lase but not O-demethylase activity, whereas Supersomes
without cytochrome bs did not show any detectable activity
(Fig. 4). As a result, among the six CYP enzymes tested, only
CYP2D6 exhibited 5-MeO-DIPT O-demethylase activity,
whereas all of the six recombinant enzymes showed 5-

Table 1 - Kinetic parameters for 5-MeO-DIPT oxidation

by human liver microsomes

Ko (8M)  Vinax @m0V VK
min/mg (nV/min/mg
protein) protein)

O-demethylation 5.0 140 27.9

N-deisopropylation

Low-Km phase 24 25 1.03

Intermediate-Kp, 257 178 0.69
phase

High-K., phase 1201 409 0.34

Each value represents the mean of two determinations.

MeO-DIPT N-deisopropylase activiiy. The activities were
ranked as CYP2C19 > CYP1A2 > CYP3A4 > CYP2C8 > CYP2C9
= CYP2Dé.

We then performed kinetic analysis using substrate
concentrations ranging from 0.1 to 1000 pM and the pooled
human microsomal fraction and the yeast cell microsomal
fractions expressing recombinant CYP enzymes as enzyme
sources. Only for CYP3A4, the Supersomes expressing
CYP3A4, OR and cytochrome bs was employed. 5-MeO-DIPT
O-demethylation by the pooled human liver microsomal
fraction exhibited monophasic kinetics (Fig. SA), whereas
human liver microsomal N-deisopropylation showed triphasic
kinetics (Fig. SB). Table 1 summarizes the kinetic parameters.
The apparent K, value for monophasic 5-MeO-DIPT O-
demethylation was calculated to be SuM, while the low-,
intermediate- and high-Kn, values for triphasic N-deisopro-
pylation were calculated to be 24, 260 and 1200 pM, respec-
tively.

For 5-MeO-DIPT O-demethylation, recombinant CYP2D6
yielded monophasic kinetics and an apparent K, value of
2 pM. For 5-MeO-DIPT N-deisopropylation, CYP2C19, CYP3A4,
CYP1A2, CYP2C8 and CYP2C9 showed monophasic kinetics,
and gave K,, values of 35, 180, 260, 290 and 1660 pM,
respectively (Table 2). These K, values are similar to the values
of the low-, intermediate- and high-Kp, phases, respectively, of
the human liver microsomal fraction (Table 1). In the case of N-
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Fig. 4 - Comparison of 5-MeO-DIPT oxidation activities of recombinant CYP enzymes expressed in yeast or insect cells.
For incubation, 5 pmol of each CYP enzyme was employed: (A) 5-MeO-DIPT O-demethylation; (B) 5-MeO-DIPT N-
deisopropylation. Open columns, 5-MeO-DIPT 1 xM; closed columns, 5-MeO-DIPT 50 pM. Each value represents the mean
of two determinations. 3A4 & bs, Supersomes; N.D., not detectable.
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Fig. 5 - Kinetic analysis of 5-MeO-DIPT oxidation by human liver microsomes. (A) and (B) Eadie-Hofstee plots for 5-MeO-DIPT

0O-demethylation and N-deisopropylation, respectively.

deisopropylation by CYP2D§, precise kinetic parameters were
not calculated because of the low activities.

In the third step of the present study, we examined the
effects of inhibitors of the CYP enzymes on the oxidative
metabolism of 5-MeO-DIPT in human liver microsomes to
estimate the contribution of the CYP enzymes. For this, we
employed furafylline {13], quercetin [14], sulfaphenazole {15],
omeprazole [16], quinidine [17] and ketoconazole [18] as
specific inhibitors of CYP1A2, CYP2C8, CYP2C9, CYP2C19,

CYP2D6 and CYP3A4, respectively. For 5-MeO-DIPT O-
demethylation by human liver microsomes, quinidine showed
aconcentration-dependent inhibition. Over 95% of the activity
was suppressed by the inhibitor even at 5 pM (Fig. 6A).
Furafylline and quercetin inhibited human liver micro-
somal 5-MeO-DIPT N-deisopropylation in a concentration-
dependent manner, but about 30-40% of the activity remained
even at the highest concentration of the inhibitors (Fig. 6B and
C). Sulfaphenazole also caused a concentration-dependent
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Fig. 6 - Effects of various CYP inhibitors on 5-MeO-DIPT oxidation by human liver microsomes: (A) quinidine (0, 0.5, 5 and
20 pM) as CYP2D6 inhibitor; (B) furafylline (0, 5, 10 and 50 pM) as CYP1A2 inhibitor; (C) quercetin (0, 5, 20 and 50 uM); (D)
sulfaphenazole (0, 5, 20 and 50 xM) as CYP2C9 inhibitor; (E) ketoconazole (0, 1, S and 20 uM) as CYP3A4 inhibitor; (F)
omeprazole (10 uM) as CYP2C19 inhibitor. (A) 5-MeO-DIPT O-demethylation; (B), (C), (D), (E) and (F) 5-MeO-DIPT N-
deisopropylation. The substrate concentrations used were 10 pM for (A) and 50 pM for (B), (C), (D), (E) and (F). Each value
represents the mean of two determinations. HLM, human liver microsomes.
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Table 2 - Kinetic parameters for S-MeO-DIPT oxidation

by recombinant CYP enzymes expressed in yeast cells

Ko (M) Vimax (Pmol/ Vinax/Km
min/pmol ()/min/
CYP) pmol CYP)
0O-demethylation ’
CYP2D6 2.0 29.8 14.8
N-deisopropylation
CYP1A2 263 9.4 0.04
CYP2C8 291 1.7 0.006
CYP2C9 1663 4.2 0.003
CYP2C19 35 6.9 0.19
CYP3A4® 184 4.4 0.02

Each value represents the mean of two determinations.
* Data from Supersomes in which CYP3A4 and cytochrome bg
were co-expressed.

inhibition, but suppressed only 25% of human liver micro-
somal 5-MeO-DIPT N-deisopropylation at the highest con-
centration of S0 uM (Fig. 6D). Ketoconazole suppressed 40%
and 65% of the N-deisopropylase activity at final concentra-
tions of 5 and 20 uM, respectively (Fig. 6E). Omeprazole (10 pM)
suppressed only 10% of 5-MeO-DIPT N-deisopropylation by
pooled human liver microsomes, though this inhibitor at the
same concentration suppressed the 5-MeO-DIPT N-deisopro-
pylation by recombinant CYP2C19 almost completely (Fig. 6F).

4. Discussion

There have hitherto been no reports of the quantitative assays
using authentic samples of 5-MeO-DIPT metabolites to study
the formation of 5-MeO-DIPT metabolites. We therefore
chemically synthesized the two compounds, 5-OH-DIPT and
5-MeO-IPT, and conducted a quantitative analysis of the
formation of these metabolites. Using these synthetic sam-
ples, we examined the in vitro oxidative metabolism of 5-MeO-
DIPT by human liver microsomes and recombinant CYP
enzymes. As expected, 5-MeO-DIPT was biotransformed into
5-OH-DIPT and 5-MeO-IPT as major metabolites by human
liver microsomes under the conditions used. Two other
metabolites were also tentatively identified as monohydroxy-
lated 5-MeO-DIPT and a dehydrogenated product of dihy-
droxylated 5-MeO-DIPT on the basis of the data from L/MS
analysis.

In a preliminary HPLC experiment, we compared the
amounts of 5-OH-DIPT and 5-MeO-IPT formed with the
amount of 5-MeO-DIPT consumed during the incubation of
the substrate (10 pM) under similar conditions to those
employed here. The results indicated that at least 95% of
substrate consumption was explained by the formation of the
two major metabolites (data not shown). Therefore, it is
reasonable to think that 5-OH-DIPT and 5-MeO-IPT are the
major metabolites in human liver microsomes at around
10 pM substrate concentrations (Fig. 1).

