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DA F ALREZ TERECHE L 72, ZORE.
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Impact of Drug Transport Proteins

Tomohiro Terada and Ken-ichi Inui

Abstract Drug transporters play critical roles in the absorption, distribution,
and excretion of drugs and have been classified into five major families,
peptide transporters (PEPT, SLC15), organic anion-transporting polypeptides
(OATP, SLCO), organic ion transporters (OCT/OCTN/OAT/URAT, SLC22),
H*/organic cation antiporters (MATE, SLC47), and ABC drug transporters,
such as P-glycoprotein (P-gp/MDR1, ABCB1). Their structures, tissue distrib-
ution, functions, and pharmacokinetic roles vary. The roles of drug transporters
can be assessed in vitro and in vivo, using techniques spanning from cellular
expression systems to gene knockout animals. Research outcomes from such
studies have been applied to clinical science and drug development. In this
chapter, the basic characteristics of drug transporters were reviewed with an
emphasis on their impact on clinical/preclinical research.

Abbreviations

ABC ATP-binding cassette

ACR Acute cellular rejection

BCRP Breast cancer resistance protein

BSEP Bile salt export pump

CYP Cytochrome P450

GFR Glomerular filtration rate

HGNC Human Gene Nomenclature Committee
HMG-CoA  3-Hydroxy-3-methylglutaryl coenzyme A
LDLT Living-donor liver transplantation
MATE Multidrug and toxin extrusion

MDR Multidrug resistance protein

MRP Multidrug resistance-associated protein
NBD Nucleotide-binding domain

OAT Organic anion transporter

OATP Organic anion-transporting polypeptide
OoCT Organic cation transporter

OCTN Novel organic cation transporter

PAH P-aminohippurate

PCR Polymerase chain reaction
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PEPT H*/peptide cotransporter

P-gp P-glycoprotein

SLC Solute carrier

SNP Single nucleotide polymorphism
SUR Sulfonylurea receptor

TEA Tetraethylammonium

™ Transmembrane

URAT Urate transporter

Keywords: Drug transporter; SLC-transporter; ABC transporter; Drug deliv-
ery; Int_estinal absorption barrierl

-~ 23.1. Introduction

Drug efficacy and safety are determined by the interplay of multiple processes
that regulate pharmacokinetics (e.g., absorption, distribution, metabolism, and
excretion) and pharmacodynamics (e.g., drug action). For orally administered
drugs, pharmacologic action is dependent on an adequate intestinal absorption
and distribution before elimination via metabolic and excretory pathways.
Drug-metabolizing enzymes have been believed to be the key determinants
of pharmacokinetics. The membrane transport processes are also recognized
as important to pharmacokinetic properties, but classical analyses were mainly
performed in vivo or in excised tissues, mostly lacking in vitro methodologies
to precisely evaluate the membrane transport characteristics of drugs.

In the early 1980s, studies of membrane vesicles and cultured epithelial cell
lines were introduced into the research field of drug transport and the biochem-
ical characterization of drug transport advanced remarkably. For example, the
driving force and substrate specificity of a drug transporter were clearly demon-
strated using membrane vesicles, and transepithelial transport and regulatory
aspects were characterized by using cultured cell lines. At the end of 1980s, the
molecular nature of drug transporters was unveiled by cDNA cloning and the
first clinically important drug transporter, the P-glycoprotein (P-gp), was iden-
tified. Subsequently, various primary and secondary active drug transporters
were isolated by expression cloning, polymerase chain reaction (PCR) cloning,
and in silico homology screening strategies. The most recently identified drug
transporters are the renal H*/organic cation antiporters reported in 2005-2006.
Although numerous drug transporters have been characterized so far, many
others remain unidentified. For example, the molecular nature of the facilitative
peptide transporters, which are located at the basolateral membranes of intesti-
nal epithelial cells and are quite important for the transepithelial transport of
peptide-like drugs, has not been elucidated.

