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in various normal tissues and involved in the pharmacokinetics of a wide range
of drugs, mediating the efflux of drugs from the intracellular to the extracellular
space [73]. Many isoforms of ABC drug transporters have been isolated and
characterized. Currently, the ABC superfamily is designated based on the
sequence and organization of their ATP-binding domains, representing the
largest family of TM proteins (e.g., transporters, ion channels, and receptors).
This family is subdivided based on similarities in domain structure, nucleotide-
binding folds, and TM domains [74]. Of the 48 members identified to date,
several members are well characterized as drug transporters. P-gp/MDR] is
now designated as ABCB1. MDR3 (ABCB4) and BSEP (bile salt export pump
or sister P-gp, ABCB11) are included in the ABCB subfamily. The MRP sub-
family includes MRP1 (ABCC1), MRP2 (ABCC2), MRP3 (ABCC3), MRP4
(ABCC4), and other MRP isoforms [75]. Other members of the ABCC sub-
family include CFTR (cystic fibrosis transmembrane conductance regulator, a
Cl1~ channel) and SUR1 and SUR?2 (sulfonylurea receptors). BCRP (ABCG2)
belongs to a different subfamily known as the White subfamily [76]. The
clinical relevance of P-gp has been demonstrated in terms of drug interaction,
gene polymorphisms, and expression levels.

The general structure of ABC transporters comprises 12 TM regions, split
into two halves, each with a nucleotide-binding domain (NBD) [77]. However,
there are a number of exceptions to this arrangement. For example, MRP1-3
have an additional five TM regions at the N terminus. BCRP has only six TM
regions and one NBD and is known as a half transporter. In general, ABC
transporters are expressed in blood-tissue barriers such as the blood-brain
barrier and at the luminal surface of epithelial cells such as intestinal epithelial
cells to protect the cells from toxic substances.

23.3.5.2. Function and Pharmacokinetic Roles
23.3.5.2.1. MDRI (P-GP and ABCBI): P-gp has an extremely broad sub-
strate specificity, with a tendency towards lipophilic, cationic compounds. The
list of its substrates/inhibitors is continually growing and includes anticancer
agents, antibiotics, antivirals, calcium channel blockers, and immunosuppres-
sive agents. Its physiological function was clearly demonstrated by creating an
Mdrla/1b~/~ mouse [78). Studies in vivo using this mouse model revealed that
MDRI1 functions as a gatekeeper of the blood-brain barrier, blood—placental
barrier, blood—testis barrier, and gut [79, 80]. P-gp is expressed at brush-
border membranes of enterocytes, where it functions as the efflux pump for
xenobiotics in the intestinal lumen before they can access the portal circulation.

The antituberculosis drug rifampicin (rifampin) is known to affect a number
of drug-metabolizing enzymes such as cytochrome P450 (CYP) 3A4 in the
liver and in the small intestine, causing a loss of efficacy of drugs metabolized
by CYP3A4. In addition, rifampicin induces the intestinal expression of P-
gp, decreasing the oral bioavailability of P-gp substrates such as digoxin [81]
and talinorol [82]. Not only drugs but also herbal products, that is, St. John’s
wort, administered for a long term have been shown to induce the intestinal
expression of CYP3A and P-gp, consistent with the loss of efficacy of various
drug therapies in earlier case reports and specific clinical studies [83].

The expression level of intestinal MDR1 mRNA has been utilized to
the personalized immunosuppressant therapy with tacrolimus in cases of
living-donor liver transplantation (LDLT) [84]). Tacrolimus shows wide
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intra- and interindividual pharmacokinetic variability, especially in bioavail-
ability after oral administration. P-gp and CYP3A4 are suggested to coop-
erate in the intestinal absorption of tacrolimus. Our laboratories reported an
inverse correlation between the tacrolimus concentration/dose (C/D) ratio and
the intestinal mRNA level of MDR1 (r = —0.776), but not of CYP3A4 (r =
—0.096), in 46 cases [85] which was confirmed in studies with a larger pop-
ulation (r = —0.645, n = 104) [86]. Furthermore, a higher level of intestinal
MDR1 expression was strongly associated with the probability of acute cellular
rejection (ACR), but there was no significant association between the intestinal
CYP3A4 mRNA level and ACR. These results indicate that the expression level
of intestinal MDR1 mRNA found with LDLT is not only a pharmacokinetic
factor, but also a significant biomarker for ACR [87].

