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inner segment at 3w. The inner segment was less immu-
noreactive for UCH-L3 at 6w, 8w, and 12w, compared
with 3w.

Histopathological Changes of Retinal
Degeneration in the UchiI3-Deficient Mice

Microscopic examination of retinal cross-sections re-
vealed no obvious histopathological changes during
early postnatal development at PO and P10 in the retina of
Uchi3-deficient mice (Figure 2). At 3w of age, the mutant
retina began to degenerate in the inner segment and
ultimately disappeared at 12w (Figures 2B and 3D).
Thickness of the outer segment, outer nuclear layer, and
outer plexiform layer was also significantly decreased in
the mutant mice at 6w of age (Figure 3, C, E, and F).
Despite the conspicuous change in the photoreceptor
cells, the thickness of the mutant inner retina up to 12w of
age was not altered compared with that of the wild-type
(Figure 3, G-I). '

Ultrastructurally, vacuolar changes were found in the
inner segment of Uchi3-deficient mice at 3w of age (Fig-
ure 4). Mitochondria at the inner segment of mutant mice
were slightly swollen. Groups of small round-to-oval
structures were observed in the degenerated inner seg-
ment (Figure 4D), and these structures were considered
to be the cross-sections of cell processes. Chromatin
condensation in photoreceptor nuclei was sometimes
seen in the outer nuclear layer at 3w (Figure 4F). Mor-
phometric analysis showed that the percentage of cristae
area to whole area of mitochondrion in the inner segment
of Uchi3-deficient mice was significantly lower than that of
wild-type mice (Figure 4, G and H).

- Altered Expressions of Apoptosis-Related
Proteins in the Degenerated Retina

Apoptatic cells in the retinal cross-sections were identi-
fied using the TUNEL staining. TUNEL-positive cells were
identified in the ventricular zone at PO and inner nuclear
layer at P10 of both genotypes during the developmental
period (Figure 5, A and C). The number of TUNEL-posi-
tive cells slightly increased in the inner nuclear layer at
P10. After 3w of age, TUNEL-positive cells of mutant
retina significantly increased at the outer nuctear layer of
the mutant retina at 3w, 6w, and 8w (Figure 5, A and D).

To determine which apoptotic pathway was activated
in Uchl3-deficient mice, we examined immunoreactivities
of apoptosis-related proteins. Expression of cytochrome
¢, caspase-3, and cleaved caspase-3 and caspase-1,
essential molecules for the caspase-dependent pathway,
were unchanged in both genotypes (Figure 6A), whereas
oxidative stress markers, COX and Mn-SOD as well as
AIF and Endo G, indicators of the caspase-independent
pathway, were altered in the mutant retina (Figure 6B).
Chronological changes in expression of markers for oxi-
dative stress and caspase-independent apoptosis at PQ,

P10, 3w, 6w, 8w, and 12w are shown in Table 1. The .

immunoreactivity of COX was increased in the inner seg-
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Figure 3. Chronological changes of retinal degeneration as assessed by
thickness of each layer at different ages in wild-type and Uchi3-deficient
mice. A: Total retinal thickness is progressively decreased after 3w of age. Bz
Thickness of ventricular zone at PO and photoreceptor layer at P10 shows no
significant changes between both genotypes. C-F: Thickness of outer retinal
layers in wild-type and Uchi3-deficient mice at different ages. The earliest
change is revealed at 3w of age in inner segment of mutant retina (D).
Thickness of outer segment (C), outer nuclear layer (E), and outer plexiform
layer (F) in Uchi3-deficient mice is significantly decreased with age com-
pared with that in the wild-type. G-I: Thickness of inner retinal layers in
wild-type and Uchi3-deficient mice at different ages. Thickness of inner
nuclear layer (G), inner plexiform layer (H), and ganglion cell layer (I) are
unchanged between both genotypes. Each value represents the mean * SE
(*P < 0.05; **P < 0.01). In all panels, the white bars represent the thickness
in wild-type mice and the black bars represent the thickness in Uchi3-
deficient mice. VZ, ventricular zone; PR, photoreceptor; OS, outer segment;
IS, inner segment; ONL, outer nuclear layer; OPL, outer plexiform layer; INL,
inner nuclear layer; IPL, inner plexiform layer; GCL, ganglion cell layer.

ment at 3w and 6w. Mn-SOD was mildly increased in the
inner segment at 3w, 6w, and Bw. Although AIF was
enriched in the inner segment of Uch/3-deficient mice at
3w and 6w, nuclear labeling of AlF was not observed. On
the other hand, Endo G was localized to the nuclei of the
outer nuclear layer of the mutant retina at 3w and 6w.
Expression of Endo G was slightly increased in the outer
plexiform layer, inner nuclear layer, and inner plexiform
layer of Uchi3-deficient mice after 3w of age (Table 1).
Thus, degeneration of photoreceptor cells in Uchi3-defi-
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Figure 4. Ultrastructure of the outer retina in wild-type (A, C, and E) and Uch/3-deficient mice (B, D, and F) at 3w of age. A and B: Inner segment of mutant
retina is shrunken associated with vacuolar changes (arrowheads in B). Arrows in A and B indicate outer limiting membrane. C and D: Subsets of mitochondria
at the inner segment in Uchi3-deficient mice are swollen with decreased cristae (arrowheads in D) compared with that of wild-type (arrowheads in C). Groups
of small round-to-oval shaped structures are occasionally seen in degenerated inner segment (white arrows in D). E and F: Outer nuclear layer of wild-type (E)
and Uchi3-deficient (F) mice. Chromatin condensation of photoreceptor cells is observed in mutant mice (F). G and H: Morphometric analysis of mitochondria
was performed with the percentage of cristae area (G; red) against mitochondrial area (n = 50 for each genotype). Cristae area in the inner segment is significantly
decreased in mutant retina (H, —/—, black bar) compared with that in wild-type (H, WT, white bar). Each value represents the mean * SE (**P < 0.01). OS,
outer segment; IS, inner segment; ONL, outer nuclear layer. Scale bars = 1 pm (A and B), 500 nm (C and D), and 1 pm (E and F).
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Figure 5. TUNEL analysis in wild-type and
Uchi3-deficient mice at different ages. A:
TUNEL suining in fluorescent microscopy
shows that TUNEL-positive cells (green) are
L observed at the ventricular zone at PO as well
as at the inner nuclear layer at P10 in both
genotypes. After 3w of age, TUNEL-positive
cells are found in the outer nuclear layer in
Uchi3-deficient mice. All sections are counter-
stained with propidium iodide (red). B-D:
Number of TUNEL-positive cells in mutant
mice (Uchi3™/~; black bar) is significandy
increased compared with those in wild-type
(wild-type; white bar) at P10, 3w, 6w, and
8w (B). Increased number of TUNEL-positive
cells in mutant mice at P10 comespond to
apoptosis in the inner nuclear layer (C),
whereas that in 3w, 6w, and 8w is reflected to
apoptosis in the outer nuclear layer (D). VZ,
ventricular zone; OS, outer segment; IS, inner
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cient mice may be due to caspase-independent apopto-
tic pathway (Figure 7). Ubiquitin and Nedd-8, which are
considered to be associated with UCH-L3 in vitro,**®
were expressed in the inner retina of both genotypes in a
similar pattern as UCH-L1 (data not shown).

Discussion

This study demonstrates the unique localization of
UCH-L3 to the photoreceptor inner segment that is abun-
dantly populated with mitochondria after 3w of age in
wild-type mice. The following features were found with
regard to retinal degeneration in Uchi3-deficient mice.
The retina showed no obvious morphological abnormal-
ities during early postnatal development; however, pro-
gressive retinal degeneration was observed after 3w of
age. The inner segment was originally perturbated with
ultrastructural changes of mitochondria and increased
expressions of markers for oxidative stress. The caspase-
independent pathway was implicated during photore-
ceptor cell apoptosis. Thus, UCH-L3 may have a role in
preventing mitochondrial oxidative stress-related apopto-
sis in photoreceptor cells.

Differential Localization of UCH-L1 and UCH-L3
in Murine Retina

The cellutar distribution of UCH-L3 has not been studied
except in the testis and epididymis, where UCH-L1 and
UCH-L3 have distinct expression patterns.®® In the
present study, we found that UCH-L3 was enriched in the
photoreceptor inner segment after 3w of age, whereas
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UCH-L1 was widely expressed in the inner retina. Photo-
receptor cells are highly differentiated, and each seg-
ment has specific morphology and function; eg, inner
segment contains abundant mitochondria,?” and its oxy-
gen consumption is considered to be high.28 Meanwhile,
expression of UCH-L1 at the inner retina was associated
with that of ubiquitin and Nedd-8. Although in vitro studies
indicate that UCH-L3 has de-neddylation activity,'*
UCH-L1 may be responsible for regulating expression
level of ubiquitin and ubiquitin-like protein Nedd-8 in the
retina. Because UCH-L1 expression in the retina was not
altered in Uchi3-deficient mice, the function of UCH-L3
may not be compensated by UCH-L1. Our results indi-
cate that UCH-L3 and UCH-L1 differ with regard to their
localization and function in retina.