Many drugs have been recognized to cross the intestinal epithelial cells
via passive diffusion, thus their lipophilicity has been considered important.
However, as described above, recent studies have demonstrated that a number
of drug transporters including uptake and efflux systems determine the mem-
brane transport process. In this chapter, we provide an overview of the basic
characteristics of major drug transporters responsible not only for absorption
but also for disposition and excretion in order to delineate the impact of drug
transport proteins on pharmacokinetics.
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23.2. Determination and Classification of Drug Transporters

Transporters have been functionally classified as primary and secondary
active transporters. Primary active transporters include ATP-binding cassette
(ABC) transporters that utilize the hydrolysis of ATP as a driving force. Sec-
ondary active transporters utilize various driving forces such as ion concen-
tration gradients and electrical potential differences across cell membranes,
according to the physicochemical properties of substrates and membrane local-
ization of transporters. The Human Gene Nomenclature Committee (HGNC)
has classified drug transporters based on sequence similarity as solute carriers
(SLCs) and ABC transporters.

Although many members of the ABC and SLC families are categorized
as drug transporters, because of their pharmacokinetic relevance and detailed
characterization, only the following transporters are discussed in this chap-
ter: peptide transporters (PEPT, SLC15), organic anion-transporting polypep-
tides (OATP, SLCO), organic ion transporters (OCT/OCTN/OAT/URAT,
SLC22) and H'/organic cation antiporters (MATE, SLC47), P-glycoprotein
(P-gp/MDRI1, ABCB1), multidrug resistance-associated proteins (MRP2 and
MRP3, ABCC), and breast cancer-resistance protein (BCRP, ABCG2). Sec-
ondary structures of these transporters are shown in Figure 23.1.

23.3. Characteristics of Major Drug Transporters

23.3.1. PEPT (SLC15)

23.3.1.1. Structure and Tissue Distribution

A cDNA encoding the H*/peptide cotransporter (PEPT1) was initially identi-
fied by expression cloning using a rabbit small intestinal cDNA library [1].
cDNA for the renal peptide transporter PEPT2 cDNA, an isoform of the
intestinal PEPT1 has also been isolated [2]). PEPT1 and PEPT2 consist of 707—
710 and 729 amino acid residues, respectively, and possess 12 transmembrane
(TM) domains. The overall amino acid identity between them is ~50% [1-4].
PEPT]1 is localized to brush-border membranes of intestinal and renal epithelial
cells [5], whereas PEPT2 is preferentially expressed in the kidney and located
at brush-border membranes of renal epithelial cells.

23.3.1.2. Function and Pharmacokinetic Roles

PEPT1 and PEPT2 can transport di- and tripeptides with different molecular
sizes and charges, but not free amino acids and peptides composed of four
or more peptide bonds [6]. Pharmacologically active peptide-like drugs such
as B-lactam antibiotics, bestatin, and angiotensin-converting enzyme (ACE)
inhibitors have been also reported to be transported by PEPT1 and PEPT2 [7].
It has been believed that the presence of peptide bonds is the most important
factor in the recognition of substrates by peptide transporters. However, the
structural requirements of PEPT1 and PEPT2 were reevaluated (most studies
were performed with PEPT1), and it was demonstrated that even compounds
without peptide bonds can be accepted as substrates (e.g., -amino levulinic
acid [8], w-amino fatty acid [9], and amino acid ester compounds [10-12]).
Recently, a mathematical model of Ht-coupled transport phenomena via
PEPT1 was proposed [13, 14].
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Over the last decade, PEPT1 has been utilized as a target for 1mprov-
ing the intestinal absorption of poorly absorbed drugs through amino acid-
based modifications. For example, the enhanced oral bioavailability of valacy-
clovir and valganciclovir, L-valine ester prodrugs of acyclovir and ganciclovir,

Wil

Figure 23.1 Putative secondary structures of various drug transporters. (A-D) Puta-
tive secondary structures of SLC drug transporters: (A) Peptide transporters (PEPT,
SLC15), (B) Organic anion transporting polypeptides (OATP, SLCO), (C) Organic ion
transporters (OCT/OCTN/OAT/URAT, SLC22), and (D) H™/organic cation antiporter
(MATE). (E-G) Putative secondary structures of ABC drug transporters: (E) P-
glycoprotein (P-gp/MDR1, ABCBI1), (F) Multidrug resistance-associated proteins
(MRP, ABCC), and (G) Breast cancer-resistance protein (BCRP, ABCG2).
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Figure 23.1 (Continued.)