23.3.5.2.2. MRP2 (ABCC2): MRP2 was first functionally characterized as a
canalicular multispecific organic anion transporter in canalicular membranes
of hepatocytes [88]. This transporter can accept a diverse range of substrates,
including glutathione, glucuronide, and sulfate conjugates of many endo- and
xenobiotics and expressed at the apical domain of hepatocytes, enterocytes of
the proximal small intestine and proximal renal tubular cells, as well as in the
brain and placenta. Mutation of MRP2 causes the Dubin-Johnson syndrome
[89].

23.3.5.2.3. MRP3 (ABCC3): In contrast to other ABC drug transporters,
MRP3 is mainly expressed at basolateral membranes of epithelial cells in the
liver and intestine [90]. Substrates for MRP3 include glucuronosyl and sulfated
conjugates, whereas glutathione conjugates are relatively poor substrates for
MRP3 compared with MRP1 and MRP2 [91]. As MRP3 also transports some
bile salts [92], this transporter has been believed to play important roles in the
enterohepatic circulation of bile salts by transporting them from enterocytes
into the circulating blood to prevent the accumulation of intracellular bile
acids. Mice lacking Mrp3 were recently developed which are viable and fertile,
exhibiting no apparent phenotype [93].

23.3.5.2.4. BCRP (ABCG2): Unlike P-gp and MRPs, BCRP has only one
ABC and six putative TM domains, and therefore, is referred to as a half-
ABC transporter, most likely functioning as a homodimer [76). Among human
tissues, the placenta showed the highest level of BCRP mRNA, followed by
the liver and small intestine [94]. Unlike humans, mice exhibited high levels
of mRNA in the kidney and only moderate levels in the placenta [95]. BCRP
is capable of transporting a diverse array of substrates, which overlap those
of P-gp and MRP1 to a certain extent [76]. Using mice lacking Bcrp, it was
demonstrated that this transporter protects against the gastrointestinal absorp-
tion of a potent phototoxic agent, pheophorbide [96]. BCRP also mediates the
intestinal efflux of an antibiotic, nitrofurantoin [97].

23.4. Conclusions and Perspectives

In this chapter, basic characteristics of major drug transporters and their pre-
clinical/clinical implications are discussed. During the past 10 years, molecular
information on each transporter has been organized. Novel technologies and
various useful public databases such as SNP have improved our understanding
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of the physiological, pharmacokinetic, and pharmacotherapeutic roles of these
drug transporters. Drug transporter research can be actually applied to clinical
science and drug development; that is, applications of drug delivery, the clarifi-
cation of drug/drug interactions, application of personalized pharmacotherapy,
and clarification of the relationship of each transporter to particular disease(s).

Various drug transporters are responsible for determining the oral bioavail-
ability of drugs (Figure 23.3), although the extent of their contribution to the
overall intestinal absorption process in vivo is not clear in some cases. Among
them, peptide transporters, P-gp, MRP2, and BCRP unequivocally function
as important factors regulating the oral bioavailability of drugs. Molecular
determination of absorption by peptide transporters or secretion/excretion by
ABC drug transporters will contribute to help the oral bioavailability of drugs
under study.
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Tsuda M, Terada T, Asaka J-i, Ueba M, Katsura T, Inui K-i.
Oppositely directed H™ gradient functions as a driving force of rat
H*/organic cation antiporter MATEL. Am J Physiol Renal Physiol
292: F593-F598, 2007. First published October 17, 2006;
doi:10.1152/ajprenal.00312.2006.—Recently, we have isolated the rat
(r) H*/organic cation antiporter multidrug and toxin extrusion 1
(MATEJ]) and reported its tissue distribution and transport character-
istics. Functional characterization suggested that an oppositely di-
rected H* gradient serves as a driving force for the transport of a
prototypical organic cation, tetracthylammonium, by MATEI, but
there is no direct evidence to prove this. In the present study,
therefore, we elucidated the driving force of tetraethylammonium
transport via rMATE1 using plasma membrane vesicles isolated from
HEK?293 cells stably expressing tMATE1 (HEK-rMATE]! cells). A
70-kDa rMATE] protein was confirmed to exist in HEK-rMATE]
cells, and the transport of various organic cations including ["*Cltet-
raecthylammonium was stimulated in intracellular acidified HEK-
rMATE1 cells but not mock cells. The transport of ['*C]tetraethyl-
ammonium in membrane vesicles from HEK-rMATE! cells exhibited
the overshoot phenomenon only when there was an outwardly di-
rected H* gradient, as observed in rat renal brush-border membrane
vesicles. The overshoot phenomenon was not observed in the vesicles
from mock cells. The stimulated [**C]tetraethylammonium uptake by
an H™ gradient [intravesicular H* concentration ([H™];) > extrave-
sicular H* concentration ([H*)ou)] was significantly reduced in the
presence of a protonophore, carbonyl cyanide p-trifluoromethoxyphe-
nylhydrazone (FCCP). ['“CJtetracthylammonium uptake was not
changed in the presence of valinomycin-induced membrane potential.
These findings definitively indicate that an oppositely directed H*
gradient serves as a driving force of tetraethylammonium transport via
rMATEI, and this is the first demonstration to identify the driving
force of the MATE family. The present experimental strategy is very
useful in identifying the driving force of cloned transporters whose
driving force has not been evaluated.