Human liver microsomal 5-MeO-DIPT O-demethylation
and N-deisopropylation exhibited monophasic and triphasic
kinetics, respectively. We have been studying the relation-
ships between protein structures and enzymatic functions of
major drug-metabolizing CYP enzymes such as CYP1A2 [19}

and CYP2D6{20,21]. Using the yeast cell expression systems of
CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP2D6 and CYP3A4
constructed so far in this laboratory, we examined the
metabolic capacities of these recombinant enzymes for the
oxidation of 5-MeO-DIPT.

Among the recombinant enzymes, only CYP2D6 showed
considerable 5-MeO-DIPT O-demethylase activity. This reac-
tion in human liver microsomes yielded monophasic kinetics,
and was almost completely suppressed by quinidine as a
spedific inhibitor of CYP2D6. The apparent K., value (2 pM) for
the recombinant CYP2D6 was similar to that (5 uM) for the
human liver microsomes. These results indicate that 5-MeO-
DIPT O-demethylation was mainly mediated by CYP2D6 in
human livers.

In contrast, the two CYP enzymes (CYP1A2 and CYP2C19) in
the yeast cell expression system exhibited considerable 5-
MeO-DIPT N-deisopropylase activities. The activities of
CYP2C8, CYP2C9 and CYP2D6 were much lower than those
of CYP1A2 and CYP2C19. Interestingly, yeast cell microsomnal
CYP3A4 did not show any detectable activity for either O-
demethylation or N-deispropylation. Before coming to a
conclusion, we further examined the metabolic capacity of
Supersomes expressing CYP3A4, OR and cytochrome bs,
because it is well known that co-existence of cytochrome bs
increases the oxidation capacity of CYP3A4 for its substrates
[22,23]. As expected, Supersomes co-expressing CYP3A4 with
cytochrome bs exhibited considerable 5-MeO-DIPT N-
demethylase activity, whereas Supersomes without cyto-
chrome bs did not.

The apparent K, values for CYP2C19 (35 pM), CYP3A4
(180 M), CYP1A2 (260 uM), CYP2C8 (290 uM) and CYP2C9
(1700 uM) seem to correspond to those for human liver
microsomal low- (24 pM), intermediate- (260 pM) and high-
Km (1200 pM) phases, respectively. To confirm the involve-
ment of these CYP enzymes in human liver microsomal 5-
MeO-DIPT N-deisopropylation, the effects of furafylline,
quercetin, sulfaphenazole, omeprazole and ketoconazole
were examined as specific inhibitors for CYP1A2, CYP2C8,
CYP2C9, CYP2C19 and CYP3A4, respectively. Among them,
furafylline, quercetin and ketoconazole exerted considerable
inhibitory effects at relatively low concentrations (several pM).

We employed quercetin as the inhibitor of CYP2CS8 in the
present study, however, this compound was reported to
inhibit the metabolic activities of CYP1A2, CYP2C19 and
CYP3A4 as well [24]. Therefore, quercetin could suppress
the activities not only of CYP2C8 but also of CYP1A2 and
CYP3A4 in 5-MeO-DIPT N-deisopropylation by human liver
microsomal fraction in this study. Inhibitory effect of
sulfaphenazole was found to be weak as compared to those
of furafylline and ketoconazole. Interestingly, the inhibitory
effect of omeprazole was very weak under the conditions
used. In this case, we employed an inhibitor concentration of
10 pM, which was sufficient to suppress the bufuralol 1°-
hydroxylase activities of CYP2C19 in our previous studies [25].
In fact, 10 pM omeprazole completely suppressed 5-MeO-DIPT
N-deisopropylation by recombinant CYP2C19 in the present
study.

Other drug-metabolizing-type CYP enzymes such as
CYP2E1, CYP2A6 and CYP2B6 could also be involved in the
oxidation of 5-MeO-DIPT in the human liver. In another

— 101 —
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preliminary experiment, we found that diethyldithiocarba-
mate (5, 20 and 100 uM final concentrations) as CYPZE1
inhibitor [26] did not affect 5-MeO-DIPT oxidation by the
pooled human liver microsomal fraction (data not shown).
Ono et al. [27] reported that diethyldithiocarbamate inhibits
the metabolic activities of CYP2A6 and CYP2C19 in addition to
that of CYP2E1. Furthermore, furafylline and ketoconazole
(5 uM each) suppressed 60% and 40%, respectively, of human
liver microsomal 5-MeO-DIPT N-deisopropylation under the
conditions employed. CYP3A4 is the most abundant CYP
enzyme followed by CYP2C and CYP1A2 in the human liver
[28]. These results indicate that CYP1A2, CYP2C8 and CYP3A4
are the major 5-MeO-DIPT N-deisopropylases in the human
liver at substrate concentrations around 50 uM or less.

The present results of the measurement of enzyme
activities and the effects of inhibitors indicated that human
liver microsomal 5-MeO-DIPT O-demethylation is mainly
mediated by CYP2D6, whereas N-deisopropylation is mediated
mainly by CYP1A2 and CYP3A4, and also by CYP2C8, CYP2C9
and CYP2C19, at least in part. The major contribution of
CYP2D6 to 5-MeO-DIPT O-demethylation is predictable from
the previous findings of Yu et al. [29,30] on the role of CYP2D6
in 5-MeO-tryptamine metabolism. It should be noted that
though CYP2C19 exhibited the highest activity as 5-MeO-DIPT
N-deisopropylase among the six recombinant CYP enzymes
examined, its contribution was thought to be relatively low in
the reaction by the pooled human liver microsomal fractions
used in the present study.

The kinetic parameters, particularly the clearance (Vmay/
Ki) values, indicate that as compared to N-deisopropylation,
O-demethylation might contribute to a much greater extent
to the oxidative metabolism of 5-MeO-DIPT. The present
results together with previous in vivo and in vitro findings
cast considerable light on the metabolic fate of 5-MeO-DIPT
in the human body. However, the toxicity of 5-MeO-DIPT and
related compounds, including the metabolites of 5-MeO-
DIPT, remain to be elucidated. If only the parent compound,
5-MeO-DIPT, has psychotomimetic activity and S-MeO-DIPT
O-demethylation is mediated mainly by CYP2D6, poor
metabolizers who are deficient for functional CYP2D6 may
show higher sensitivity to, or toxicity of, 5-MeO-DIPT than
extensive metabolizers having normal CYP2D6 functions.
Further systematic studies will be needed to understand
the relationship between the metabolism and toxicity of 5-
MeO-DIPT.

In summary, in vitro quantitative studies on the oxidative
metabolism of 5-MeO-DIPT were performed using humnan liver
microsomal fractions, recombinant CYP enzymes and syn-
thetic 5-MeO-DIPT metabolites. 5-MeO-DIPT was mainly
oxidized to O-demethylated (5-OH-DIPT) and N-deisopropy-
lated (5-MeO-IPT) metabolites in pocled human liver
microsomes. Kinetic analysis revealed that 5-MeO-DIPT
O-demethylation showed monophasic kinetics, whereas
N-deisopropylation gave triphasic kinetics. Among the six
recombinant CYP enzymes exarnined, only CYP2D6 exhibited
5-MeO-DIPT O-demethylase activity, and CYP1A2, CYP2CS,
CYP2C9, CYP2C19 and CYP3A4 showed 5-MeO-DIPT N-deiso-
propylase activities. The apparent K, value of CYP2D6 was
close to that for 5-MeO-DIPT O-demethylation, and the K,
value of other CYP enzymes were similar to those of the low-

K (CYP2C19), intermediate- K, (CYP1A2, CYP2C8 and CYP3A4)
and high-Ky, (CYP2C9) phases, respectively, for N-deisopro-
pylation in human liver microsomes. These results together
with the results of the inhibitory studies indicate that CYP2D6
is the major 5-MeO-DIPT O-demethylase and CYP1A2, CYP2C8
and CYP3A4 are the major N-deisopropylase enzymes in the
human liver.
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1. Introduction

Several kinds of monkeys such as rhesus monkeys, crab-
eating monkeys, Japanese monkeys and marmoset monkeys,
have been employed as one of experimental animals in
research on drug metabolism and toxicity. The old-world
monkeys, including rhesus monkeys, crab-eating monkeys
and Japanese monkeys ranging through Africa, Europe and
Asia, have disadvantages such as body sizes too big for easy
handling and poor fertility. In contrast, marmoset monkeys,
belonging to the new-world monkeys ranging through Central
and South America are thought to be promising candidates for
experimental animals, because of their small size, easy
handling and breeding.