respectively, has been attributed to their enhanced intestinal transport via
PEPT1 [10, 12], and these drugs have been used in the clinical setting. The
anticancer agents (e.g., gemcitabine [15] and floxuridine [16]) and antiviral
drugs (e.g., azidothimidine [10] and levovirin [17]) were also converted to
PEPT1 substrates by modifying the L-valine ester (Figure 23.2A). Another
strategy for converting PEPT1 substrates is an amino acid peptide modifi-
cation. For example, midodrine, an antihypotension prodrug for combining
glycine via a peptide bond with an active drug, was recently demonstrated
to be a substrate for PEPT1 [18] (Figure 23.2B). Thus, conversion of poorly
absorbed drugs to PEPT1 substrates should be useful for improving oral
bioavailability.

23.3.2. OATP (SLCO)

23.3.2.1. Structure and Tissue Distribution

In 1994, a Na*-independent organic anion-transporting polypeptide (Oatpl)
was originally cloned from a rat liver cDNA library [19]. Thereafter, many
isoforms of Oatp (rodents)/OATP (human) were identified, but unlike other
transporters, this family exhibits large interspecies differences [20]. HGNC
designated the OATP family as the SLC21 family early on, but since the
traditional SLC21 gene classification does not permit an unequivocal and
species-independent identification of genes and gene products, thereafter, all
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Figure 23.2 Improvement of poorly absorbed drugs using the broad substrate speci-
ficity of intestinal PEPT1. (A) Amino acid ester modification of various drugs (e.g.,
antiviral and anticancer drugs). Among amino acids, L-valine has been suggested to be
suitable for this modification. (B) Amino acid peptide modification of the antihypoten-
sive drug midodrine. Among amino acids, glycine has been suggested to be suitable for
this modification.

Oatps/OATPs were newly classified within the OATP (protein)/SLCO (gene)
(human) and Oatp (protein)/Sico (gene) (rodents) superfamily according to
their phylogenetic relationships and chronology of identification. The methods
of classification and the nomenclature were described in detail in a recent
review [21].
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All members of OATP/Oatp family contain 12 TM domains. Certain trans-
porters show a more restricted tissue expression pattern (i.e., OATP1B1 [old
name: OATP-C]/liver), while others such as OATP2B1 (old name: OATP-B)
can be detected in almost every tissue that has been investigated [22]. This
indicates that some OATPs/Oatps have organ-specific functions, while others
might be involved in housekeeping functions.

23.3.2.2. Function and Pharmacokinetic Roles

OATP/Oatp families mediate the Na*-independent transport of a wide range
of amphipathic organic compounds, including bile salts, organic dyes, steroid
conjugates, thyroid hormones, anionic oligopeptides, numerous drugs, and
other xenobiotic substances [20]. Among the human OATP families, OATP1B1
(old name: OATP-C) has been well characterized. This transporter is exclu-
sively expressed in the liver and located at sinusoidal membranes. Thus, the
major pharmacokinetic role of OATP1B1 is hepatic uptake of various clinically
important drugs such as pravastatin (3-Hydroxy-3-methylglutaryl coenzyme A
[HMG-CoA] reductase inhibitor) [23], enalapril (ACE inhibitor) [24], and val-
sartan (an angiotensin II receptor antagonist) [25]. Recently, the clinical impli-
cations of single nucleotide polymorphisms (SNPs) for the SLCOIBI gene
were reported first by Nishizato et al. [26], in that the 521T>C (Vall74Ala)
polymorphism in SLCOI1BI is associated with increased systemic exposures to
pravastatin in Japanese subjects. Thereafter, it was also reported that genetic
polymorphisms in SLCOIB1 are a major determinant of interindividual vari-
ability in the pharmacokinetics of pravastatin [27-29], the antidiabetic drug
repaglinide (30], and atrasentan, a selective endothelin A receptor antagonist
[31]. As described above, the OATP/Oatp family exhibits large interspecies
differences and this feature may be responsible for the frequency with which
SNPs in SLCO genes induce functional changes.