multidrug and toxin extrusion 1; transporter; tetraethylammonium;
renal secretion; membrane vesicles

THE SECRETION OF DRUGS AND Xenobiotics is an important phys-
iological function of the renal proximal tubules. Cationic drugs
are secreted from blood to urine by cooperative functions of
two distinct classes of organic cation transporters: one driven
by the transmembrane potential difference in the basolateral
membranes and the other driven by the transmembrane H*
gradient in the brush-border membranes (7, 16). So far, several
membrane potential-dépendent organic cation transporters
(OCT1-3) have been identified, and their physiological and
pharmacokinetic roles have been evaluated (2, 5, 10). How-
ever, the molecular nature of H*/organic cation antiport sys-
tems has remained to be elucidated.

Recently, Moriyama and co-workers (3, 15) have identified
human (h) and mouse MATE1 and MATE2, which are or-
thologs of the multidrug and toxin extrusion (MATE) family of
bacteria. They demonstrated that MATE] was predominantly
expressed at the luminal membranes of the urinary tubules and
bile canaliculi and transported tetraethylammonium, a proto-
typical organic cation, in a pH-dependent manner (3, 15). We
also isolated cDNAs for rat (r) MATE] (20) and the human
kidney-specific isoform MATE2-K (13). rMATE] was signif-
icantly expressed in the kidney and placenta, but not in the
liver, and real-time PCR analyses of microdissected nephron
segments showed that IMATE1 was expressed in the proximal
convoluted and straight tubules (20). On the other hand,
hMATE2-K was only expressed in the kidney and was located
at the brush-border membranes of renal proximal tubular cells
(13). By conducting functional analyses, we showed that
rMATE1 and hMATE2-K can transport a wide variety of
organic cations including tetraethylammonium, N'-methylni-
cotinamide, and metformin (13, 20). These characteristics of
MATE] are similar to those of the H*/organic cation antiport
system revealed by renal brush-border membrane vesicle stud-
ies (4, 14, 18, 19, 23).

MATEL1 exhibited pH-dependent transport of tetraethylam-
monium in cellular uptake and efflux studies, and intracellular
acidification by NH,4Cl pretreatment stimulated tetraethylam-
monium transport (3, 13, 15, 20), suggesting that MATE1
utilized an oppositely directed H* gradient as a driving force.
However, these analyses are not enough to prove the H*/
tetracthylammonium antiport mechanism of MATE1, because
it is possible that the pH-dependent transport of tetraethylam-
monium by MATE] is regulated not by an H* gradient but by
pH itself. Accordingly, in addition to the data obtained using
the cell culture model, we need more direct evidence that an
H* gradient is the driving force for MATEL.

In the present study, we developed HEK293 cells stably
expressing tMATE] (HEK-rMATE] cells) and elucidated the
driving force of rMATE] by uptake studies using plasma
membrane vesicles from HEK-tMATE1 cells for the first time.