Mechanism of Photoreceptor Cell Death in the
Uchi3-Deficient Mice

In our result, retinal apoptosis in Uchi3-deficient mice
consisted of two different phases, during retinal develop-
ment and after development. During the early postnatal
development at P10, TUNEL-positive cells were ob-
served in the inner nuclear layer of both genotypes, and
the physiological apoptosis was slightly enhanced in the
mutant retina. Because UCH-L3 was faintly expressed in
the outer plexiform layer at P10 in wild-type mice,
UCH-L3 may function during development. In the retinal
development, the number of bipolar and Mdaller cell
deaths reaches a peak at the postnatal days 8 to 11,
which is associated with differentiation of the retina in



Cleaved

A Cyto C
caspase-3

Caspase-3

Caspase-1

wild type

Uchl3 -1-

B (076) 4

Mn-SOD AlF

wild typé

Uchl3 -I-

Figure 6. Immunohistochemical analysis of apoptosis- and oxidative stress-
related molecules at 3w of age in wild-type and Uchl3-deficient mice. A:
Expression of molecules relevant to the caspase-dependent pathway, includ-
ing cytochrome ¢ (Cyto C), caspase-3, cleaved caspase-3, and caspase-1, is
unchanged between both genotypes. B: Increased immunoreactivities for
oxidative stress markers, COX, Mn-SOD, and AIF, are observed in the inner
segment of Uchi3-deficient mice (arrows). Translocation of Endo G to nuclei
is found in the outer nuclear layer of Uchi3-deficient mice (inset in B). OS,
outer segment; IS, inner segment; ONL, outer nuclear layer; OPL, outer
plexiform layer; INL, inner nuclear layer; IPL, inner plexiform layer; GCL,
ganglion cell layer. Scale bars = 50 um (A and B); 10 um (inset in B).

mice.?® Therefore, loss of UCH-L3 may mildly promote
the cell death of these cells. ‘
After 3w of age, prominent and progressive photo-
receptor cell apoptosis was disclosed in the outer nu-
clear layer of Uchi3-deficient mice. Under pathological
conditions, several apoptotic pathways have been
suggested in experimental retinal degeneration.
Caspase-1 is predominantly associated with photore-
ceptor cell apoptosis in retinal degeneration of isch-
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emia-reperfusion.3® Light-induced retinal degeneration
activates the parallel cascades, caspase-12° and
caspase-independent apoptosis.?' Oxidative stress
leads to caspase-independent apoptosis in cultured
cells.®! Our results indicated that a caspase-indepen-
dent pathway was activated during photoreceptor cell
apoptosis in Uchl3-deficient mice, because immuno-
histochemical analysis revealed that activated
caspase-3 and caspase-1 were not expressed in the
degenerated retina. In addition, Endo G, a protein
involved in the caspase-independent pathway, was
expressed in the nuclei of the outer nuclear layer in
Uchl3-deficient mice. Endo G is a mitochondria-spe-
cific nuclease that translocates to nuclei and serves as
the DNase during a caspase-independent apoptosis.®2.
Therefore, Endo G may be responsible for the DNA
degradation that occurs during apoptosis in Uch/3-
deficient mice. Expression of Endo G was slightly in-
creased . in the outer plexiform layer, inner nuclear
layer, and inner plexiform layer of the Uchi3-deficient
mice after 3w of age despite no significant UCH-L3
immunoreactivities in these layers. This result may re-
flect trans-synaptic secondary neuronal degeneration
or glial changes of Mdller cells.

AlF, another factor involved in caspase-independent
apoptosis, was enriched in the inner segment; however,
we did not observe translocation to nuclei for this protein.
AlF is a mitochondrial flavoprotein that is a free radical
scavenger of healthy cells.3® During apoptotic induction,
AIF transiocates from mitochondria to nuclei. 3334 It func-
tions as a caspase-independent and PARP-1-dependent
death effector that induces chromatin condensation and
large-scale DNA fragmentation.®® In our study, expres-
sion of AIF at the inner segment was associated with
increased immunoreactivities of the oxidative stress
markers, COX and Mn-SOD. Although it is unknown why
AIF did not translocate to nuclei in the degenerated ret-
ina, increased immunoreactivity for AlF in the inner seg-
ment may indicate a reaction to oxidative stress. Because
mouse eyes open 12 to 13 days after birth, light-induced
oxidative stress may affect photoreceptor cell apoptosis
in Uchl3-deficient mice after development. On the other
hand, the retinal oxygen consumption increases under
dark-adapted condition in the cat retina.2®36 It may be
interesting to study whether constant light or constant
dark has any effect on the development of retinal degen-
eration in the Uch/3-deficient mice.

Uchli3-Deficient Mice as a Model of Retinal
Degeneration with Mitochondrial Impairment

Apoptosis during retinal degeneration is observed in in-
herited diseases such as retinitis pigmentosa as well as
in retinal diseases induced by a variety of stimuli, includ-
ing hypoxia and oxidative stresses.>”*® Several geneti-
cally engineered animal models of retinitis pigmentosa
have been extensively investigated, including the RCS rat
and rd mice. Retinal degeneration in the RCS rat was
originally identified as an impairment of phagocytosis by
pigmented epithelium due to mutation of receptor ty-
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Table 1.

Chronological Changes in Expression of Markers for Oxidative Stress and Caspase-Independent Apoptosis
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—, no change; *, stight increase; +; mild increase; and ++, marked increase of immunoreactivity compared to that of wild type.

nd, not determined due to atrophic change.
SNuclear staining.

rosine kinase (Mertk) with subsequent photoreceptor cell
death occurring in a caspase-1- and -2-dependent man-
ner.39-42 rd mice have a recessive mutation in the rod
cGMP phosphodiesterase B-subunit, and photoreceptor
apoptosis occurs via a caspase-dependent mecha-
nism.*3:44 Thus, these animal models of retinitis pigmen-
tosa differ from Uchi3-deficient mice with regard to the
mechanism of retinal degeneration.

The relationship between retinal degeneration and mi-
tochondrial dysfunction has not been well studied except
in Harlequin mice, which contain a mutation of AlF and
exhibit progressive retinal degeneration.*® We consider
that the degeneration induced in the Uch/3-deficient mice
is associated with mitochondrial dysfunction, because
mitochondria in the inner segment of mutant retina exhib-
ited morphological changes such as decreased cristae
area. Uchi3-deficient mice reveal not only retinal degen-
eration but also muscle degeneration and mild growth
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Figure 7. Function of UCH-L3 in apoptosis during retinal degeneration.
Mitochondrial apoptosis is classified into caspase-dependent and caspase-
independent pathways. Loss of UCH-L3 leads to oxidative stress-induced
mitochondrial damage that causes translocation of Endo G from mitochon-
dria to nuclei, resulting in caspase-independent apoptosis. Red arrows are
considered to be activated in Uchi3-deficient mice.

retardation,*” and thus the lack of UCH-L3 may affect
general organs containing abundant mitochondria. Sub-
types of mitochondrial diseases, such as chronic pro-
gressive external ophthalmoplegia and Kearns-Sayre
syndrome, are caused by various mitochondrial DNA
deletions and observed progressive ophthalmoplegia as
well as retinitis pigmentosa.*®*” Because UCH-L3 is pre-
dicted to be involved in the maintenance of mitochondrial
function, Uchl3-deficient mice may be a model of disease
that arises from mitochondrial impairment. Further stud-
ies are necessary to clarify the molecular mechanisms
underlying retinal degeneration, as well as other organs
in these animals.
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Parkin Potentiates ATP-Induced Currents Due to
Activation of P2X Receptors in PC12 Cells
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Loss-of-function mutations of the parkin gene causes an autosomal recessive juvenile-onset form of Parkinson’s disease (AR-JP).
Parkin was shown to function as a RING-type E3 ubiquitin protein ligase. However, the function of parkin in neuronal cells remains
elusive. Here, we show that expression of parkin-potentiated adenosine triphosphate (ATP)-induced currents that result from
activation of the P2X receptors which are widely distributed in the brain and involved in neurotransmission. ATP-induced inward
currents were measured in mock-, wild-type or mutant (T415N)-parkin-transfected PC12 cells under the conventional whole-cell
patch clamp configuration. The amplitude of ATP-induced currents was significantly greater in wild-type parkin-transfected cells.
However, the immunocytochemical study showed no apparent increase in the number of P2X receptors or in ubiquitin levels. The
increased currents were attenuated by inhibition of cAMP-dependent protein kinase (PKA) but not protein kinase C (PKC) or Ca®*
and calmodulin-dependent protein kinase (CaMKIl). ATP-induced currents were also regulated by phosphatases and cyclin-
dependent protein kinase 5 (CDK5) via dopamine and cyclic AMP-regulated phosphoprotein (DARPP-32), though the
phosphorylation at Thr-34 and Thr-75 were unchanged or rather attenuated. We also tried to investigate the effect of a-synuclein,
a substrate of parkin and also forming Lysine 63-linked multiubiquitin chains. Expression of a-synuclein did not affect the amplitude
of ATP-induced currents. Our finding provides the evidence for a relationship between parkin and a neurotransmitter receptor,
suggesting that parkin may play an important role in synaptic activity. J. Cell. Physiol. 209: 172182, 2006. @ 2006 Wiley-Liss, Inc.

