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Abstract

Parkinson’s disease (PD) and Alzheimer’s disease (AD), the most common neurodegenerative diseases, are cansed by both genetic and
environmental factors. Ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) is a deubiquitinating enzyme that is involved in the pathogenesis of
both of these neurodegenerative diseases. Several functions of UCH-L1, other than as an ubiquitin hydrolase, have been proposed; these include
acting as an ubiquitin ligase and stabilizing mono-ubiquitin. This review focuses on recent findings on the functions and the regulation of UCH-L1,

in particular those that relate to PD and AD.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Ubiquitin carboxy-terminal hydrolase L1 (UCH-L1), also
known as PGP9.5, is a protein of 223 amino acids (Wilkinson
et al.,, 1989). Although it was originally characterized as a
deubiquitinating enzyme (Wilkinson et al.,, 1989), recent
studies indicate that it also functions as a ubiquitin (Ub) ligase
(Liu et al., 2002) and a mono-Ub stabilizer (Osaka et al., 2003).
It is one of the most abundant proteins in the brain (1-2% of the

* Corresponding author. Tel.: +81 42 346 1715; fax: +81 42 346 1745.
E-mail address: wada@ncnp.go.jp (K. Wada).

0197-0186/$ — see front matter © 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.neuint.2007.05.007

total soluble protein) and immunohistochemical experiments
demonstrate that it is exclusively localized in neurons (Wilson
et al., 1988). Thus, its role in neuronal cell function/dysfunction
was predicted. Indeed, the lack of UCH-L1 expression in mice
results in gracile axonal dystrophy (gad) phenotype (Saigoh
et al., 1999). Down-regulation and extensive oxidative
modification of UCH-L1 have been observed in the brains of
Alzheimer’s disease (AD) patients as well as Parkinson’s
disease (PD) patients (Castegna et al., 2002; Choi et al., 2004;
Butterfield et al., 2006). Moreover, administration of UCH-L1
was shown to alleviate the B-amyloid-induced synaptic
dysfunction and memory loss associated with a mouse model
of AD (Gong et al., 2006). In addition, an isoleucine 93 to
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methionine amino acid mutation (I93M) of UCH-L1 was
identified as a cause of autosomal dominant PD (Leroy et al.,
1998). Our recent analysis of transgenic (Tg) mice expressing
UCH-L1"3M, showed an age-dependent loss of dopaminergic
neurons, which is one of the pathological hallmarks of PD
(Setsuie et al., 2007). On the contrary, a polymorphism that
results in the amino acid substitution of serine 18 to tyrosine in
UCH-L1 (UCH-L15'8Y) was linked to decreased susceptibility
to PD in some populations (Maraganore et al., 1999;
Wintermeyer et al., 2000; Wang et al., 2002; Elbaz et al,,
2003; Toda et al., 2003; Maraganore et al., 2004; Facheris et al.,
2005; Tan et al., 2006; Carmine Belin et al., 2007). Together, all
of these aspects indicate that the precise regulation of UCH-L1
is essential for neurons to survive and to maintain their proper
function. In this review, we would like to summarize recent
findings on UCH-L1, mostly those that relate to PD and AD.

2. The molecular functions of UCH-L1

UCH-L1 was first discovered as a member of the ubiquitin
carboxy-terminal hydrolase family of deubiquitinating enzymes
(Wilkinson et al., 1989; Nijman et al., 2005). In vitro analysis
indicated that UCH-L1 can hydrolyze bonds between Ub and
small adducts or unfolded polypeptides (Fig. 1). It can also cleave
Ub gene products, either tandemly conjugated Ub monomers
(UbB, UbC) or Ub fused to small ribosomal protein (S27a), very
slowly, to yield free Ub, in vitro (Fig. 1) (Larsen et al., 1998).
However, all of the activities detected in vitro are significantly

o [
vz
| N E
degraghion (3) %,
5

onjugate via K&3 (2)

$27a M

lower than those of any other known Ub hydrolases, and its in
vivo substrate has not yet been identified. Indeed, X-ray
crystallography analysis of UCH-L1 indicates that it might
exist in an inactive form on its own, and binding partners that
regulate its activity may be warranted (Das et al., 2006).