MATERIALS AND METHODS

Materials. [**C]levofloxacin (1.07 GBg/mmol) was kindly pro-
vided by Daiichi Pharmaceutical (Tokyo, Japan). [**C]Jtetracthylam-
monium bromide (2.035 GBg/mmol), ['*C]creatinine (2.035 GBq/
mmol), ['*Clprocainamide (2.035 GBg/mmol), [*H]quinidine (740
GBg/mmol), {*H]quinine (740 GBg/mmol), L-[N-methyl-3H]carnitine
(3.145 TBg/mmol), and [N-methyl-'*Clnicotine (2.035 GBg/mmol)
were obtained from American Radiolabeled Chemicals (St. Louis,
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MO). ["*Clmetformin (962 MBg/mmol), [**C]guanidine hydro-
chloride (1.961 GBg/mmol), [8-*Hlacyclovir (110 GBg/mmol),
and [8-3H]ganciclovir (370 GBg/mmol) were purchased from
Moravec Biochemicals (Brea, CA). [*H]1-methyl-4-phenylpyri-
dinium acetate (2.7 TBg/mmol), [*Hlestrone sulfate ammonium
salt (2.1 TBg/mmol), and [**C]p-aminohippurate (1.9 GBq/mmol)
were purchased PerkinElmer Life Analytical Sciences (Boton,
MA). [N-methyl-*H]cimetidine (451 GBg/mmol) was obtained
from Amersham Biosciences (Uppsala, Sweden). All other chem-
icals used were of the highest purity available.

Cell culture and transfection. HEK293 cells (American Type Culture
Collection CRL-1573) were cultured in complete medium consisting of
Dulbecco’s modified Eagle’s medium with 10% fetal bovine serum in an
atmosphere of 5% C02-95% air at 37°C. pcDNA 3.1 (+) containing
cDNA encoding rMATE]1 or empty vector was transfected into HEK293
cells using Lipofect AMINE 2000 Reagent (Invitrogen) according to the
manufacturer’s instructions. At 48 h after transfection, the cells were split
in complete medium containing G418 (0.5 mg/ml, Nacalai Tesque,
Kyoto, Japan) at a dilution of 1:200. Fifteen days after transfection,
single colonies were picked out. Cells expressing rMATE1 (HEK-
tMATE] cells) were selected by measuring [**C]tetraethylammo-
nium uptake. Cells transfected with empty vector (HEK-pcDNA
cells) were used as controls. These transfectants were maintained
in complete medium with G418 (0.5 mg/ml).

Uptake experiments by HEK-rMATE] cells. The cellular uptake of
{*“Cltetracthylammonium was measured by using monolayers grown
on poly-D-lysine-coated 24-well plates as reported previously with
some modifications (13, 20, 22). Briefly, the cells were preincubated
with 0.2 m] of incubation medium, pH 7.4 (in mM: 145 NaCl, 3 KCl,
1 CaCl,, 0.5 MgCl, S p-glucose, and S HEPES) containing 30 mM
NH4Cl for 20 min at 37°C. The medium was then removed, and 0.2
ml of incubation medium (pH 7.4) containing each radiolabeled
compound was added. After an appropriate period of incubation, the
medium was aspirated, and the monolayers were rapidly washed twice
with 1 ml of ice-cold incubation medium (pH 7.4). The cells were
solubilized in 0.5 m! of 0.5 N NaOH, and then the radioactivity in
aliquots was determined by liquid scintillation counting. The protein
content of the solubilized cells was determined by the method of
Bradford (1) using a Bio-Rad Protein Assay Kit (Bio-Rad Laborato-
ries, Hercules, CA) with bovine y-globulin as a standard.