Recessive juvenile-onset form of Parkinson’s disease
(AR-JP) is the most frequent form of familial Parkin-
son’s disease (PD). Mutations in the parkin gene were
originally discovered from the linkage study of Japanese
AR-JP families (Kitada et al., 1998). Thereafter its
mutations have been found worldwide and parkin gene
is now accepted as one of eight genes responsible for
Parkinson’s disease (see review by Cookson, 2005).

It has been demonstrated that parkin is associated
with the ubiquitin—proteasome system. Wild-type par-
kin encodes for a protein-ubiquitin E3 ligase, which
ubiqutinates many substrate proteins to enhance their
degradation by the 26S proteasomes (Imai et al., 2000;
Shimura et al., 2000; Zhang et al., 2000). As parkin
mutations lose their E3 ligase activity, it is thought
that accumulation of parkin substrate may lead to the
selective death of catecholaminergic cell death (Ko et al.,
2005) and familial-associated mutations differentially
disrupt the solubility, localization, binding, and uni-
biquitination properties of parkin (Sriram et al,
2005).

It is reported that parkin is localized on surface
of synaptic vesicle membranes (Kubo et al., 2001).
As substrates of parkin, some synaptic proteins were
reported, such as synaptotagmin XI(Huynhetal., 2003),
septin CDCrel-1 (Zhang et al., 2000), and synphylinl
(Lim et al., 2005), suggesting that parkin may have a
neuronal function. However, the nature of this function
is unknown. Therefore, we have investigated the effect
of parkin on one of receptor channels that affect neuro-
transmitter secretion.

© 2006 WILEY-LISS, INC.

Adenosine triphosphate (ATP) and related nucleo-
tides induce a release of catecholamines, including
dopamine, in PC12 pheochromocytoma cells, a fre-
quently used model for sympathetic neurons (Sela
et al., 1991; Nakazawa and Inoue, 1992). ATP receptors
are divided into two subtypes, P2X and P2Y receptors.
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PARKIN POTENTIATES P2X RECEPTOR CHANNELS

P2X receptors are ionotropic receptors and form cationic
channels, while P2Y receptors are G-protein-coupled
receptors. Recently, we have reported that P2X recep-
tor-induced membrane currents were augmented by
ubiquitin carboxy-terminal hydrolase L1 (UCH-L1),
presumably due to upregulation of mono-ubiquitin level
(Manago et al., 2005). Therefore, the ubiquitin—protea-
some pathway is also implicated in the function of ATP
receptors.

In the present study, we analyzed relationships
between parkin and P2X receptors by expressing parkin
or a familial-linked mutant parkin (T415N-parkin)
which lacks ubiquitin E3 ligase activity in PC12 cells.
This is the first evidence to show the relationship
between physiological function of parkin and receptor
channels involved in neurotransmitter secretion. These
findings may help to understand the function of parkin
in the nervous system and the mechanism of Parkin-
son’s disease caused by dysfunction of parkin.

MATERIALS AND METHODS
Chemicals

RPMI-1640 medium, ATP-2Na, H-89 (N-[2-(p-bromoocina-
mylamino)ethyl]-5-isoquinolinesulfonamide), H-85, cheler-
ythrine, roscovitine (2-(R)-(1-Ethyl-2-hydroxyethylamino)-6-
benzylamino-9-isopropylpurine), and PD98059 (2'-Amino-3'-
methoxyflavone) were from Sigma (St. Louis, MO). Nerve
growth factor (NGF) and Lipofectamine 2000 were from
Invitrogen (Carlsbad, CA). KN-93 (2-[N-(2-hydroxyethyl)]-N-
(4-methoxybenzenesulfonyl))amino-N-(4-chlorocinnamyl)-N-
methylbenzylamine) and okadaic acid was from Calbiochem
(San Diego, CA).

Cell culture

PC12 Tet-off cells were grown in RPMI-1640 medium
containing 5% fetal bovine serum (FBS) (Cell Culture
Technologies, Lugano, Switzerland), 10% horse serum (HS)
(Invitrogen), 100 units/ml penicillin (Life Technologies, Rock-
ville, MD), and 100 pug/ml streptomycin (Life Technologies}in a
humidified atmosphere with 10% CO, at 37°C. To differentiate
cells, 100 ng/ml of NGF was added to the RPM 1640 medium
with 0.1% HS, 0.05% FBS, 50 unit/ml penicillin, and 100 pg/ml
streptomyecin for 4 days.

Transfection

Plasmids used for transfection were  constructed using
pIRES-EYFP vector (Clontech, Nottinghamshire, UK). For
electrophysiological recording, PC12 Tet-Off cells were trans-
fected with mock, Flag-tagged wild-type or mutant (T415N)
parkin cDNA, using Lipofectamine 2000. The engineered PC12
cells are constructed to have higher transfection efficiency
than wild-type PC12 cells (unpublished data). After 24 h of
transfection, cells were treated with NGF and differentiated
for 4—5 days. More precisely, 3.0 x 10° cells were seeded in 35-
mm dishes in RPMI with 10% HS and 5% FBS. Twenty-four
hours after seeding, the medium was replaced with 500 pl of
serum-free RPMI 1640 medium. Then, the transfection
mixture containing 4 pg of cDNA and 10 pl of Lipofectamine
2000 in 500 pl of RPMI-1640 was added to each dish and
incubated for 6 h in a humidified atmosphere with 10% CO, at
37°C. One milliliter of complete RPMI-1640 supplemented
with an additional 10% HS and 5% FBS was then added to each
dish. The solution for transfection was discarded 18 h later and
replaced with RPMI-1640 medium for differentiation with
added 100 ng/ml NGF. For transfection of a-synuclein, plas-
mids were constructed using pIRES-EGFP vector (Clontech)
and the same protocol was used as for parkin. For protein
analysis, cells (7.5 x 10%well, Clontech) were transfected in
the same way. After 24 h, cells were subjected to Western blot
analysis.

Western blot analysis
After 48 h of transfection of pIRES-EYFP-mock, pIRES-
EYFP-Flag-wild-type parkin, or -T415N parkin with Lipofec-
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tamine 2000 (Invitrogen), cells were lysed with TBS buffer
(25 mM Tris/150 mM NaCl, PH 7.4) containing 1% Triton X-100
and centrifuged at 15,000 rpm for 30 min at 4°C. Thirty
micrograms of each protein was subjected to SDS-PAGE
on a 15% gel and transferred to PVDF membranes (Bio Rad,
CA) and immunoblotted with anti-Flag M2 (1:200, Sigma,
monoclonal) or anti-Actin (1:200, Chemicon, Temecula, CA,
monoclonal).

Immunocytochemical analysis

After transfection, cells were fixed with 4% paraformalde-
hyde. Immunocytochemistry on PC12 Tet-Off cells was
performed as previously described (Osaka et al., 2003) using
antibodies against parkin (5 pg/ml, Zymed, San Francisco, CA;
monoclonal), P2X,, P2X,, or P2Xg receptor (1:200, Alomone
labs, Jerusalem, Israel; polyclonal), ubiquitin that is predomi-
nantly reactive to free ubiquitin in immunohistochemistry
(1:100, Sigma,; polyclonal), a-synuclein (1:500, BD Biosciences,
San Jose, CA), and dopamine and cyclic AMP-regulated
phosphoprotein (DARPP-32) (phosphor Thr-34 and phospho
Thr-75) (1:500, Abcam, Cambridge, UK). For immunofluores-
cence studies, anti-rabbit IgG conjugated with Cy3 antibodies
(1:200, Jackson Immuno Research, West Grove, PA) or Alexa
Fluor 568 goat anti-mouse (1:250, Molecular Probes, Invitro-
gen) was used as secondary antibodies. The same strength of
the laser wavelength or fluorescence was applied in the series
of images, for the quantification of the fluorescence under
the confocal laser microscope system (LSM510, Carl Zeiss,
Oberkochen, Germany). .