Cytochrome P450 (CYP) is a key enzyme for oxidative drug
metabolism in mammals including humans and monkeys.
CYP constitutes a superfamily and four CYP subfamilies,
namely, CYP1, -2, -3 and —4, are mainly responsible for drug
metabolism in humans [1-3]. Although CYP enzymes have
been extensively characterized in humans and the old-world
monkeys, relatively little information is available about the
properties of CYP enzymes in marmoset monkeys.

Previous studies provided experimental evidence support-
ing the notion that pretreatment with chemical compounds
such as phenobarbital [4], 3-methylcholanthrene, polychlori-
nated biphenyl [5}, 2,3,7,8-tetrachlorodibenzo-p-dioxin [6,7] or
isoniazide [8] induced CYP isoenzymes in marmosets. Using
targeted anti-peptide antibodies, Schulz et al. [9] suggested the
possible expression of CYP1A1, CYP1A2, CYP2A, CYP2B,
CYP2C, CYP2E1 and CYP3A21 enzymes in marmosets. More-
over, the research group of Karnataki isolated cDNA clones
encoding CYP1A2 [5], CYP2D19 and CYP3A21 [10] from
marmoset livers, and characterized the enzymatic properties
of CYP1A2 expressed in high-red yeast cells [S]. Recently, we
also cloned cDNAs encoding CYP1A2 [11), CYP2D19 and
CYP2D30 [12] from fresh marmoset livers, and expressed
the proteins in yeast cells to examine their enzymatic
functions. However, for prompt utilization of marmoset
monkeys as experimental animals in the study of drug
metabolism and toxicity, functional characterization of other
drug-metabolzing enzymes in this species would be required.
In the present study, we have cloned a cDNA encoding a novel
CYP2C enzyme from marmoset liver, expressed the protein in
yeast cells, and characterized its enzymatic functions.

2. Materials and methods
2.1. Materials

Peclitaxel (PT), tolbutamide (TB), quercetin, sulfaphenazole
and omeprazole were purchased from Sigma Chemical Co. (St.
Louis, MO); 6a-hydroxypaclitaxel was from Calbiochem (San
Diego, CA), docetaxel trihydrate was from Toronto Research
Chemicals Inc. (North York, Ontario, Canada); diclofenac (DF),
N-phenylanthranilic acid, glucose 6-phosphate {G-6-P) dehy-
drogenase (from yeast) and NADPH were from Wako Pure
Chemicals Co. (Osaka, Japan); 4’-hydroxydiclofenac, S-mephe-
nytoin (S-MP) and 4'-hydroxymephenytoin were from Daiichi
Chemical Co. (Tokyo, Japan); phenobarbital and chlorpropa-

mide were from Tokyo Kasei Kogyo Co. (Tokyo, Japan). p-
Methylhydroxytolbutamide was supplied from Dr. Takahiko
Baba. Pooled human liver microsomes from donors (12
Caucasians and 1 Hispanic, 13 males, 4-62 years old; 9 females,
40-74 years old) were purchased from BD Biosciences Discovery
Labware (Bedford, MA). Other chemical reagents or solvents
used were of the highest quality commercially available.

2.2.  (Cloning of cDNA encoding a marmoset CYP2C enzyme

Total RNA was extracted from an adult female marmoset liver
(2 years old, supplied from Kagoshima University) using an
RNeasy mini kit (Qiagen, Hilden, Germany), and first-strand
DNA was synthesized using an RNA PCR kit (Version 3.0,
Takara Bio, Ohtsu, Japan) according to the manufacturer’s
instructions. A full length cDNA encoding a marmoset CYP
enzyme was amplified by polymerase chain reaction (PCR)
using the forward primer 5'-GTAAGAAGAGAAGTCTTCAATG-
3’ and the reverse primer 5-ATACAAGTGTTACCGAGTATGA-
3. These primers were designed based on the nucleotide
sequence in the flanking regions of the crab-eating monkey
CYP2C20 cDNA (GenBank accession no. $53046). The reaction
mixtures (50 pl) contained 0.2 mM dNTPs, 1 mM MgSO,, 1 U of
KOD-plus DNA polymerase (Toyobo, Osaka, Japan) and each
oligonucleotide primer at 0.5 pM. PCR consisted of 35 cycles of
denaturation at 94 °C for 30 s, annealing at 50 °C for 30s and
extension at 68°C for 100s. The initial denaturation was
performed at 94 °C for 120 s. The amplified product (1.5 kbp)
was purified with a MinElute gel extraction kit (Qiagen), and
the 5'- and 3'-ends of the coding region were sequenced in both
the forward and reverse directions using ABI BigDye termi-
nator cycle sequencing reaction kit v3.1 (Applied Biosystems,
Piscaway, NJ).

The full-length ¢cDNA thus obtained was modified by PCR
amplification with 5-AAGCTTAAAAAAATGGATCCTTTTGT-
GGTCC-3 and 5-AAGCTTTCAGACAGGAATGAAGCAGATC-
TG-3 as primers under the conditions described above.
HindIll sites (marked with solid lines) were introduced to
the 5'-end of the start codon and the 3'-end of the stop codon to
facilitate subcloning into the yeast expression vector (pGYR1).
A Kozak sequence (marked in italics) was also introduced just
upstream of the start codon to achieve high expression of the
protein in yeast cells. The PCR products were ligated into
PGEM-T (Promega, Madison, W1) using the TA cloning system,
and the insert was sequenced in both the forward and reverse
directions. The DNA fragment encoding a marmoset CYP2C
(tentatively called P450 M-2C) was cut out with Hindlll from the
cloned pGEM-T and was subsequently subcloned into pGYR1
digested with the same enzyme. The insert of the plasmid was
sequenced to verify the correct orientation with respect to the
promoter for pGYR1. Construction of the expression plasmids
containing each of CYP2C8, CYP2C9 and CYP2C19 cDNAs was
described previously [13].

2.3.  Expression of CYP2C enzymes

Saccharomyces cerevisiae AH22 was transformed with pGYR1
containing each of CYP cDNAs by the lithium acetate method,
and the cultivation of yeast transformants thus obtained was
performed as described [14]. A microsomal fraction was
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prepared from yeast cells by the methed previously reported
[15}.

24.  Assays of M-2C holo- and apoproteins

The microsomal fraction prepared as above was diluted to a
protein concentration of 10 mg/ml with 100 mM potassium
phosphate buffer (pH 7.4) containing 20% (v/v} glycerol, and
the total holo-CYP content was measured spectrophotome-
trically according to the method of Omura and Sato [16] using
91 mM~* cm™! as the absorption coefficient.

Marmoset liver microsomes were also prepared according
to a published method [17). Appropriate portions of the
microsomal fractions of yeast cells, marmoset livers and
pooled human livers were subjected to sodium dodecyl
sulfate-polyacrylamide gel electrophoresis using a 10% slab
gel. Following the electrophosresis, proteins on the gel were
electroblotted to a polyvinylidene fluoride membrane, and
were analyzed by Western blotting according to the method of
Guengerich et al. [18] using rabbit anti-human CYP2C19
polyclonal antibody as a primary antibody (Daiichi Chemical
Co.) and peroxidase-goat-anti-rabbit IgG (H + L) as a secondary
antibody (Daiichi Chemical Co.).

25. Enzyme assay

PT 6a-hydroxylase activity in microsomal fractions from yeast
cells expressing P450 M-2C or CYP2C8 was determined by the
method of Soyama et al. [19] with a slight modification. Briefly,
an ice-cold reaction mixture (500 ul) in a conical glass tube
(10 ml) with a stopper contained 5mM G-6-P, 1 IU of G-6-P
dehydrogenase, S mM MgCl,, 0.1 mM EDTA, 0.5 mM NADPH
and PT (2.5, 5 and 10 pM). After preincubation at 37 °C for
Smin, the reaction was started by adding the microsomal
fraction (20 pmol CYP) and was performed at 37 °C for 10 min.
After the reaction was stopped by adding 3 ml of ethyl acetate
and vortex mixing, 10 nmol of docetaxel was added as an
internal standard, and the mixture was shaken at room
temperature for 10 min. The mixture was then centrifuged at
1200 x g for 15 min, and 2 ml of the organic layer was taken,
and evaporated in vacuo. The residue was dissolved in 200 pl of
methanol/water (1:1, v/v), and an aliquot (10 pl) was subjected
to HPLC under the conditions described below.