Preparation of membrane vesicles from HEK-rMATEI celis.
Plasma membrane vesicles were prepared according to previous reports
(6, 9). HEK-rMATE1 or HEK-pcDNA cells were seeded on 100-mm
plastic dishes (4 X 10° cells/dish), and 20 or 40 dishes were used to
prepare membrane vesicles in a single preparation. All procedures were
performed at 4°C. At the third day after seeding, HEK-'MATE1 or
HEK-pcDNA cells were washed with PBS and scraped with a rubber
policeman into PBS. The cell suspension was centrifuged at 200 g for 10
min, suspended in 20 ml of PBS, and recentrifuged at 200 g for 10 min.
The packed cell pellet was resuspended in 20 vol of 250 mM mannitol/10
mM HEPES-Tris (pH 7.5)/0.5 mM MgCl, (buffer A), and the cells were
gently suspended with five strokes of a loose-fitting Dounce homoge-
nizer. The washed cell suspension was placed in a nitrogen cavitation
bomb (Parr Instrument) at 700 1b/in.? for 15 min. After the homogenate
was collected, KoEDTA (pH 7.5) was added to a final concentration of 1
mM. The homogenate was centrifuged at 750 g for 15 min, and the
supernatant was centrifuged at 20,000 g for 15 min. The supematant was
centrifuged at 100,000 g for 60 min. The pellet was resuspended in 100
mM mannitol/10 mM MES-KOH (pH 6.0; experimental buffer) or 100
mM mannitol/10 mM HEPES-KOH (pH 7.5; experimental buffer)
and centrifuged again at 100,000 g for 60 min. The pellet was
suspended in the same experimental buffer (pH 6.0 or 7.5) by
sucking the suspension 10 times through a fine needie (~4~10 mg
protein/ml). KCI (pH 6.0 or 7.5) was added to a final concentration
of 100 mM.

Transport experiments by membrane vesicles. The uptake of
['“C]tetraecthylammonium by membrane vesicles was measured by a

DRIVING FORCE OF TETRAETHYLAMMONIUM TRANSPORT BY rMATE1

rapid filtration technique with a slight modification (8, 19). In the
regular assays, the reaction was initiated rapidly by adding 80 pl of
buffer, containing 31.25 pM ['“Cltetraethylammonium, to 20 pl of
membrane vesicle suspension at 25°C. After specified periods, the
incubation was terminated by diluting the reaction mixture with 1 ml
of ice-cold stop solution containing (in mM) 150 KCl, 20 HEPES-Tris
(pH 7.5), 0.1 HgCl2, and 1 tetraethylammonium. The mixture was
poured immediately onto Millipore filters (HAWP, 0.45 um, 2.5 cm
in diameter), and the filters were washed with 5 ml of ice-cold stop
solution. The radioactivity of ['*C]tetracthylammonium trapped in
membrane vesicles was determined using an ACS II (Amersham
Biosciences) by liquid scintillation counting. The protein content
was determined by the method of Bradford (1) using a Bio-Rad
Protein Assay Kit (Bio-Rad Laboratories) with bovine y-globulin
as a standard.

Western blot analysis. Polyclonal antibody was raised against a
synthetic peptide corresponding to the intracellular domain of
rMATE1 (CQQAQVHANLKVN, no. 465-477) (13). Brush-border
membrane vesicles from rat kidney cortex were prepared as described
previously (12). Membrane fractions were separated by SDS-PAGE
and analyzed by Western blotting as described previously (17, 21).

Data analysis. Data were analyzed statistically with a one-way
analysis of variance followed by Scheffé’s test and are expressed as
means *+ SE.

RESULTS

Generation of HEK-rMATE] cells. First, we generated and
characterized HEK293 cells stably expressing rMATE]. As
shown in Fig. 1, an immunoreactive protein with a molecular
weight of ~70 kDa was detected in HEK-rMATE]1-cells and rat
renal brush-border membranes but not in HEK-pcDNA cells. The
functional expression of IMATE1 was assessed by measuring the