Electrophysiological measurements

Cells expressing EYFP were selected under the fluorescence
microscope. A patch pipette was then applied to the cell to
obtain a giga-ohm seal under phase-bright mode. Whole-cell
membrane current recordings were made under voltage-clamp
at a holding potential of —70 mV as reported previously (Noda
et al., 2000; Manago et al., 2005), using an Axopatch-200B
amplifier (Axon Instruments, Foster City, CA). The patch
pipette wasfilled with a solution containing (in mM): CsCl, 120;
MgoATP3, 3; HEPES, 20; CaCly, 1; MgCly, 1; EGTA, 5. The pH
of the solution was adjusted to 7.2 with 1 N CsOH. The pipette
resistance was 5—9 MQ. The external solution contained (mM):
NaCl, 132; KCl, 5; CaCls, 2; MgCl,, 1; glucose, 10; and HEPES,
10. The pH was adjusted to 7.4 with 1 N NaOH. External ATP
or drugs were applied rapidly using the Y tube’ technique
(Min et al., 1996), which allows the complete exchange of the
external solution surrounding a cell within 20 msec. Tempera-
ture monitored in the recording dishes was 33—-34"C.

In the experiments using inhibitors (except PD98059), ATP
was applied twice to ensure reproducibility of the ATP-induced
current in control experiments. The inhibitor solution was
applied after first application of ATP for a period appropriate to
the inhibitor until the end of second application of ATP. The
current amplitude obtained at the second application of ATP
with or without inhibitors was normalized to that of the
first ATP-induced current. All values were presented as
mean + SEM. Statistical analysis was done using ANOVA.
A value of P < 0.05 was considered to be the minimum level of
significance. Curve fitting was performed using the standard
Hill Equation (Igor Pro 4.07; Wavemetrics, Lake Oswego, OR).

RESULTS
Transfection of parkin in PC12 Tet-Off cells

Expression of plasmid constructs was first examined
in PC12 Tet-Off cells. Western blot analysis showed
immunoreactive bands by anti-Flag antibodies in cells
transfected with pIRES-EYFP-wild type parkin or
T415N parkin, but not with mock plasmids (Fig. 1A).
The efficiency of the transfection was about 10% in PC12
Tet-Off cells. To test endogenous expression of parkin,
cells were immunostained using specific antibodies for
parkin. The strong expression of parkin (red) was
observed in wild-type parkin-transfected cell (yellow)
but not in non-transfected cells in the same field (shown
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Fig. 1. Transfection of parkin and potentiation of ATP-induced
currents in PC12 cells. A: Western blot analysis of PC12 Tet-Off cells.
Cells were transfected with either pIRES-EYFP-mock, wild-type (WT)
parkin, or T415N parkin. Each protein was subjected to SDS-PAGE
and immunoblotted with anti-Flag or anti-Actin antibody. B: Confocal
image of PC12 Tet-Off cells transfected with pIRES-EYFP-wild-type
parkin (yellow) showed strong expression level of parkin (red) while

with white arrows in Fig. 1B), suggesting little endo-
genous parkin was expressed in PC12 Tet-Off cells.

Effects of expression of parkin on
ATP-induced currents

ATP-activated inward currents due to the activation
of P2X receptors at negative holding potentials in PC12
cells or PC12 Tet-Off cells have been reported previously
(Nakazawa et al., 1994; Manago et al., 2005). In our
experiments, PC12 Tet-Off cells were voltage-clamped
at =70 mV and 1 mM ATP were applied to see whether or
not overexpression of parkin affected maximum inward
currents. In parkin-transfected cells, ATP-induced
inward currents were nearly threefold larger than those
in mock- or mutant (T415N) parkin-transfected cells
(Fig. 1C). The amplitudes of the peak inward currents in
mock-, wild-type parkin-, and T415N parkin-trans-
fected PC12 Tet-Off cells were 24.8 + 1.6 pA/pF (n=9),
71.3+8.4 pA/pF (n=5), and 26.1+3.4 pA/pF (n=7),
respectively (Fig. 1D).

The current—voltage relationships of the ATP-
induced inward currents were determined by applying
50 msec voltage steps in 10 mV increments between
—~100 mV and +50 mV at 50 msec interval from the
holding potential of —70 mV before and during the
application of ATP (Fig. 2A). Current traces obtained
before and after application of ATP in wild-type parkin-
transfected cells are shown in Figure 2B. The current
levels at the end of each pulse before and during ATP
application were measured in mock-, wild-type parkin-,
or T415N parkin-transfected cells. The amplitudes of
the ATP-induced currents at each voltage were obtained
by subtracting the one before application of ATP from
the one during application of ATP. The current—voltage
relationships obtained at the time point after 40 msec
from the beginning of each pulse were plotted as in
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non-transfected cells (white arrows) showed little expression of
parkin. C: Inward membrane currents induced by 1 mM ATP at the
holding potential of —70 mV in mock-, wild-type parkin-, and T415N
parkin-transfected PC12 Tet-Off cells. D: Amplitudes of peak inward
currents induced by 1 mM ATP in mock-, wild-type parkin-, and
T415N parkin-transfected PC12 Tet-Off cells. The bars represent the
mean + SEM, **P <0.01.

Figure 2C. To allow for possible desensitization, the
current—voltage relationships were also obtained by
applying voltage steps in the opposite direction, that is,
from +50 to —100 mV, but there was little change (data
not shown). The reversal potential was about 0 mV,
suggesting that these currents were due to non-specific
cationic channels.

ATP-induced inward currents were concentration-
dependent. Mock- and T415N parkin-transfected cells
showed visible ATP-induced inward currents at 0.03 nM
and a maximum response at 1 mM ATP (Fig. 3A). The
maximum response was almost three times bigger in
wild-type parkin-transfected cells (Fig. 3B). The sensi-
tivity to ATP was not significantly changed by over-
expression of either mock, wild-type, or T415N parkin.
ECs values (half maximum concentration) were
187 + 45 uM, 127+ 13 uM, and 177 + 124 yM with Hill
coefficients (ng) of 1.05+0.314, 0.97+0.12, and 2.00 +
2.26 in mock-, wild-type, and T415N parkin-transfected
cells, respectively.

Expression of P2X,, P2X,, and P2X; receptors
in parkin-transfected cells

In PC12 cells, P2X, and P2X, receptors (Hur et al.,
2001) with lower level of P2Xg receptor are expressed
(our unpublished data). It was possible that the expres-
sion of P2X receptors was enhanced by overexpression
of parkin. To define the changes in the expression level
of P2X receptors semi-quantitatively, P2X,, P2X,, and
P2X, receptors were immunostained using specific
antibodies for each receptor subtype. The subcellular
localization of P2X,, P2X,, and P2X; receptors showed
no obvious difference in wild-type parkin-transfected
cells compared with non-transfected cells in the same
field (Fig. 4), suggesting that the potentiation of the
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Fig. 2. Voltage-dependency of ATP-induced currents in mock-, wild-
type parkin-, and T415N parkin-transfected PC12 Tet-Off cells. A: The
voltage protocol shown in the upper part was applied before and
during application of 1 mM ATP at the time indicated by (i) and (ii) in
the lower part. B: Cumulated current traces obtained in wild-type
parkin-transfected cells before (i) and during (ii) application of ATP.

ATP-induced currents was not due to an increase in the
total number of P2X receptors.

Expression of mono-ubiquitin in
parkin-transfected cells

It has previously been reported that a de-ubiquitinat-
ing isozyme, ubiquitin carboxy-terminal hydrolase L1
(UCH-L1), also potentiated ATP-induced currents
(Manago et al., 2005). However, hydrolase activity was
not involved in the potentiation of ATP-induced cur-
rents because a mutant form lacking hydrolase activity
also potentiated the current. Instead, UCH-L1 upregu-
lated ubiquitin levels (Osaka et al.,, 2003) and over-
expression of UCH-L1 in PC12 cells increased the mono-
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Fig. 3. Concentration-dependent curve of ATP-induced currents in
mock-, wild-type parkin-, and T415N parkin-transfected PC12 Tet-Off
cells. A: Inward membrane currents induced by 0.03, 0.1, and 1 mM
ATP at the holding potential of —70 mV in mock-, wild-type (w.t.)
parkin-, and T415N parkin-transfected PC12 Tet-Off cells. B: The
peak inward current induced by ATP at the holding potential of
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The subtracted currents [(ii) — (i)] show the ATP-induced currents.
C: The current-voltage relationships of ATP-induced currents. The
amplitudes of subtracted currents [(ii) — ()] in (B) at the end of 50 msec
pulses were plotted against the pulse potentials in mock (Q)-, wild-
type (w.t.) parkin ([J)-, and T415N parkin (A)-transfected cells.