DF 4'-hydroxylase activity in microsomal fractions from
yeast cells expressing M-2C or CYP2C9 was determined by the
method of Schmitz et al. [20] with a slight modification. Briefly,
a reaction mixture containing the same components
described above except for the substrate (5, 20 or 100 uM DF
instead of PT) was preincubated at 37 °C for S min, and the
reaction was started by adding the microsomal fraction
{20 pmol CYP) and was stopped 5 min later by adding 20 pl
of 2M phosphoric acid and vortexing. Then, 3ml of t-
butylmethylether and 0.8 nmol of N-phenylanthranilic acid
as an internal standard were added, shaken vigorously, and
centrifuged at 1200 x g for 15 min. The organic layer (2 ml) was
taken, and evaporated in vacuo, and the residue was dissolved
in 200 pl of methanol/water (1:1, v/v). An aliquot (10 pl) was
subjected to HPLC under the conditions described below.

TB p-methylhydroxylase activities in microsomal fractions
from yeast cells expressing P450 M-2C, CYP2C8, CYP2C9 or

CYP2C19 and in pooled human liver microsomes were
determined by the method of Komatsu et al. [21] with a slight
modification. Briefly, a reaction mixture containing the same
components described for PT 6a-hydroxylation except for the
substrate (0.25, 1 or 2.5 uM TB instead of PT) was preincubated
at 37 °C for 5 min, and the reaction was started by adding the
microsomal fraction (20 pmol of recombinant CYP or 1 mg of
human liver microsomes) and was stopped 10 min later for the
recombinant enzymes and 40 min later for the human liver
microsomes by adding 3 ml of ethyl acetate and vortexing.
Then, 1.5pg of chlorpropamide was added as an internal
standard, and the mixture was shaken vigorously, and
centrifuged at 1200 x g for 15 min. The organic layer (2 ml)
was taken, and evaporated in vacuo, and the residue was
dissolved in 200 pl of methanol/water (1:1, v/v). An aliquot
(10 pl) was subjected to HPLC under the conditions described
below.

S-MP 4'-hydroxylase activity in microsomal fractions from
yeast cells expressing P450 M-2C or CYP2C19 was determined
by the method of Nakajima et al. [22] with a slight modifica-
tion. Briefly, a reaction mixture containing the same compo-
nents described for PT 6a-hydroxylation except for the
substrate (10, 50 or 200pM S-MP instead of PT) was
preincubated at 37 °C for 5 min, and the reaction was started
by adding the microsomal fraction (20 pmol CYP) and was
stopped 5 min later by adding 3 ml of dichloromethane and
vortexing. Then 4 nmol of phenobarbital was added as an
internal standard, and the mixture was shaken vigorously,
and centrifuged at 1200 x g for 15 min. The organic layer (2 ml)
was taken, and evaporated in vacuo, and the residue was
dissolved in 200 pl of CH;OH/water (1:1, v/v). An aliquot (10 pl)
was subjected to HPLC under the conditions described below.

The HPLC conditions were: a Hitachi 655A-12 liquid
chromatograph equipped with an L-5000 LC controller, a
655A variable wavelength UV monitor, a Rheodyne model
7125 injector and a Shimadzu C-R3A Chromatopac data
processor; column, Inertsil ODS 80A (4.6 mm x 150 mm, GL
Science Co., Tokyo, Japan) at 40 °C; mobile phase, water/CH;CN/
CH,0H (52:34:14, v/v) at a flow rate of 1.2 ml/min for PT 6a-
hydroxylation (detection, 230 nm), 30 mM potassium phos-
phate buffer (pH 6.5)/CH;CN/CH,0H (64:16:20, v/v) at a flow rate
of 1.2mlmin for DF 4'-hydroxylation (detection, 280 nm),
20mM potassium phosphate buffer (pH 4)/CH;CN/CH;0H
(77:6:17, v/v) at a flow rate of 1.0 ml/min for S-MP 4'-hydroxyla-
tion (detection, 204 nm), and 0.05% phosphoric acid/CH;CN
(72:28, viv) at a flow rate of 1.0 ml/min for TB p-methylhydrox-
ylation (detection, 230 nm). For each enzyme assay, calibration
curves were made by adding various amounts of synthetic
metabolites to ice-cold reaction mixtures containing the same
components described above. Intra- and inter-day variation
coefficients did not exceed 10% in any assay.

2.6. Kinetic and inhibition studies

Kinetic studies for TB p-methylhydroxylation were performed
using substrate concentration ranges of 0.1-10 mM for P4ASOM-
2C, 0.1-7.5mM for CYP2C8, 0.025-2.5mM for CYP2C9 and
human liver microsomes, 0.05-5 mM for CYP2C19, and 0.01-
5mM for marmoset liver microsomes. Apparent Michaelis-
Menten constants (K,,) and maximal velocities (Vp,.,) wWere
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Fig. 1 - Nucleotide and deduced amino acid sequences of marmoset P450 M-2C. The numbers of the amino acids and