1 2 3 4 5
kDa

220 —> #

Fig. 1. Westem blot analysis of rat renal brush-border membranes and plasma
membranes obtained from HEK-rat multidrug and toxin extrusion 1( tMATE1)
and HEK-pcDNA cells. Renal brush-border membranes (20 pg) and plasma
membranes (5 or 20 pg) obtained from HEK-rMATE1 and HEK-pcDNA cells
were separated by SDS-PAGE (10%) and blotted onto polyvinylidene difluo-
ride membranes. The antiserum for tMATE1 (1:1,000) was used as a primary
antibody. A horseradish peroxidase-conjugated anti-rabbit IgG antibody was
used for detection of bound antibodies, and the strips of blots were visualized
by chemiluminescence on X-ray film. The arrowhead indicates the position of
rMATEI. Lanes were as follows: lane 1, rat renal brush-border membranes;
lane 2, HEK-tMATE! (5 ng); lane 3, HEK-tMATE1 (20 pg); lane 4,
HEK-pcDNA (5 ug); and lane 5, HEK-pcDNA (20 pg).
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Fig. 2. Transport of ['*Cltetraethylammonium (TEA) by HEK-rMATEI
cells. A: time course of [!*C]JTEA uptake by HEK-rMATE1 and HEK-
pcDNA cells. HEK-rMATEI] cells (@) and HEK-pcDNA cells (0) were
preincubated with 30 mM NH4Cl (pH 7.4) for 20 min. Then, the preincu-
bation medium was removed, and the cells were incubated with 5 uM of
['*CITEA (pH 7.4) for indicated time at 37°C. Each point represents the
mean * SE of 3 monolayers. This figure is representative of 3 separate
experiments. B: concentration dependence of ['*C]TEA uptake by HEK-
rMATEI cells. HEK-tMATE] cells were preincubated with 30 mM NH4Cl
(pH 7.4) for 20 min. Then, the preincubation medium was removed, and the
cells were incubated with various concentration of ['“C]TEA (pH 7.4) in
the absence (®) or presence (0) of S mM TEA for 30 s at 37°C. Each point
represents the mean * SE of 3 monolayers. C: effect of extracellular pH on
['*C]TEA uptake by HEK-rMATE] and HEK-pcDNA cells. HEK-rMATE1
cells (#) and HEK-pcDNA cells (O) were preincubated with 30 mM NH.Cl
(pH 7.4) for 20 min. Then, the preincubation medium was removed, and the
cells were incubated with 5 pM of ['*CJTEA (indicated pH) for 30 s at
37°C. Each point represents the mean = SE of 3 monolayers. The figure is
representative of 2 separate experiments.
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uptake of [*Clietracthylammonium in the HEK-TMATEI cells
under the intracellular acidified conditions caused by NH4CI
pretreatment. A time- and concentration-dependent uptake of
{**C]tetraethylammonium by HEK-rMATE]1 cells was observed
(Fig. 2, A and B). ["*C]tetraethylammonium uptake by HEK-
rMATEI! cells exhibited saturable kinetics, and an apparent Ki,
value of 304 = 80 pM was calculated from three separate
experiments. When the extracellular pH was changed from 6.0 to
8.5, a bell-shaped pH profile of [1“Clietraethylammonium uptake
via IMATE] was observed, and the uptake was greatest at pH 7.5
and lowest at pH 6.0 (Fig. 2C).

Uptake of various compounds by HEK-rMATEI cells. We
then examined the substrate specificity of IMATE1. As shown in
Fig. 3, IMATEI1 mediated the transport of various organic cations
with different chemical structures such as ['*Clietraethylammo-
nium, [>°H]1-methyl-4-phenylpyridinium acetate, [*H]cimetidine,
and ["*CJmetformin. The transport of other organic cations such
as [*C]procainamide, [!*C]creatinine, and ['*C]guanidine was
greater in HEK-TMATE]1 cells than in HEK-pcDNA cells, al-
though the stimulation was not remarkable.

Characteristics of ['*Cltetraethylammonium transport by
membrane vesicles from HEK-rMATE] cells. Next, we per-
formed transport experiments using plasma membrane vesicles
isolated from HEK-MATEI cells and HEK-pcDNA cells. In the
presence of an H* gradient [intravesicular H* concentration
([H*1in) > extravesicular H* concentration ([H*]oy.)], a marked

Tetraethylammonium
1-Methyl-4-phenylpyridinium
Cimetidine

Metformin

Creatinine

Guanidine

Procainamide

Quinine
Carnitine
Nicotine
Levofloxacin
Acyclovir
Ganciclovir

Estrone sulfate

p-Aminohippurate

A a i A A "

0 10 20 30 40 50 60
CLEARANCE (uL/mg protein/30 sec)