ubiquitin level (Manago et al., 2005). To test whether
or not parkin also upregulate mono-ubiquitin levels,
ubiquitin was stained using anti-mono-ubiquitin IgG.
Unlike the effect of UCH-L1, immunoreactivity for
ubiquitin in wild-type parkin-transfected cells was
unchanged compared to that in mock-transfected cells
or non-transfected cells in the same field (Fig. 5). These
results indicated that parkin did not upregulate mono-
ubiquitin.
Little effects of a-synuclein on
ATP-induced currents

Since it has recently been shown that UCH-L1,
parkin, and a-synuclein form lysine 63-linked multi-
ubiquitin chains (Doss-Pepe et al., 2005; Lim et al.,

O mock

80
o w.t parkin

A T415N parkin

60

40

20 |

|
0.1
[ATPJo (mM)

—70 mV was plotted against the ATP concentration at several
points between 0.01 and 3 mM in mock (Q)-, wild-type parkin (0J)-,
and T415N parkin (A)-transfected PC12 Tet-Off cells. Each
point represents the mean of 5-13 cells and the bar shows the
mean + SEM. The curve shows the least squares fit.
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Fig. 4. Parkin has no clear effect on the expression of P2X», P2X4, and P2X, receptors. Confocal images
of PC12 Tet-Off cells transfected with pIRES-EYFP-wild-type (w.t.) parkin that were double stained with
P2X, (upper part), P2X, (middle part), and P2Xg receptors (lower part). EYFP (yellow)-positive cells
were parkin-t.xl'ansfected cells, showing similar expression level of P2X receptors (red) to those in non-
transfected cells.

2005), a-synuclein also might have a similar effect on
P2X receptor. Transfection of a-synuclein was per-
formed in the same way as parkin and the transfection
efficiency was much greater than that of parkin (up to

EYFP

mock

w.t. parkin

30%) and the protein expression was confirmed by
Western blotting (not shown). The strong expression
of a-synuclein (red) was observed in transfected cell
(green) but not in non-transfected cells in the same field

mono-Ub merge

Fig. 5. Parkin had no clear effect on mono-ubiquitin expression. Confocal images of PC12 cells
transfected with pIRES-mock or wild-type (w.t.) parkin that were double stained with mono-ubiquitin

(red) and EYFP (yellow).
Journal of Cellular Physiology DOI 10.1002/jcp
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(shown with white arrows in Fig. 6A), suggesting little
enltliogenous a-synuclein was expressed in PC12 Tet-Off
cells.

ATP-induced currents in a-synuclein-transfected
cells were not significantly different from those in
mock-transfected cells (Fig. 6B). The relative amplitude
of ATP-induced currents were 28.6 + 4.1 pA/pF (n =9)in
mock-transfected cells and 21.5+ 5.4 pA/pF (n=10) in
a-synuclein-transfected cells, respectively.

Effects of kinase inhibitors on ATP-induced
currents in parkin-transfected cells

The mechanism by which ATP-induced currents were
augmented in parkin-transfected cells was investigated.
It was reported that in Aplysia UCH activated PKA asa
result of degradation of the regulatory subunit of PKA,
and that this contributed to the long-term potentiation
(Hegde et al., 1997). The increase of the ATP-induced
inward currents in UCH-L1-transfected cells has also
been attributed to activation of PKA (Manago et al.,,
2005). Therefore, it was tested whether PKA might be
activated in parkin-transfected cells by using H-89,
a PKA inhibitor. After obtaining large ATP-induced
currents in parkin-transfected cells, 10 yM H-89 was
applied for 10 min. The amplitude of the ATP-induced
currents in the presence of H-89 was 64.6 + 3.5% (n="7)
of that of the first ATP-induced current in the same cell
(control without H-89; 85.3+4.0% (n=4)) (Fig. 7A),
implying an inhibition of about 25%. An inactive analog
of H-89, H-85, did not have this inhibitory effect (current
amplitude in the presence of H-85 was 84.3+1.6%
(n=23) of the first current). To confirm the effect of
parkin, the effect of PKA inhibitor on ATP-induced
currents were tested in mock-transfected cells as well.
In mock-transfected cells, application of 10 uM H-89 for
10 min had no effect on the ATP-induced inward current
(H-89, 79.8+1.4% (n=3); control; 77.6 £5.2% (n=3))
(Fig. 7B).

The intracellular carboxyl terminus of P2X receptor
contains several consensus phosphorylation sites for
protein kinase C (PKC) as well as PKA, suggesting that
the function of the P2X receptors might be regulated
by PKC-mediated phosphorylation (Chow and Wang,
1998). Hence, the effect of chelerythrine, a PKC inhi-
bitor, on ATP-induced currents in parkin-transfected
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cells was tested. Application of 5 pM chelerythrine for
10 min had no effect on the ATP-induced inward current
in wild-type parkin-transfected cells (Fig. 7A). The
normalized amplitude of second ATP-induced inward
currents in the presence of chelerythrine was
88.4 + 3.3% (n =5). The possible involvement of calmo-
dulin-dependent protein kinase (CaMKII) was also
tested by using KN-93, a CaMKII inhibitor. Application
of 10 uM KN-93 for 20 min had no effect on the ATP-
induced inward current in wild-type parkin-transfected
cell (90.4+5.1% (n=4); control, 81.2+4.6% (n=4))
(Fig. 71C). -

In PC12 cells and hippocampal neurons, activation
of PKA has been reported to cause activation of
extracellular signal-regulated kinase (ERK), with sub-
sequent phosphorylation of Ca%*-stimulated cAMP
response element binding protein (CREB) and stimu-
lated transcription (Impey et al., 1998). Likewise, the
augmentation of ATP .response in parkin-transfected
cell might be due to the stimulation of transcription.
To test this possibility, we examined whether mitogen-
activated protein kinase (MAPK), including ERK, was
activated following the activation of PKA in PC12 Tet-
Off cells. However, ATP-induced currents in parkin-
transfected cells were unaffected even after application
of 5 uM PD98059, (one of the MAPK kinase inhibitors)
for 4 days: the amplitude of the ATP-induced current
after the application of PD98059 was 82.1+9.9 pA/pF
(n=4) compared with 74.6+3.4 pA/pF (n=18) in
controls treated with vehicle (Fig. 7D).

Involvement of DARPP-32 in parkin-transfected
PC12 Tet-Off cells

It was previously reported that the dopamine and
cAMP-regulated phosphoprotein with molecular weight
of about 32,000 (DARPP-32) was expressed in PC12 Tet- -
Off cells and that the expression level tended to increase
after differentiation of the cells with NGF (Manago
et al., 2005). Since phosphorylation of DARPP-32 at Thr-
75 by cyclin-dependent kinase 5 (CDK5) had a negative
feedback regulatory effect on PKA activity (Nishi et al.,
2000), the effect of roscovitine, a CDK5 inhibitor, was
tested. The application of 10 uM roscovitine to wild-type
parkin-expressing cells for 10 min enhanced the normal-
ized amplitude of ATP-induced currents to the one

B

ImM ATP

7/‘ | .n/’__]zoop.x

10s

Amplitude (pA/pF)
o3I LHB8R &Y

mock- @ -synuclein-
transfected transfected

Fig. 6. The wild-type a-synuclein-transfection had no effect on ATP-induced currents. A: d-synuclein-
transfected cells (EGFP; green) were strongly stained with anti-a-synuclein (red), while non-transfected
cells (with arrows) were not. B: The amplitude of ATP-induced inward currents in mock and a-synuclein-

transfected cells.
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Fig. 7. Effects of kinase inhibitors on ATP-induced currents. A: In
wild-type parkin-transfected cells, ATP-induced currents were atte-
nuated by pre-application of 10 yM H-89, a PKA inhibitor, but not
either by 10 yM H-85, an inactive analog of H-89, or 5 uM
chelerythrine, a PKC inhibitor, for 10 min. B: H-89 had no effect on

before application of roscovitine (102.1+3.5% (n=4);
control without roscovitine; 85.3+4.0% (n=4))
(Fig. 8A). The result suggested that PKA activity in
parkin-transfected cells was negatively regulated by the
phosphorylation of DARPP-32 at Thr-75 by CDKS5.