nucleotides are shown in upper and lower lines, respectively.
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M-2C 1 MDPFVVLLLCLSFLLLFSLWRQSSGRGKLPPGPTPLPIIGNILQISVKDIGKSFSNLSKV 60
cyp2cs8 1 MEPFVVLVLCLSFMLLFSLWRQSCRRRKLPPGPTPLPIIGNMLQIDVKDICKSFTNFSKV 60
CYP2C9 1 MDSLVVLVLCLSCLLLLSLWRQSSGRGKLPPGPTPLPVIGNILQIGIKDISKSLTNLSKV 60
CYP2C19 61 MDPFVVLVLCLSCLLLLSIWRQSSGRGKLPPGPTPLPVIGNILQIDIKDVSKSLTNLSKI 60
* *kk Fkkk *k * hhkkk k hhkkhkhhkhkhkk hhkk *ik * %k * %k * k%
SRS-1
M-2C 61 YGPLFTVYFGTKPVVVLHGYEAVKEALIDNGEEFSGRSIFPVSQRTSKDLGIISSNGKRW 120
cyp2c8 61 YGPVFTVYFGMNPIVVFHGYEAVKEALIDNGEEFSGRGNSPISQRITKGLGIISSNGKRW 120
CYP2C9 61 YGPVFTLYFGLKPIVVLHGYEAVKEALIDLGEEFSGRGIFPLAERANRGFGIVFSNGKKW 120
CYP2C19 61 YGEVETLYFGLERMVVLHGYEVVKEALIDLGEEF SGRGHFPLAERANRGFGIVFSNGKRW 120
kkk Kk dkk *k khkdhk dhhkthkhkhhk khkhhkhkk khkkk *
M-2C 121 KEIRRFSLTTLRNFGMGKRSIEDRVQQEARCLVEELRKTKASPCDPTFILGCAPCNVICS 180
CYP2C8 121 KEIRRFSLTNLRNFGMGKRSIEDRVQEEAHCLVEELRKTKASPCDPTFILGCAPCNVICS 180
CYP2C9 121 KEIRRFSLMTLRNFGMGKRSIEDRVQEEARCLVEELRKTKASPCDPTFILGCAPCNVICS 180
CYP2C19 121 KEIRRFSLMTLRNFGMGKRSIEDRVQEEARCLVEELRKTKASPCDPTFILGCAPCNVICS 180
Yo ok J ke ke ok ke k dhkhkkhkdkkhhhhdkhhk dk & gk kdd s d k& & ok g o g s ok d o e ok ok ok ok ok ke ok
. SRS-3
M-2C 181 VVFQNRFDYKDENFLTLMKRFNENFKILSSPWIQFCNNFPLLMDYFPGPHNKLFKNVALT 240
CYP2C8 181 VVFQKRFDYKDQNFLTLMKRFNENFRILNSPWIQVCNNFPLLIDCFPGTHNKVLKNVALT 240
CYP2C9 181 IIFHKRFDYKDQOFLNLMEKLNENIKILSSPWIQICNNFSPIIDYFPGTHNKLLKNVAFM 240
CYP2C19 181 IIFQKRFDYKDQQFLNLMEKLNENIRIVSTPWIQICNNFPTIIDYFPGTHNKLLKNLAFM 240
* Y % de % % W *k kX dr % K * ddhkdk dkhkk d kkk  dkok * kK
SRS4
M-2C 241 KSYIWEKIKEHQASLDVNNPRDFIDCFLIKMQQEKDNQESEFTIESLVGTVADLEFVAGTE 300
CYP2C8 241 RSYIREKVKEHQASLDVNNPRDFMDCFLIKMEQEKDNQKSEFNIENLVGTVADLEVAGTE 300
CYP2C9 241 KSYILEKVKEHQESMDMNNPQDFIDCFLMKMEKEKHNQPSEFTIESLENTAVDLFGAGTE 300
CYP2C19 241 ESDILEKVKEHQESMDINNPRDFIDCFLIKMEKEKQNQQSEFTIENLVITAADLLGAGTE 300
d K dhk khkkhk k Kk hhkhk kk hhhthk h¥ dk Kk hhkk *k * * * % % Y K %
M-2C 301 TTSTTLRYGLLLLLKHPEVTAKVQEEIDHVIGRHRSPCMQDRSHMPYTDAVMHEIQRYID 360
CYP2C8 301 TTSTTLRYGLLLLLKHPEVTAKVQEEIDHVIGRHRSPCMQDRSHMPYTDAVVHEIQRYSD 360
CYP2C9 301 TTSTTLRYALLLLLKHPEVTAKVQEEIERVIGRNRSPCMQDRSHMPYTDAVVHEVQRYID 360
CYP2C19 301 TTSTTLRYALLLLLKHPEVTAKVQEEIERVIGRNRSPCMODRGHMPYTDAVVHEVQRYID 360
dhkkhkkhkhk dhkhkkkhkhkkdkhkhhkhhhkdii hdekk Fhkhhkhkkdkhk Fhkhkdkhkdrkd *hk hkdk K
—SRS-§ ____
M-2C 361 LVPTSVPHAVTTDIKFRNYLIPKGTAIMTSLTSVLHSDKEFPNPKTFDPGHFLDKNGNFK 420
CYP2C8 361 LVPTGVPHAVTTDTKFRNYLIPKGTTIMALLTSVLHDDKEFPNPNIFDPGHFLDKNGNFK 420
CYP2C9 361 LLPTSLPHAVTCDIKFRNYLIPKGTTILISLTSVLHDNKEFPNPEMFDPHHFLDEGGNFK 420
CYP2C19 361 LIPTSLPHAVTCDVKFRNYLIPKGTTILTSLTSVLHDNKEFPNPEMFDPRHFLDEGGNFK 420
* K%k khkhkkkx *k khkhkkkkhkkhkhkhkh * kkkkkk * kK k kK *xkk kkk*k d ok Kk &
—_SRS-6_
M-2C 421 KSDHFMPFSAGKRICAGEGLARMEIFLFLTTILONFNLKSVGDIKNLNTTSASKSIVSLP 480
CYP2C8 421 KSDYFMPFSAGKRICAGEGLARMELFLFLTTILONFNLKSVDDLKNLNTTAVTKGIVSLP 480
CYP2C9 421 KSKYFMPFSAGKRICVGEALAGMELFLFLTSILONFNLKSLVDPKNLDTTPVVNGFASVP 480
CYP2C19 421 KSNYFMPFSAGKRICVGEGLARMELFLFLTFILONFNLKSLIDPKDLDTTPVVNGFASVE 480
* % hhkhkhkhkhkhihkd %k dk *hk hhhkhkk hhkhkhhkhhrhk * Kk % kK
M-2C 481 PPYQICFIPV 491
CYP2C8 481 PSYQICFIPV 491
CYP2C9 481 PFYQLCFIPV 491
CYP2C19 481 PFYQLCFIPV 491

* kk khkkkk

Fig, 2 - Multiple alignment of the amino add sequences of P450 M-2C, human CYP2C8, CYP2C9 and CYP2C19. *Amino acid
residues conserved among the four CYP2C enzymes. Six substrate recognition sites (SRSs) are shown with lines.

analyzed on the basis of Michaelis-Menten plots or Eadie-
Hofstee plots using Prism Version 4 (Graphpad Software,
San Diego, CA). Inhibition experiments using quercetin (10,
50 and 200 pM), sulfaphenazole (20, 50 and 200 uM) and
omeprazole (50, 200 and 500 uM) and substrate (TB) con-
centrations of 0.1 and 1 mM were performed for marmoset
liver microsomes and yeast cell microsomes expressing
P450 M-2C. Each inhibitor was dissolved in a mixture of
methanol/dimethylsulfoxide (1:1, v/v} and the final concen-
tration of the organic solvent in the reaction mixture was

less than 1%. Control experiments were run with the vehicle
only instead of the inhibitors. ICs, values were analyzed
using Prism. Protein concentrations were measured by the
method of Lowry et al. [23] using bovine plasma albumin as
a standard.

2.7.  Molecular modeling

The homology model of P450 M-2C was constructed by Swiss-
Model (http://swissmodel.expasy.org/) using the crystallo-
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Table 1 - Identities of the nucleotide and deduced amino acid sequences of eight CYP2C enzymes in primates

M-2C CYP2C38 CYP2C9 CYP2CI9  CYP2C20 CYP2C43 (CYP2C14 CYP2CT5

M-2C 92.7 84.5 838 93.1 83.3 93.1 83.6
CYP2C8 811 84.7 849 95.6 838 95.5 84.5
CYP2C9 78.4 77.6 94.8 84.5 95.2 845 95.9
CYP2C19 71.1 778 9.4 847 93.8 846 94.8
CYP2C20 88.8 91.6 78.2 78.6 83.2 9.6 84.3
CYP2C43 76.7 77.1 92.2 90.0 77.1 83.1 95.1
CYP2C74 89.0 91.6 78.2 784 994 76.9 84.2
CYP2C7S 76.5 76.7 93.9 92.0 711 935 769

Upper-right values, percentage identities of the nucleotide sequences; lower-left values, percentage identities of deduced amino acid
sequences.

graphic data of CYP2C8 (1PQ2) obtained from Protein Data 3. Results
Bank (http://www.rcsb.org/pdb/) and the primary amino acid
sequence of P450 M-2C determined in this work. Hydrogen 3.1.

atoms were further added for the P450 M-2C homology model

Sequence analysis

using the Biopolymer module of Insight I software package
(Molecular Simulations Inc., San Diego, CA). Six peptides of
P450 M-2C (Arg-97 to Asn-116, Met-198 to Ser-209, Phe-234 to
Leu-239, Gly-289 to Ser-303, lle-359 to His-368, and Thr-469 to
Ser-478) were extracted as substrate recognition sites (SRSs).
The active-site cavities of CYP2C8 and P450 M-2C were made
manually above the sixth ligand of heme at 1.0 A resolution
using a homemade CG program working on Windows PC. The
amino acid residues at the active sites of CYP2C8 and P450 M-
2C were drawn using RasMol Version 2.6-ucb-1.0 as described
elsewhere [24].