Fig. 3. Uptake of various compounds by HEK-rMATE] cells. HEK-pcDNA
cells (open bars) and HEK-tMATE] cells (filled bars) were preincubated with
30 mM NH4Cl (pH 7.4) for 20 min. Then, the preincubation medium was
removed, and the cells were incubated with [**C]JTEA (5 pM), [*H]i-methyl-
4-phenylpyridinium acetate (3.8 nM), [*H]cimetidine (11.1 nM), [*C]met-
formin (10 pM), [**C]creatinine (5 uM), ['*C]guanidine hydrochloride (5
M), [**Clprocainamide (5 pM), [*H]quinidine (13.9 nM), [*H]quinine (13.9
nM), [*H]carnitine (3.3 nM), [**C]nicotine (5 pM), ['*C]levofloxacin (14
uM), [PHlacyclovir (92 nM), [*Hlganciclovir (28 nM), [3*H]Jestrone sulfate
(4.86 nM), or ['*C]p-aminohippurate (5 wM) for 30 s at 37°C. Each bar
represents the mean * SE of 3 monolayers. The figure is representative of 2
separate experiments. *P < 0.05 significantly different from HEK-pcDNA
cells.
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Fig. 4. Time course of ['*C]TEA uptake by membrane vesicles from HEK-
pcDNA and HEK-rMATEL! cells. The uptake of ['“C]JTEA by membrane
vesicles from HEK-pcDNA cells (O, a) and HEK-rMATE] cells (®, &) was
examined in the absence (O, ®) or presence (a, &) of 10 mM TEA. Membrane
vesicles were prepared in the experimental buffer at pH 6.0. The uptake of
['*C]TEA was examined in the experimental buffer containing 31.25 uM
[**C]JTEA and 100 mM KCl at pH 7.5 in the absence or presence of 10 mM
TEA. Each point represents the mean = SE of 3 determinations.

stimulation of {!*C]tetraethylammonium uptake (overshoot phe-
nomenon) was observed in membrane vesicles from HEK-
IMATEI cells, but not in those from HEK-pcDNA cells (Fig. 4).
The overshoot phenomenon disappeared in the presence of an
excess of cold tetraethylammonium.

Driving force for [**Cltetraethylammonium transport by
membrane vesicles from HEK-rMATE] cells. To elucidate the
driving force of tetraethylammonium transport by rMATE], we

UPTAKE (pmol/mg protein)

TIME (min)

Fig. 5. Effect of H* gradient on ['*CJTEA uptake by membrane vesicles from
HEK-tMATEI cells. Membrane vesicles were prepared in the experimental
buffer at pH 6.0 (O, a) or 7.5 (e, a). The uptake of ['*C)TEA was examined
in the experimental buffer containing 31.25 uM [**C]TEA and 100 mM KCl
at pH 6.0 (a, a) or 7.5 (O, ®). Each point represents the mean * SE of 3
determinations. The figure is representative of 2 separate experiments. lem
intravesicular pH; pHow, extravesicular pH.
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performed ['*Cltetraethylammonium transport experiments using
membrane vesicles from HEK-TMATE] cells. As shown in Fig. 5,
the presence of an H* gradient ([H}, > [H*Jou) induced a
marked stimulation of [*C]tetraethylammonium uptake against
the concentration gradient. On the other hand, no stimulation of
['*C]tetracthylammonium uptake was observed in the absence of
the gradient or in the presence of the reverse gradient ((H*];, <
[H*Jou)- The final amount of [*C]tetraethylammonium taken up
in the presence of the H* gradient ((H* Ji, > [H ™ Jou) Was not so
different from that attained in the absence of the gradient or in the
presence of the reverse gradient ((H* )i, < [H™ low).

To further evaluate the effect of an outwardly directed H*
gradient on ['*C]tetraethylammonium uptake, the influence of
a protonophore, FCCP, was examined. As shown in Fig. 64,
the initial rate of ['*C]tetraethylammonium uptake in the pres-
ence of an H* gradient ((H*};, > [H¥]ow) was markedly
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Fig. 6. Effect of FCCP (A) and valinomycin (B) on [**C]TEA uptake in the
presence of an outwardly directed H* gradient by membrane vesicles from
HEK-tMATEI cells. A: membrane vesicles were prepared in the experimental
buffer at pH 6.0. The uptake of [**CJTEA was examined in the experimental
buffer containing 31.25 pM [**CJTEA and 100 mM KCl at pH 7.5 in the
absence (O) or presence (®) of 40 uM FCCP. Each point represents the mean *+
SE of 3 determinations. The figure is a representative of 2 separate experi-
ments. B: membrane vesicles were prepared in the experimental buffer at pH
6.0. The uptake of {*CJTEA was examined in the experimental buffer
containing 31.25 pM ['“C]TEA and 100 mM CsCl at pH 7.5 in the absence (O)
or presence (@) of 8 pM valinomycin. Each point represents the mean = SE
of 3 determinations. The figure is representative of 2 separate experiments.
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