Activation of PKA also influenced on protein phos-
phatases relating to DARPP-32 (Nishi et al., 2000). The
phosphorylation of DARPP-32 at Thr-34 has been
reported to inhibit protein phosphatase-1 (PP-1), lead-
ing to an apparent increase in substrate-phosphory-
lation. On the other hand, PKA activates protein
phosphatase-2A (PP-2A), causing dephosphorylation of
DARPP-32 at Thr-75, activating PKA in turn. To
investigate the role of PP-1 and PP-2A in parkin-
transfected cells, we applied 100 nM okadaic acid, an
inhibitor for both PP-1 and PP-2A, for 20 min. The
normalized currents were augmented to 98.7+4.5%
(n =5) (control without okadaic acid; 81.2 + 4.6% (n=4)
(Fig. 8B). These results suggested that the function of
PP-1 was superior to that of PP-2A in parkin-transfected
cells. 4

The effects of CDK5 inhibitor and okadaic acid on
- ATP-induced currents were tested in mock-transfected
cells as well. In mock-transfected cells, application of
10 pM roscovitine for 10 min had no effect on the ATP-
induced inward current (roscovitine, 82.5 4+ 5.2% (n = 3);

control; 77.6 £ 5.2% (n=23)) (Fig. 8C). Similarly, appli-

cation of 100 nM okadaic acid for 20 min did not affect
the ATP-induced currents in mock-transfected cells,
(76.54+3.5% (m=3); control; 80.0+4.7% (n=3)
(Fig. 8D).
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ATP-currents in control (mock-transfected) cells. C, D: In wild-type
parkin-transfected cells, ATP-induced currents were not affected by
application of 10 uM KN-93, a CaMKII inhibitor, for 20 min (C), or by
treatment with 5 uM PD98059, a MAPKK inhibitor, for 4 days during
differentiation (D). **P <0.01.

Phosphorylation of DARPP-32 in
parkin-transfected PC12 Tet-Off cells

To investigate whether or not the phosphorylation of
DARPP-32 at Thr-34 or Thr-75 was modified by parkin,
cells were immunostained using specific antibodies for
DARPP-32 (phospho Thr-34 or phospho Thr-75). The
staining of phospho Thr-34 in parkin-transfected cells
were not enhanced as expected from the activation of
PKA (Nishi et al., 2000) but rather attenuated (Fig. 9A).
While phospho Thr-75 looked similar between parkin-
transfected cell and non-transfected cells in the same

“field (Fig. 9B).

DISCUSSION

To understand the functional role of parkin in the
central nervous system (CNS), it is important to know
whether parkin has any effects on ion channels and
receptors that are the basic elements of neurotransmis-
sion. To test this, we used PC12 cells and overexpressed
parkin protein (Fig. 1A). These show well-developed
inward current response to stimulation of P2X receptors
by ATP (Nakazawa et al., 1994) and we recently reported
enhancement of these currents by ubiquitin C-terminal
hydrolase L1 (UCH-L1) (Manago et al., 2005). In the
present experiments, we have studied the effects of
overexpressing of parkin on these currents.

Parkin produced a very substantial increase in the
maximum ATP-induced current without significant
change in sensitivity to ATP (Figs. 1 and 3). This did
not appear to be due to an increased number of P2Xj,
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Fig. 8. Involvement of DARPP-32-relating protein kinase and protein phosphatase on ATP-induced
currents. In wild-type parkin-transfected cells, ATP-induced currents were augmented by pre-application
of roscovitine, a CDKS5 inhibitor, for 10 min (A) or 100 nM okadaic acid, a protein phosphatase inhibitor,
for 20 min (B). In mock-transfected cells, ATP-induced currents were not affected by 10 pM roscovitine
(C) or 100 nM okadaic acid (D). **P < 0.05.

A Parkin Phospho Thr-34 merge

Phospho Thr-75

Fig.9. Parkindid not increase the phosphorylation of DARPP-32. A: Immunostaining of phospho Thr-34
(red) looked rather smaller in parkin-transfected cell (yellow-green; white arrow). B: Immunostaining of
phospho Thr-75 (red) looked similar between parkin-transfected cell (white arrow) and non-transfected
cells. The merged images also include differential interference contrast images.
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P2X,, or P2X; receptors, as judged by immunocyto-
chemistry (Fig. 4). Therefore, the mechanism seems to
involve an increase in gating of the receptors, rather
than increased affinity or receptor number. Enhance-
ment of P2X receptor at presynaptic terminal could
increase neurotransmitter release; it was reported that
ischemia-induced facilitation of glutamate release was
due to the activation of P2X receptors in spiny neuron in
neostriatum (Zhang et al., 2006) and our preliminary
result showed that ATP increased the frequency of
miniature inhibitory postsynaptic potential (mIPSP) in
acutely isolated neuron from substantia nigra, suggest-
ing increased release of GABA from presynaptic term-
inal (unpublished data).

The enhancement of ATP-induced currents seemed to
be associated with the ubiquitin ligase activity of parkin
since it was not reproduced by a ligase-deficient mutant
(Figs. 2C and 3). Involvement of the ubiquitin—protea-
some system would accord with our previous observa-
tions with the ubiquitin hydrolase UCH-LI, though in
this case hydrolase activity itself was not required since
the effect of UCH-LI was replicated by a hydrolase-
deficient construct. Instead, upregulation of mono-
ubiquitin (Osaka et al., 2003) and ubiquitin ligase
activity of UCH-L1 (Liu et al., 2002) might be respon-
sible for the potentiation of ATP-induced currents.

Though the precise mechanism how ubiquitin ligase
activity of parkin is involved is not known yet, possible
signaling leading to enhancement of the ATP-induced
currents is summarized in Fig. 10. It is only a part of the
mechanism revealed in the present investigation,
because inhibition of PKA, CDK5 or phosphatases
resulted in only partial (£20%) inhibition of the
parkin-potentiated currents which showed threefold
increase in amplitude compared to control.

Cvnrion |

Fig. 10. Predicted signaling induced by expression of parkin. Parkin
may activate PKA, subsequently phosphorylating P2X receptors.
Parkin also may activate protein phosphatase-1 (PP-1) via inhibiting
phosphorylation of DARPP-32 at Thr-34. On the other hand,
phosphorylation and dephosphorylation of DARPP-32 at Thr-75 by
CDKS and PP-2A could compete with each other, keeping the level of
phospho Thr-75 unchanged. As additional information, ubiquitin
C-terminal hydrolase (UCH-L1) also activates PKA, which is
independent on hydrolase activity but presumably due to the increase
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At least, part of the increase in ATP-induced currents
appeared to result from activation of PKA directly or
indirectly, because PKA inhibitor partially attenuated
parkin-induced potentiaion of ATP-currents (Fig. 7A).
In a reverse way, activation of PKA by forskolin aug-
mented the ATP-induced currents in mock-transfected
cells (Manago et al., 2005). One possible mechanism
would be phosphorylation of P2X receptors by PKA. It
was reported that activation of PKA potentiated ATP-
evoked current in P2X,-transfected HEK293 cells
(Brown et al., 2004), while there was an opposite result
in P2X,-transfected HEK293 cells (Chow and Wang,
1998). CaMKII could be activated by PKA indirectly via
an inhibition of PP-1 (Winder and Sweatt, 2001), but
KN-93 did not have any effect on ATP-induced currents
in parkin-transfected cells (Fig. 7C), suggesting that
CaMKII was not significantly activated by parkin.

Since the enhancement was not completely reversed
by inhibition of PKA, other mechanisms must be
involved. One such mechanism might be through
modification of DARPP-32. In rat striatum, it has been
suggested that there is positive and negative feedback
regulation of DARPP-32 via activation of PKA and
CDKS5, respectively (Nishi et al., 2000). Since DARPP-32
was expressed in PC12 cells (Manago et al., 2005), its
possible involvement was tested using roscovitine, a
CDKS5 inhibitor, and okadaic acid, a protein phospha-
tase (PP-1 and PP-2A) inhibitor. Roscovitine further
enhanced the ATP-induced currents in parkin-trans-
fected cells (Fig. 8A), suggesting a negative-feedback
role for CDK5. It seemed likely that parkin stimulated
CDKS5 since roscovitine did not have significant effect
on mock-transfected cells (Fig. 8C). On the other hand,
a role for phosphatases was suggested by the fact
that okadaic acid further enhanced the ATP-induced

in mono-ubiquitin level (Manago et al., 2005) or ubiquitin ligase
activity (Liu et al., 2002). Unlike parkin, UCH-L1 activates Ca®' and
calmodulin-dependent protein kinase (CaMKII), which could be
indirectly activated by PKA and dephosphorylated by PP-1 (Winder
and Sweatt, 2001). The effect of «-synuclein, a substrate for both
parkin and UCH-L1 (dotted line), was not clear, because transfection
of a-synuclein did not affect ATP-induced currents. Reported signaling
but not confirmed in the present study was shown by dotted line.
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currents in parkin-transfected cells (Fig. 8B). Since
inhibition of PP-2A was supposed to inhibit PKA activity
(Nishi et al., 2000; Manago et al., 2005), it seemed likely
that this enhancement resulted mainly from inhibition
of PP-1. In mock-transfected cells, okadaic acid did not
have significant effect (Fig. 8D).