B 012
g
§ o4
8
-
044 .\\/
012 T Y T T
40 420 440 460 480
(A) Wave length (nm)

As shown in Fig. 1, the cloned cDNA consisted of 1473 base
pairs starting with an initiation codon ATG and ending with a
termination codon TGA. Fig. 2 depicts a comparison of
deduced amino acid sequences of P450 M-2C, human CYP2C8,
CYP2C9 and CYP2C19. The nucleotide and amino acid
sequences are compared with those of human and monkey
P450s belonging to the CYP2C subfamily in Table 1. The
nucleotide sequence of the cDNA encoding marmoset P450 M-
2C showed 92.7, 84.5, 83.8, 93.1, 83.3, 93.1 and 83.6% identities
to human CYP2C8 (GenBank accession no. NM-000770),
CYP2C9 (NM-000771), CYP2C19 (NM-000769), crab-eating mon-

Fig. 3 - A reduced CO-difference spectrum of yeast cell microsomes expressing marmoset P450 M-2C (A) and Westem blot
analysis of microsomal fractions from human and marmoset livers and of yeast cells expressing P450 M-2C and human
CYP2C enzymes (B). (A) The protein concentration used was 10 mg/ml. (B) Lane 1, human liver microsomes; lane 2, yeast cell
microsomes expressing human CYP2CS8; lane 3, yeast cell microsomes expressing human CYP2C9; lane 4, yeast cell
microsomes expressing human CYP2C19; lane 5, yeast cell microsomes expressing marmoset P450 M-2C; lane 6, marmoset
liver microsomes; lane 7, mock. The amounts of microsomal proteins used were 30 pg for human and marmoset livers and
15 pg for yeast cells expressing P450 M-2C and human CYP2C enzymes.
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Fig. 4 - Comparison of various drug oxidation activities between P450 M-2C and human CYP2C enzymes. (A) PT (2.5, 5 and
10 pM) 6a-hydroxylation, (B) DF (5,20 and 100 pM) 4'-hydroxylation, (C) TB (0.25, 1 and 2.5 mM) p-methylhydroxylation and (D)
S-MP (10, 50 and 200 uM) 4'-hydroxylation. Open, dotted and hatched columns show the lowest, intermediate and highest

concentrations, respectively. Each value represents the mean + S.D. of three independent determinations. ND, not detectable.

key CYP2C20 (S53046), thesus monkey CYP2C43 (AB212264),
CYP2C74 (AY635462) and CYP2C75 (AY635463), respectively.
The deduced amino acid sequence of P450 M-2C was highly
identicaltothose of human CYP2C8 (87.1%identity), crab-eating
monkey CYP2C20 (88.8%) and rhesus monkey CYP2C74 (89.0%).

3.2.  Expression of marmoset P450-M-2C protein in yeast
cells

The microsomal fraction was prepared from yeast cells
expressing P450 M-2C, and the content of the recombinant
holoenzyme was determined by reduced CO-difference
spectroscopy (Fig. 3, left panel). The spectrum showed a Soret
peak at 450 nm and a negligible level of peak at 420 nm. The
content of P450 M-2C was calculated to be 133 pmol/mg
protein (the mean value of two independent determinations).
In Western blot analysis using polyclonal antibodies raised
against human CYP2C19 (Fig. 3, right panel), microsomal
fractions from yeast cells expressing P450 M-2C (lane no. 5)
and from the marmoset liver (lane no. 6) exhibited a single
protein band with a molecular weight similar to that of

Table 2 - Kinetic parameters for TB p-methylhydroxyla-
tion by microsomal fractions from yeast cells expressing

marmoset and human CYP enzymes and from human
and marmoset livers

Enzyme source Ky, (M) Vmax Vmax/Km
Recombinant enzyme?®
P450 M-2C 1780 11.8 0.0066
CYP2C8 1520 25 0.0017
CYP2C9 335 16.2 0.048
CYP2C19 649 324 0.050
Liver microsomal fraction’
HLM 318 (Km1) 185 (Vmax) 0582 (Vman1/Km1)
727 Kmd 246 (Vma) 338 (Vimaxo/Ken2)
MLM 1170 470 0.402

2 Vinax, pmol/min/pmol CYP; Vypao/Kpm, pl/min/pmol CYP.

% Vimax, pmol/min/mg protein; Vimay/Km, pl/min/mg protein. HLM,
human liver microsomes; MLM, marmoset liver microsomes. Each
value represents the mean of two independent determinations.

recombinant CYP2C19 (lane no. 4). In contrast, the pooled
human liver microsomal fraction (lane no. 1) showed a major
protein band whose molecular weight was similar to that of
recombinant CYP2C9 (lane no. 3) and additional three faint
protein bands, two of which exhibited similar mobilities to
recombinant CYP2C8 (lane no. 2) and CYP2C19 (lane no. 4).

3.3.  Drug oxidation activities

The recombinant P450 M-2C did not show any detectable
oxidation activities towards PT or S-MP under the conditions
used (Fig. 4A and D). A slight activity was observed for DF 4'-
hydroxylation by P450 M-2C at the highest substrate concen-
tration used (100 pM) (Fig. 4B). P450 M-2C exerted considerable
TB p-methylhydroxylase activities, which were 20-50% those of
CYP2C9 at substrate concentrations from 0.25 to 2.5mM
(Fig. 4C). Based on these results, we performed kinetic studies
for TB p-methylhydroxylation by P450 M-2C and compared the
results with those of human CYP2C8, CYP2C9 and CYP2C19.

TB p-methylhydroxylation by four recombinant CYP
enzymes showed monophasic kinetics in Michaelis-Menten
plots (data not shown). The kinetic parameters obtained are
summarized in Table 2. The recombinant CYP enzymes could
be divided into two groups, i.e., high-Kn, group (P450 M-2C and
CYP2C8) and low-K,, group (CYP2CS and CYP2C19).

TB p-methylhydroxylation by microsomal fractions from
human and marmoset livers was analyzed by Eadie-Hofstee
plots (data not shown). In human liver, microsomal TB

Table 3 - The IG5, values for inhibitors of TB p-

methylhydroxylation by mormoset liver microsomes
and recombinant P450 M-2C

Inhibitor Marmoset liver Recombinant
microsomes P450 M-2C
0.1 mM? 1 mMm*® 1mm° 2mMm°
Quercetin 514 161 105 61.2
Sulfaphenazole >200 >200 >200 >200
Omeprazole 146 247 328 274

2 Substrate concentration. ICs, values are expressed as pM.
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p-methylhydroxylation showing biphasic kinetics, the higher
Km value (Kp,,, 320 pM) was close to that of CYP2CS (340 pM),
while the lower K, value (Kp», 70 pM) was much smaller than
any K, values of the recombinant CYP enzymes examined
(Table 2). This indicates that together with CYP2C9, another
CYP enzyme having a lower K, value is also involved in TB p-
methylhydroxylation by the pooled human liver microsomal
fractions employed. On the other hand, in marmoset liver
microsomal TB oxidation showing monophasic kinetics (data
not shown), the K, value (1.2 mM) was close to that of P450 M-
2C (1.8 mM) (Table 2), suggesting that P450 M-2C is the major
TB p-methylhydroxylase in the mormoset liver.

34. Inhibition studies

The effects of three kinds of inhibitors, quercetin as a CYP2C8
inhibitor [25], sulfaphenazole as a CYP2C9 inhibitor [26] and
omeprazole as a CYP2C19 inhibitor [27], on TB p-methylhy-
droxylation by microsomal fractions from mormoset liver
(Fig. S, upper panels) and yeast cells expressing P450 M-2C
(Fig. 5, lower panels) were examined using two substrate
concentrations of 0.1 and 1 mM. Quercetin (Fig. SA and D) and
omeprazole (Fig. 5C and F) similarly inhibited the TB oxidation
activity of marmoset liver microsomes and recombinant P450
M-2C in a concentration-dependent manner. The potency of
sulfaphenazole was lower than those of the other inhibitors
(Fig. SB and E). Table 3 lists the ICs; values for the inhibitors.
The potencies of the inhibitors were ranked as querce-
tin > omeprazole > sulfaphenazole for both marmoset liver
microsomes and recombinant P450 M-2C.

4. Discussion

In the present study, we have cloned a cDNA encoding a novel
CYP enzyme from the fresh liver of an adult female marmoset.

The deduced amino acid sequence exhibited high identities to
human CYP2C8 (87%), crab-eating monkey CYP2C20 (89%) and
rhesus monkey CYP2C74 (89%). The nucleotide and amino acid
sequences were Tregistered to GenBank (accession no.
AB242600). Dr. David Nelson, University of Tennessee Men-
phis, recommended us to call this CYP “marmoset CYP2C8"”
(his personal communication). In this paper, however, we
tentatively called the enzyme P450 M-2C, standing for the
Marmoset CYP2C enzyme to avoid confusion with human
CYP2C8.