OATP2B1 (old name: OATP-B) is expressed at brush-border membranes of
intestinal epithelial cells [32]. OATP2B lexhibited pH-sensitive transport activ-
ities for various organic anions such as estrone-3-sulfate, dehydroepiandros-
terone sulfate, taurocholic acid, pravastatin, and fexofenadine [33]. However,
further studies are needed to determine the specific physiological and phar-
macokinetic contribution of OATP2B1 for intestinal absorption of these com-
pounds.

23.3.3. OCT/OCTN/OAT/URAT (SLC22)

23.3.3.1. Structure and Tissue Distribution

The organic ion transporter superfamily is composed of various isoforms
differing in the mode of transport (uniporters, symporters, and antiporters)
and selectivity of substrate charges, although all isoforms have a similar
secondary structure of 12 TM domains. In 1994, the first member of the SLC22
family, organic cation transporter 1 (OCT1), was identified from a rat kidney
cDNA library by expression cloning [34]. Rat OCT2 was identified in 1996
[35], and the human zwitterion/cation transporter OCTN1 was discovered in
1997 [36]. In the same year, the first organic anion transporter (OAT1) was
cloned from rats [37]. In 1998, OCT3 was identified in rats and humans [38,
39], and the human Na*-carnitine cotransporter OCTN2 was cloned [40, 41].
Thereafter, various human OAT isoforms (OAT2—OAT4 and urate transporter
[URAT1]) were identified [42—45].
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In humans, the major expression sites of the SLC22 transporter family are
as follows: OCT1/liver (sinusoidal membranes of hepatocytes), OCT2/kidney
(basolateral membranes of renal proximal tubules), OCT3/skeletal muscle, pla-
centa, heart, OCTN1/widely distributed, OCTN2/kidney and intestine (brush-
border membranes), OAT1/kidney (basolateral membranes of renal proximal
tubules), OAT2/liver (sinusoidal membranes of hepatocytes), OAT3/kidney
(basolateral membranes of renal proximal tubules), OAT4/kidney (brush-
border membranes of renal proximal tubules), and URAT1/kidney (brush-
border membranes of renal proximal tubules) [46].

23.3.3.2. Function and Pharmacokinetic Roles

The SLC22 family plays important roles for renal secretion of various com-
pounds (e.g., drugs, toxins, and endogenous metabolites via OCTs and OATs)
[47-49], the reabsorption of urate (via URAT1) [50], and the intestinal and
renal absorption of carnitine (via OCTN2) [51]. OCTs mediate the membrane
potential-dependent uptake of organic cations such as tetraethylammonium
(TEA, a typical substrate of OCTs), cimetidine (H; blocker), and metformin
(antidiabetic agent). Previously, it was believed that the substrate recognition
of OCT1, OCT2, and OCTS3 is not very different, but a recent study revealed
that creatinine is a specific substrate for OCT2 [52]. This finding is clinically
relevant, because creatinine clearance is widely used to estimate the glomerular
filtration rate (GFR). In other words, creatinine clearance may not reflect the
true GFR. Moreover, if cationic drugs (OCT2 substrates) are coadministered,
creatinine clearance may be decreased by inhibition of OCT2-mediated crea-
tinine secretion, leading to an underestimation of the renal function. Cisplatin
(anticancer agent) is a preferred substrate for OCT2 [53, 54], suggesting that
the renal toxicity of cisplatin may be triggered by its uptake via OCT2 into
renal proximal tubular cells. '

OATs can transport various organic anions and the substrate specificity
of each isoform has been characterized. P-aminohippurate (PAH) has been
widely used as a typical substrate for renal organic anion transport systems.
PAH uptake by OAT1 was stimulated by an outwardly directed gradient of -
ketoglutarate, which is consistent with experimental results from studies using
renal basolateral membrane vesicles [55]. Antiviral drugs such as adefovir
are preferably recognized by OAT1, suggesting that OAT1 may be respon-
sible for the renal toxicity of antiviral agents [56]. Although OAT3 also
recognizes PAH, its substrate specificity is different from that of OAT1. For
example, estrone sulfate [43], cimetidine [43], and famotidine [57] are prefer-
entially transported by OAT3, but not by OAT1. In addition, OAT3 exhibits
a greater activity to transport cephalosporin antibiotics including cefazolin,
as compared with OAT1 [58]. This is supported by clinical findings that the
mRNA level of OAT3 is significantly correlated with the rate of elimination of
cefazolin [59, 60].