Asfor the phosphorylation of DARPP-32, activation of
PKA would phosphorylate DARPP-32 at Thr-34 (Nishi
et al., 2000). However, the staining of phospho Thr-34
was rather attenuated in parkin-transfected cells
(Fig. 9A), suggesting that parkin may have inhibitory
effect on the phosphorylation site at Thr-34. Therefore,
parkin might indirectly activate PP-1, canceling the
negative feedback from phospho Thr-34. Concerning the
phosphorylation of DARPP-32 at Thr-75, CDK5, and
PP-2A were supposed to have opposite effects, keeping
the same level of phospho Thr-75 (Fig. 9B).

Both UCH-L1 and parkin can operate via a-synuclein
as a target substrate (Shimura et al., 2001; Snyder and
Wolozin, 2004). It has recently been shown that UCH-
L1, parkin, and a-synuclein form lysine 63-linked
multiubiquitin chains, which induce proteasomal-inde-
pendent ubiquitination (Doss-Pepe et al., 2005; Lim
et al., 2005). Therefore, it was possible that a-synuclein
also had potentiating effect on P2X receptorsiflysine 63-
linked multiubiquitin was involved. However, a-synu-
clein did not have such effect (Fig. 6). It will be great
interest to investigate the relationship between these
three proteins and it may help to understand why parkin
deficient-mice are not a robust model of parkinsonism
(Perez and Palmiter, 2005), though there were altera-
tions in energy metabolism, protein handling, and
synaptic function (Periquet et al., 2005).

Another interesting point is that the signaling
between activation of PKA and potentiation of P2X
receptors induced by either UCH-L1 or parkin was not
the same. For example, UCH-L1 but not parkin
activated CaMKII and PP-2A whereas parkin but not
UCH-L1 seemed to activate CDKS5, producing a negative
feedback effect on PKA (Fig. 10). In addition, we found
that DARPP-32 (phospho Thr-34) was rather attenu-
ated in spite of the report that activation of PKA
increased the phosphorylation at Thr-34 (Nishi et al.,
2000). The difference between UCH-L1 and parkin
might due to the different substrate specificity as
ubiquitin ligases.

Unfortunately, the low transfection efficiency pre-
cluded direct biochemical studies on the phosphoryla-
tion or dephosphorylation of specific proteins by parkin
or UCH-L1. As a result, we have been restricted to
pharmacological and immunocytochemical analyses.
Nevertheless, the important point we have established
is that enzymes working in the ubiquitin—proteasome
system have clear and substantial effects on a neuro-
trasmitter receptor and hence subsequently may affect
neurotransmission in vivo. It is widely accepted that
there are number of diseases related to aberrations in
the ubiquitin system (Ciechanover and Schwartz, 2004),
but how aberrations in the ubiquitin system cause
neurodegenrative diseases such as Parkinson’s disease
(PD) islargely unknown. In the present study, one of the
ubiquitin ligases, parkin, potentiated the function of
P2X receptors, as well as another enzyme working in the
ubiquitin—proteasome system, UCH-L1. Presynaptic
P2X receptors triggers Ca®'-dependent glutamate
release in the brainstem (Shigetomi and Kato, 2004),
though ATP-mediated inhibition of dopamine release
was reported in rat neostriatum (Trendelenburg and
Bultmann, 2000). It is of great interest how endogenous
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parkin or UCH-L1 modulates neurotransmitter release
by stimulating P2X receptors in vivo, which is now
under investigation.
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Mutations in the Cu,Zn-superoxide dismutase (SOD1) gene
cause ~20% of familial cases of amyotrophic lateral sclerosis
(fALS). Accumulating evidence indicates that a gain of toxic
function of mutant SOD1 proteins is the cause of the disease. It
has also been shown that the ubiquitin-proteasome pathway
plays a role in the clearance and toxicity of mutant SOD1. In this
study, we investigated the degradation pathways of wild-type
and mutant SOD1 in neuronal and nonneuronal cells. We pro-
vide here the first evidence that wild-type and mutant SOD1 are
degraded by macroautophagy as well as by the proteasome.
Based on experiments with inhibitors of these degradation path-
ways, the contribution of macroautophagy to mutant SOD1
clearance is comparable with that of the proteasome pathway.
Using assays that measure cell viability and cell death, we
observed that under conditions where expression of mutant

SOD1 alone does not induce toxicity, macroautophagy inhibi-

tion induced mutant SOD1-mediated cell death, indicating that
macroautophagy reduces the toxicity of mutant SOD1 proteins.
We therefore propose that both macroautophagy and the pro-
teasome are important for the reduction of mutant SOD1-me-
diated neurotoxicity in fALS. Inhibition of macroautophagy also
increased SOD1 levels in detergent-soluble and -insoluble frac-
tions, suggesting that both detergent-soluble and -insoluble
SOD1 are degraded by macroautophagy. These findings may
provide further insights into the mechanisms of pathogenesis of
fALS.

Amyotrophic lateral sclerosis (ALS)? is a neurodegenerative
disease caused by selective loss of motor neurons (1, 2).
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Although most cases of ALS are sporadic, ~10% of ALS cases
run in families. Dominant missense mutations in the gene that

- encodes the Cu,Zn-superoxide dismutase (SOD1) are respon-

sible for 20% of familial ALS (fALS) cases (3). Mice overexpress-
ing mutant SOD1 develop an ALS-like phenotype comparable
with human ALS, whereas mice lacking SOD1 do not (4, 5).
These findings have led to the conclusion that SOD1 mutants
cause motor neuron degeneration by a toxic gain of function.
Thus, studies of the degradation process of mutant SOD1 pro-
teins could provide important insights into understanding the
mechanisms that underlie the pathology of fALS, and possibly
sporadic ALS, and into developing novel therapies for fALS by
removing toxic species of mutant SOD1.

Cytoplasmic proteins are mainly degraded by two pathways,
the ubiquitin-26 S proteasome pathway (6) and autophagy (7). Pre-
vious studies have shown that mutant SOD1 proteins are turned
over more rapidly than wild-type SOD1, and a proteasome inhib-
itor increases the level of mutant SOD1 proteins (8, 9). Dorfin and
NEDLY1, two distinct ubiquitin ligases, ubiquitinate mutant but not
wild-type SOD1 (10, 11). These observations suggest that mutant
SOD1 is degraded by the ubiquitin-26 S proteasome pathway and
that the increased turnover of mutant SOD1 is mediated in part by
this pathway. On the other hand, the 20 S proteasome, a compo-
nent of the 26 S proteasome, can degrade proteins without a
requirement for ubiquitination (12, 13). A recent study has found
that metal-free forms of wild-type and mutant SOD1 are degraded
by the 20 S proteasome in vitro (14).

Autophagy is an intracellular process that results in the deg-
radation of cytoplasmic components inside lysosomes. At least
three forms of autophagy have been described in mammalian
cells: macroautophagy, microautophagy, and chaperone-medi-
ated autophagy (7). Macroautophagy is the major and the most
well studied form of autophagy; this process begins with a
sequestration step, in which cytosolic components are engulfed
by a membrane sac called the isolation membrane. This mem-
brane results in a double membrane structure called the auto-
phagosome, which fuses with the lysosome. The inner mem-
brane of the autophagosome and its protein and organelle
contents are degraded by lysosomal hydrolases. Recent reports
have demonstrated that macroautophagy plays an important
role in preventing neurodegeneration in mice (15, 16).
Although macroautophagy can be induced by starvation, this

glutinin; MTS, 3-(4,5-dimethyithiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-
(4-sulfophenyl)-2H-tetrazolium.
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pathway may take place constitutively in mammals (17). In
cultured cells, inhibition of macroautophagy does not alter
enhanced green fluorescent protein (EGFP) levels (18) or glyc-
eraldehyde-3-phosphate dehydrogenase protein levels,® sug-
gesting that not all cytosolic proteins are degraded by macro-
autophagy. To date, however, there have been no reports of
macroautophagy in mutant SOD1 clearance.

In this study, we investigated the pathway by which human
wild-type SOD1 and the A4V, G85R, and G93A SOD1 mutants
are degraded in neuronal and nonneuronal cells. We show that
wild-type and mutant SOD1 proteins are degraded by both the
proteasomal pathway and macroautophagy. The experiments
with inhibitors of these degradation pathways suggested that
mutant SOD1 are degraded more rapidly than wild-type SOD1
in part by macroautophagy and that the contribution of macro-
autophagy to mutant SODI1 clearance is approximately equal to
that of the proteasome pathway. Macroautophagy decreases
mutant SOD1 protein levels in both nonionic detergent-soluble
and -insoluble fractions. In addition, we provide data indicating
that macroautophagy has a role in mutant SOD1-mediated cell
death.