According to the list of P450 families and subfamilies of Dr.
Nelson's home page (http://drmelson.utmem.edu/P450.stat-
s.all.2005.htm), four monkey cDNA sequences encoding
CYP2C enzymes had been registered as of January 8, 2005:
crab-eating monkey CYP2C20 (S53046), rhesus monkey
CYP2C43 (AB212264), CYP2C74 (AY635462) and CYP2C75S
(AY635463). The functions of these monkey CYP enzymes
have not been studied in detail, except for CYP2C43.

Matsunaga et al. [28] cloned a cDNA encoding CYP2C43 and
characterized the enzymatic properties of CYP2C43 protein
expressed in yeast cells. They reported that the recombinant
CYP2C43 catalyzed S-MP 4'-hydroxylation but not TB p-
methylhydroxylation under the conditions they employed.
Interestingly, marmoset P450 M-2C showed the reverse
substrate specificity, i.e., it catalyzed TB p-methylhydroxyla-
tion but not S-MP 4-hydroxylation.

P450 M-2C showed considerable oxidation activity only for
TB among the four substrates of human CYP2C enzymes
examined. Although all of the human CYP2C enzymes (CYP2CS8,
CYP2C9 and CYP2C19) examined exerted TB oxidation activ-
ities, the kinetic profile of CYP2C8 was most similar to that of
marmoset P450 M-2C (Table 2). The results of the inhibition
study demonstrated that quercetin, a CYP2C8inhibitor, was the
most effective inhibitor for TB oxidation by P450 M-2C as well as
by marmoset liver microsomes, followed by omeprazole, a
CYP2C19 inhibitor. TB p-methylhydroxylation was kinetically
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Fig. 5 - The effects of human CYP2C enzyme inhibitors on TB p-methylhydroxylation by marmoset liver microsomes (upper
panels) and by P450 M-2C (lower panels). The final inhibitor concentrations used were 10, 50 and 200 M for quercetin (A
and D) 20, 50 and 200 M for sulfaphenazole (B and E) and 50, 200 and 500 pM for omeprazole (C and F). The substrate
concentrations used were 100 (open circles) and 1000 zM (closed cirdles). Each point represents the mean of two

independent determinations.
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analyzed to be monophasic, and the apparent K, values were
similar between the marmoset liver microsomes and the
recombinant P450 M-2C, indicating that P450 M-2C is the major
TB p-methylhydroxylase in the marmoset liver.

It is well known that CYP2C9 is the major TB p-
methylhydroxylase in the human liver {26]. However, TB p-
methylhydroxylation gave biphasic kinetics in the pooled
human liver microsomes used in the present study. The
apparent Ky, value for TB p-methylhydroxylation by recombi-
nant CYP2C9 was 340 pM in this study, which was close to the
K values of purified CYP2C9 reported by Lasker et al. [29] (180
400 pM) and of recombinant CYP2CS (410 uM) reported by
Flanagan et al. [30] for TB p-methylhydroxylation. Therefore, it

(A)

is reasonable to think that some CYP enzyme(s) with a lower
Kr, value of around 70 uM together with CYP2C9 with a higher
Km value of 340 uM are responsible for TB p-methylhydrox-
ylation in the human liver microsomal fractions used.

As described above, for TB p-methylhydroxylation, P450 M-
2C and CYP2C8 showed similar kinetic profiles in the present
study. In contrast, P450 M-2C did not show any detectable
activity for PT 6a-hydroxylation, which was catalyzed by
CYP2C8.Fig. 6 shows the active sites of P450 M-2C and CYP2C8.
In a modeling study on PT 6a-hydroxylation by CYP2CS,
Tanaka et al. [31] proposed that there are two distal sites (1 and
2) in addition to the proximal site occupying the space just
above the heme iron in the active site of CYP2C8. They thought

Fig. 6 - Comparison of the active site structures (A and B) and the active site cavities (C-F) between CYP2CS8 (left panels) and
P450 M-2C (right panels). The active site conformation was depicted using RasMol Version 2.6-ucb 1.0. DS, distal site.
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(A) CYP2C9

(B) P450 M-2C

Fig. 7 - Comparison of the active site structures between CYP2C9 (A) and P450 M-2C (B). Proteins are depicted as backbone
form, and Phe-201 and Asp-293 for CYP2C8 and Phe-205 and Glu-300 for P450 M-2C as ball and stick form using RasMol

Version 2.6-ucb 1.0.

it possible that the N-benzoyl-3-phenylisoserine side-chain of
PT binds to distal site 2, resulting in oxidation at the 6-position
of the taxol ring.

The active site conformations of CYP2C8 and P450 M-2C
which are shown with backbone depiction on RasMol are very
similar (Fig. 6A and B). However, the shapes of the active site
cavities of the two enzymes are considerably different from
each other (Fig. 6C-F), especially, the shapes viewed from
above (Fig. 6E and F) show clear differences in both distal sites
1and 2. Thatis, the sizes of both distal sites 1 and 2 of CYP2C8
are larger than those of P450 M-2C. It is feasible that the
smaller size of the active site cavity, particularly of the distal
site 2 of PAS0M-2C, makes it impossible for PT to appropriately
dock in the active site, resulting in undetectable PT oxidation
activity.

Fig. 7 shows the active sites of CYP2C9 (left panel) and P450
M-2C (right panel). The active site of CYP2C8 is almost the
same as that of P450 M-2C. In the active site cavity of CYP2C9,
there are two acidic amino acids, i.e., Asp-293 and Glu-300,
whose carboxylate groups may interact ionically with basic
nitrogen atoms of TB. As a result, the p-methyl group of TB to
be oxidized comes close to the heme iron, yielding p-
hydroxymethyl-TB efficiently. In the active site cavity of
P450 M-2C as well as of CYP2C8 having Asp-293 and Glu-300,
however, there are two aromatic amino acids, Phe-201 and
Phe-205. The phenyl group of Phe-205, in particular, is located
just in front of the carboxylate group of Glu-300, which seems
to block the ionic interaction between Glu-300 and the basic
nitrogen atom of TB. Furthermore, these phenylalanine
residues may cause hydrophobic interaction with the aro-
matic ring of TB, making the tolyl group of TB far from the
heme ion, which may resultin low capacities of P450 M-2C and
CYP2C8 for TB p-methylhydroxylation.

In summary, we cloned a cDNA encoding a novel CYP2C
enzyme, called P450 M-2C, from the marmoset liver. The
deduced amino acid sequence showed high identities to
human CYP2C8 (87%), CYP2C9 (78%) and CYP2C19 (77%). Yeast
cell microsomal P450 M-2C catalyzed p-methylhydroxylation

of only TB among four substrates, PT, DF, TB and S-MP, for
human CYP2C enzymes. Marmoset liver microsormes exerted
monophasic kinetics for TB, and its apparent K,, value was
similar to that of the recombinant P450 M-2C. Although three
human recombinant CYP2C enzymes, CYP2C8, CYP2CS and
CYP2C19, also showed TB p-methylhydroxylation, the kinetic
profile of CYP2C8 was most similar to that of P450 M-2C. TB
oxidation by the marmoset microsomes and the recombinant
P450 M-2C was similarly inhibited by quercetin, a CYP2C8
inhibitor. These results indicate that P450 M-2C (marmoset
CYP2C8) is the major TB p-methylhydroxylase in the marmo-
set liver.
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Novel Genetic Variations and Haplotypes of Hepatocyte Nuclear Factor
4a (HNF4A) Found in Japanese Type II Diabetic Patients
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Summary: Thirty-nine single nucleotide variations, including 16 novel ones, were found in the 5’
promoter region, all of the exons and their surrounding introns of HNF4A in 74 Japanese type II diabetic
patients. The following novel variations were identified (based on the amino acid numbering of splicing
variant 2): —208G>C in the 5’ promoter region; 1154C>T (A385V) and 1193T>C (M398T) in the
coding exons; 1580G > A, 1852G> T, 2180C>T, 2190G> A, and 2362_2380delAAGAATGGTGTGGG-
AGAGG in the 3’-untranslated region, and IVS1+231G> A, IVS2-83C>T, IVS3+50C>T, IVS3—
54delC, IVS5+173_176delTTAG, IVS5-181_—180delAT, IVS8—106A>G, and IVS9-151A>C in
the introns. The allele frequencies were 0.311 for 2362_2380delAAGAATGGTGTGGGAGAGG, 0.054
for 1580G > A, 0.047 for 1852G> T, 0.020 for IVS1+231G> A, 0.014 for IVS9-151A>C, and 0.007 for
the other 11 variations. In addition, one known nonsynonymous single nucleotide polymorphism,
416C> T (T139]), was detected at a 0.007 frequency. Based on the linkage disequilibrium profiles, the
region analyzed was divided into three blocks. Haplotype analysis determined /inferred 10, 16, and 12
haplotypes for block 1, 2, and 3, respectively. Our results on HNF4A variations and haplotypes would be
useful for pharmacogenetic studies in Japanese.