OCTN?2 is highly expressed in the human intestine from the jejunum to colon
[61]. It was recently demonstrated that OCTN2 is predominantly responsible
for the uptake of carnitine from the apical surface of mouse small intestinal
epithelial cells, suggesting that OCTN2 could be a promising target for the oral
delivery of therapeutic agents [62]. Mutations of transporters for the SLC22
family are responsible for specific diseases such as “primary systemic carnitine
deficiency” (OCTN2) [63] or “idiopathic renal hypouricemia” (URAT1) [45],
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and also thought to be linked with rheumatoid arthritis (OCTN1) [64] and
Crohn’s disease (OCTN2) [65].

23.3.4. MATE (SLC47)

23.3.4.1. Structure and Tissue Distribution
Organic cations are excreted by the H /organic cation antiporter in the brush-
border membranes. As described above, the membrane potential-dependent
organic cation transporters located to the basolateral membranes (OCT1-3,
SLC22A1-3) have been identified and well characterized [47, 48], but the
molecular nature of the H*/organic cation antiporter has not been elucidated.
Recently, based on in silico homology screening, human and mouse orthologs
of the multidrug and toxin extrusion (MATE) family, which confers multidrug
resistance to bacteria, have been identified [66, 67]. Rat MATE] [68] and the
kidney-specific human MATE2 (MATE2-K) [69] were identified next. This
particular drug transporter family recently designated as SLC47 family.
MATE1 and MATE2-K consist of 566-570 amino acid residues with 12
TM domains and show about 50% amino acid identity. Human MATELI is
mostly expressed in luminal membranes of renal proximal tubules and liver
canalicular membranes. Mouse MATE] is also predominantly expressed in the
kidney and liver, but it is also expressed in brain glia-like cells and capillaries,
pancreatic duct cells, urinary bladder epithelium, and adrenal gland cortex [67].
Rat MATE1 mRNA is highly expressed in the kidney, especially in proximal
tubules and placenta, but not in the liver [68]. These findings suggest a clear
species difference in the distribution of MATE1 among human, mouse, and
rat. Human MATE2-K as well as human MATE!1 was located at brush-border
membranes of renal proximal tubules [69].

23.3.4.2. Function and Pharmacokinetic Roles

MATE!1 can transport not only organic cations such as cimetidine and met-
formin but also the zwitterionic compound cephalexin [68]. MATE2-K also
transports various organic cations, but not cephalexin [69]. The substrate recog-
nition characteristics of MATESs are quite similar, but not identical to those of
OCTs. For example, cephalexin is a substrate for MATEIL, but not for OCTs,
while creatinine is a substrate for OCT2, but not for MATEs. MATEL1 exhibits
pH-dependent transport properties for cellular uptake and effiux studies using
TEA as a substrate, while intracellular acidification by NH4Cl pretreatment
stimulates TEA transport [66-69]. Direct evidence that a proton gradient is the
driving force for MATEL! activity was reported recently, utilizing membrane
vesicles prepared from cells stably expressing MATEL. TEA transport exhib-
ited the overshoot phenomenon only when there was an outwardly directed
H* gradient across the vesicles [70], which has been also observed in rat
‘renal brush-border membrane vesicles [71]. These findings indicate that an
oppositely directed H gradient serves as a driving force for MATE].

23.3.5. ABC Transporters

23.3.5.1. Structure and Tissue Distribution

P-glycoprotein (P-gp, MDR1) was first isolated from cancer cells where it
extrudes chemotherapeutic agents out of the cell thereby conferring multidrug
resistance [72]. Subsequent analyses have demonstrated that P-gp is expressed
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