EXPERIMENTAL PROCEDURES

Plasmid Constructs—The expression plasmids pcDNA3-
hSOD1 containing wild-type, A4V, G85R, and G93A mutant
SOD1 were kindly donated by Ryosuke Takahashi (Kyoto Uni-
versity, Kyoto, Japan) and Makoto Urushitani (Laval University,
Quebec, Canada) (19). To construct a plasmid expressing
human wild-type SOD1 with the HA tag at the carboxyl termi-
nus of SOD1, HA-tagged SOD1 fragments were amplified by
PCR using wild-type SOD1 cDNA (Open Biosystems, Hunts-
ville, AL) as the template. The PCR products were digested
with Xhol and Notl and cloned into an Xhol-Notl-digested
pCl-neo vector (Promega, Madison, WI). The primers used
were 5'-AAAACTCGAGCCGCCAAGATGGCGACGAAGG-
CCGTGTGCG-3' and 5'-AAAAGCGGCCGCTTAAGCGTA-
ATCTGGAACATCGTATGGGTATTGGGCGATCCCAATT-
ACACCACA-3". A plasmid expressing HA-tagged G93A SOD1
was generated using QuikChange site-directed mutagenesis kit
(Stratagene, La Jolla, CA) according to the manufacturer’s proto-
col. To construct a plasmid expressing fusion protein of green flu-
orescent protein and LC3, LC3 fragments were amplified by PCR
using rat LC3 cDNA (Open Biosystems) as the template. The PCR
products were digested with Bglll and EcoRI and cloned into a
Bglll-EcoRI-digested pEGFP-C1 vector (Clontech). The primers
used were 5'-ACTCAGATCTATGCCGTCCGAGAAGACCT-
TCAAA-3’ and 5'-TGCAGAATTCTTACACAGCCAGTGCT-
GTCCCGAA-3'. After construction, the DNA sequences of the
plasmids were confirmed by DNA sequence analysis.

Cell Culture and Transfection—The mouse neuroblastoma
cell line Neuro2a, the human neuroblastoma cell line SH-SY5Y,
and the monkey kidney-derived cell line COS-7 were main-
tained in Dulbecco’s modified Eagle’s medium (Sigma) supple-
mented with 10% fetal calf serum (JRH Biosciences, Lenexa,
KS). Transient expression of each vector in Neuro2aand COS-7
cells was performed using the FuGENE 6 transfection reagent

37.Kabuta, Y. Suzuki, and K. Wada, unpublished data.
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(Roche Applied Science). For experiments with differentiated
Neuro2a cells, the medium was changed to differentiation
medium (Dulbecco’s modified Eagle’s medium supplemented
with 1% fetal calf serum and 20 um retinoic acid) 24 h after
transfection. Approximately 90% of cells in dishes (wells) were
transfected in our experimental conditions (data not shown),
and there was no notable differences in the transfection effi-
ciency among the wells (supplemental Fig. S1).

Treatment of Cells with Epoxomicin, 3-Methyladenine,
Cycloheximide, Rapamycin, or NH,Cl—Cells grown in 12- or
6-well plates to 50-80% confluence were transfected with
expression plasmids containing wild-type, A4V, G85R, or G93A
mutant SOD1. 24 h after transfection, cells were incubated with
epoxomicin (10 nM, 1 uM, 5 pM, or 10 um; Sigma), 3-methylad-
enine (3-MA) (10, 20, or 30 mm; Sigma), rapamycin (100 or 200 nm;
Sigma), 20 mm NH,Cl, and/or carrier (Me,SO or water) as a con-
trol. In some experiments, 10 pg/ml cycloheximide (Sigma) was
added to the cells to avoid the confounding effects of ongoing pro-
tein synthesis. Epoxomicin, cycloheximide, and rapamycin were
dissolved in Me,SO, NH,Cl in water. 3-MA was freshly dissolved
in culture medium 30 min before use.

Cell Fractionation—For preparation of nonionic detergent-
soluble and -insoluble fractions, adherent cells were harvested and
lysed on ice for 15 min in 1% Triton X-100 lysis buffer containing
50 mm Tris-HC], pH 7.5, 150 mm NaCl, 5 mm EDTA, 1% Triton
X-100, and protease inhibitors (Complete, EDTA-free; Roche
Applied Science). Lysates were centrifuged at 20,000 X g for 10
min at 4 °C, and the supernatants were pooled and designated as
the detergent-soluble fractions. After the pellets were washed with
1% Triton X-100 lysis buffer, they were solubilized with SDS buffer
(50 mm Tris-HC, pH 7.5, 150 mm NaCl, 5 mm EDTA, 3% SDS, 1%
Triton X-100, and protease inhibitors) and sonicated. The result-
ing solution was used as the detergent-insoluble fraction. For prep-
aration of total cell lysates containing both detergent-soluble and
-insoluble fractions, cells were lysed in SDS buffer and sonicated.
Protein concentrations were determined with the protein assay kit
(Bio-Rad) or the DC protein assay kit (Bio-Rad).

Western Blot Analysis—Western blotting was performed using
standard procedures as described previously (20). The primary
antibodies used were as follows: anti-SOD1 rabbit polyclonal anti-
body (1:4000; Stressgen Bioreagents, Victoria, Canada), anti-a-
tubulin mouse monoclonal antibody (1:4000; Sigma), anti-3-actin
mouse monoclonal antibody (1:5000; Sigma), anti-HA mouse
monoclonal antibody (1:4000; Sigma), anti-Beclin 1 mouse mono-
clonal antibody (1:500; BD Transduction Laboratories, San Diego,
CA), anti-Apg7/Atg7 rabbit polyclonal antibody (1:500; Rockland,
Gilbertsville, PA). After overnight incubation with primary anti-
bodies at 4 °C, each blot was probed with horseradish peroxidase-
conjugated anti-rabbit IgG or anti-mouse IgG (1:20,000; Pierce).
Immunoreactive signals were visualized with SuperSignal West
Dura extended duration substrate (Pierce) or SuperSignal West
Femto maximum sensitivity substrate (Pierce) and detected witha
chemiluminescence imaging system (FluorChem; Alpha Inno-
tech, San Leandro, CA). The signal intensity was quantified by
densitometry using FluorChem software (Alpha Innotech).

Short Interfering RNA (siRNA) Preparation and Transfec-
tion—Double-stranded siRNA targeting mouse Beclin 1,
mouse Atg7 and EGFP were purchased from RNAi Co., Ltd.
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FIGURE 1. Both mutant and wild-type SOD1 are degraded by the proteasome. A, i, Neuro2a cells were transiently transfected with wild-type or mutant A4V
human SOD1. 24 h after transfection, cells were treated with 10 ug/ml cycloheximide for the indicated time and lysed. Total cell lysates were analyzed by immuno-
blotting using anti-SOD1 or anti-a-tubulin antibody. /i, Neuro2a cells transfected with G93A SOD1 were incubated with or without 10 nm epoxomicin in the presence
of 10 ug/mi cycloheximide for the indicated time and lysed. Total cell lysates were analyzed by immunoblotting using anti-SOD1 or anti-a-tubulin antibody. iij, the
relative levels of wild-type or G93A SOD1 (percentage of 0-h control) were quantified by densitometry. Mean values are shown with S.E. (n = 3). Band C, Neuro2a cells
were transiently transfected with wild-type or mutant A4V, G85R, or G93A human SOD1. 24 h after transfection, cells were incubated with or without 10 nmepoxomicin
in the presence of 10 ug/ml cycloheximide for 24 h. Total cell lysates were analyzed by immunoblotting using anti-SOD1 antibody. The electrophoretic mobility of
GB5R SOD1 was greater than that of wild-type SOD1. a-Tubulin was used as a loading control. Asterisks indicate endogenous mouse SOD1 (B). The relative level of
wild-type or mutant SOD1 was quantified by densitometry. Mean values are shown with S.E. (n = 3). *, p < 0.05; *, p < 0.01 (C). D and E, human SH-SY5Y cells were
incubated with or without 10 nM epoxomicin in the presence of cycloheximide for 24 h. Total cell lysates were analyzed by immunoblotting with anti-SOD1 antibody
(D). The relative level of human endogenous SOD1 was quantified by densitometry. Data are expressed as the means * SEE. (n = 3).*, p < 0.05 (£).

(Tokyo, Japan). Sequences targeted by siRNA were selected using UUACCAGCCGCCGCUCAA-3"); EGFPsiRNA, sense (5'-GCC-
siDirect (RNAi Co., Ltd.): mouse Beclin 1 siRNA, sense (5'-GUC- ACAACGUCUAUAUCAUGG-3') and antisense (5'-AUGAUA-
UACAGAAAGUGCUAAUAG-3’) and antisense (5'-AUUAGC- UAGACGUUGUGGCUG-3’). EGFP siRNA was used as a
ACUUUCUGUAGACAU-3'); mouse Atg7 siRNA, sense (5'- control. Cells (3 X 10°) were cotransfected with 1 pg of DNA and
GAGCGGCGGCUGGUAAGAACA-3’) and antisense (5'-UUC- 3 ug of siRNA using Lipofectamine PLUS reagent (Invitrogen).
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