Key words: HNF4A; genetic variation; amino acid alteration; haplotype

Introduction

Hepatocyte nuclear factor 4« is an orphan nuclear
receptor. This transcriptional factor is predominantly
expressed in the liver, small intestine, colon, kidney,
and pancreas and acts as a homodimer.? To date, nine
transcript variants have been reported with alternative

On Dec. 8, 2005, novel variations were not reported in the databases
of the Japanese Single Nucleotide Polymorphisms (JSNP) (http://
snp.ims.u-tokyo.ac.jp/), dbSNP in the National Center for
Biotechnology Information (http://www.ncbi.nlm.nih.gov/SNP/),
or PharmGKB (http://www.pharmgkb.org/do/).

initiation and splicing of four exon 1’s, and alternative
splicing in exons 8-10.? As for the exon 1’s, 6 isoforms
(isoforms 1-6) are transcribed from exon 1A with the
P1 promoter. Isoforms 4-6 use additional exon 1B,
which confer an extra 30 amino acids as compared with
the corresponding isoforms 1-3. The transcription of 3
isoforms (isoforms 7-9) starts from exon 1D with the P2
promoter approximately 45 kb upstream of exon 1A.Y
Isoforms 2, S, and 8 use the alternative splice donor site
in exon 9, 30 bases downstream of the site of isoforms
1, 4, and 7, and thus are alternatively spliced forms of
isoforms 1, 4, and 7. On the other hand, the isoforms
3, 6, and 9 utilize exon 8 with a 125-base extension,
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resulting in an early stop codon in exon 8.9 The mRNA
level of isoform 1 or 2 was reported to be higher than
that of isoform 3 in the liver.” Variant 4, and probably
5 and 6, has no detectable transactivation potential.
The transcription of HNF4a mainly initiates at the P1
promoter in adult liver and kidney.>® In the pancreas,
the transcription starts from the P2 promoter,*? though
one report showed mRNA expression of isoforms 1 and
2 in pancreatic islets and g cells.”

Human HNF4q protein can be divided into 6 domains
named domains A (the N-terminal domain) to F (the
C-terminal domain)."® Domains A and B (amino acid
residues 1-60 based on isoform 2) contain a ligand-
independent transactivation function AF-i. Domains
C (61-126) and D (127-143) are important for DNA-
binding and full transcriptional activity, respectively.
Domain E (144-378) contains a ligand-binding domain
and a ligand-dependent transactivation function AF-2.
The domains D and E are also important for functional
interactions with co-activators such as PGC-1 and
SRC-3.” Domain F (379-474) has been shown to inhibit
the transactivation potential of AF-2.9 In addition, it
was reported that isoform 8 showed markedly reduced
transcriptional activity compared to isoform 2,
probably due to lack of AF-1 activity by usage of exon
1D, instead of exon 1A.%®

Nuclear factor HNF4a has been reported to be
involved in the induction of many drug metabolizing
enzymes, such as CYP2C9, CYP2C8, CYP2A6,
CYP3A4, and UGTIA9 with known binding sites.>!¥
Interindividual differences in mRNA, protein, and
activity levels have been shown in these drug metaboliz-
ing enzymes, and several genetic variations with
functional significance have been found. Presently,
however, the reported variations in these genes do
not fully explain the interindividual differences. It may
be possible that genetic variations of HNF4A may
contribute to these differences. In the present study,
the 5’-regulatory region, all the exons (except for non-
functional exons 1B and 1C, and pancreatic exon 1D),
and their surrounding introns of HNF4A were
sequenced in 74 Japanese patients. Sixteen novel
variations, including two nonsynonymous ones, were
identified.

Materials and Methods

Human genomic DNA samples: DNA was extracted
from the blood leukocytes of 74 Japanese type II
diabetic patients who had received glimepiride. The
ethical review boards of the International Medical
Center of Japan and the National Institute of Health
Sciences approved this study. Written informed consent
was obtained from all participating patients.

Polymerase chain reaction (PCR) conditions for
DNA sequencing: First, multiplex PCR was per-

Hiromi FUKUSHIMA-UESAKA, ef al.

formed to amplify the entire HNF4A gene with two
mixed primer sets (Mix 1 and Mix 2 in ‘“I1st PCR”’ in
Table 1). Amplification was performed from 50 ng of
genomic DNA using 1 unit of Ex-Taq (Takara Bio. Inc,
Shiga, Japan) with 0.2 uM of the mixed primers sets.
The first PCR conditions were 94°C for 5 min, followed
by 30 cycles of 94°C for 30 sec, 60°C for 1 min, and
72°C for 2 min, and then a final extension at 72°C for
7 min. After the PCR products were treated with a PCR
Product Pre-Sequencing Kit (USB Co., Cleveland, OH,
USA), each exon was amplified separately using
one-fifth of the volume of the 1st PCR product as a
template by Ex-Taq (0.1 units) with a set of primers
(0.2 uM) listed in ‘“2nd PCR”’ of Table 1 (designed in
the intronic regions, except for exon 10, which is
described below). The second-round PCR conditions
were 94°C for 5 min, followed by 30 cycles of 94°C for
30 sec, 60°C for 1 min, and 72°C for 2 min, and then a
final extension at 72°C for 7 min. Next, the PCR
products were treated with a PCR Product Pre-
Sequencing Kit and directly sequenced on both strands
using an ABI BigDye Terminator Cycle Sequencing Kit
(Applied Biosystems, Foster City, CA, USA) with the
primers listed in ‘‘Sequencing’’ of Table 1. The excess
dye was removed by a DyeEx96 kit (Qiagen, Hilden,
Germany). The eluates were analyzed on an ABI Prism
3730 DNA Analyzer (Applied Biosystems). All detected
rare variations were confirmed by repeating the PCR
from the genomic DNA and sequencing the newly
generated PCR products. Since exon 10 spans approxi-
mately 1.9 kb, the exon was amplified in two fragments
in the 2nd PCR and sequenced with five forward and
four reverse primers.

Linkage disequilibrium (LD) and haplotype analyses:
Hardy-Weinberg equilibrium and LD analysis was
performed by SNPAlyze software (Dynacom Co.,
Yokohama, Japan), and pairwise LD between varia-
tions was analyzed using r? and |D’| values. For |D’|
values, the variations detected with a frequency greater
than 0.05 were used. Based on the LD analysis, we
divided the variations into 3 gene blocks and estimated
haplotypes for each block. Some of the haplotypes were
unambiguous from subjects with homozygous varia-
tions at all sites or a heterozygous variation at only one
site. Separately, the diplotype configurations (a combi-
nation of haplotypes) were inferred by LDSUPPORT
software, which determines the posterior probability
distribution of the diplotype configuration for each sub-
ject based on the estimated haplotype frequencies.'?
The haplotypes inferred in single subjects are described
with haplotype names and a question mark in Tables 3
to 5, since the predictability for these very rare haplo-
types is known to be low in some cases. The haplotypes
detected in this study were tentatively named as
numbers plus small alphabetical letters. The block 2 *3a
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