In 2002, a group identified another enzymatic activity in
UCH-L1, Ub ligase activity, in vitro (Liu et al., 2002). UCH-L1
was shown to exhibit dimerization-dependent Ub ligase activity
(Fig. 1). Thus, from their observations, it is assumed that UCH-
L1 might function as a hydrolase in a monomeric form and as a
ligase in a dimeric form. Neither dimerization nor ligase
activity were observed in the isozyme UCH-L3. In contrast to
the well-recognized ubiquitination pathway (using El, E2 and
E3 ligases), which requires ATP to activate free Ub in order to
conjugate Ub to the substrate, UCH-L1 does not require ATP, a
notable characteristic of this ligase.

In addition, our group reported another function of UCH-L1,a
mono-Ub stabilizing effect in vivo, which is independent of
enzymatic activity (Osaka et al., 2003). We found that a large
amount of mono-Ub is tightly associated with UCH-LI,
inhibiting the degradation of mono-Ub in the brain. When
UCH-L1 was over-expressed in SH-SYSY cells, the half-life of
mono-Ub was extended. Moreover, the expression level of UCH-
L1 affected the level of mono-Ub in the mouse brain; gad mice
showed a decreased level and UCH-L1"7 Tg mice showed an
increased level of mono-Ub compared with wild-type mice.
Thus, these results indicated that UCH-L1 functions as an Ub-
stabilizing factor, regulating the pool size of mono-Ub in vivo
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Fig. 1. Proposed functions and regulations of UCH-L1. (1) Under monomeric form, UCH-LI can hydrolyze bond between Ub and small adduct or unfolded
polypeptide in vitro. It can also cleave Ub gene products in vitro. (2) Under dimeric form, UCH-L1 ligase activity can produce K63 linked Ub chains to its substrate in
vitro. One of its presumed substrate is di-ubiquitinated a-synuclein. (3) UCH-L1 is bound to mono-Ub in vive. This interaction inhibits the degradation of mono-Ub.
(4) UCH-L! is shown to interact with Jun activation domain binding protein (JAB1). (5) Mono-ubiquitination and inactivation of UCH-L1 can occur reversibly. (6) O-
GlcNAc-modified UCH-L1 is found in the synaptosome fraction. (7) N-terminally truncated forms of UCH-L1 are also found. “The truncated forms of UCH-L 1 might
occur as a result of either N-terminal processing of full length UCH-L1 or the translation from the different methionine. (8) The oxidatively modified UCH-L.1 is also
found in the diseased brains but is not shown in this figure. Please see the text for details.
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(Fig. 1). Importantly, this mono-Ub stabilizing effect of UCH-L1
was independent of its enzymatic activity, as the C90S mutant,
which lacks enzymatic activity but retains its Ub-interacting
ability, still showed a mono-Ub stabilizing effect in cells.

As mentioned earlier, UCH-L1 is a highly expressed protein.
Thus, the elucidation of the mechanisms involved in the
regulation of UCH-L1 should be an important issue. Recently, a
post-translational modification of UCH-L1 that controls the
function of UCH-L1 was identified (Meray and Lansbury, 2007).
The type of modification is mono-ubiquitination, which may
occur reversibly to a lysine residue near the active site (probably
K157) of UCH-L1 (Fig. 1). Mono-ubiquitinated UCH-L1, as
mimicked by an Ub-UCH-L1 fusion protein, failed to bind
mono-Ub and to increase mono-Ub levels in the cell. The
enzymatic activity of UCH-L1 may also be inhibited by this
modification because it prevents binding to the ubiquitinated
targets. In addition, mono-ubiquitinated UCH-L1 was hydro-
lyzed in intra-molecular manner (Fig. 1). Thus, UCH-L1 might
regulate its functional capability by auto-deubiquitination.

In addition to ubiquitination, the existence of a beta-N-
acetylglucosamine (O-GlcNAc)-modified UCH-L1 in the
synaptosome fraction of rat brain was reported (Fig. 1) (Cole
and Hart, 2001). Moreover, amino-terminally truncated forms of
UCH-L1 were found in human brains (Fig. 1), and the levels of
this truncated form were shown to be decreased in AD brains but
not in PD brains (Choi et al., 2004). Further effort to elucidate the
physiological significance of these modifications and their
relationship to the pathogenesis of AD and PD should be made.

3. Gad mice and the physiological function of UCH-L1
in the brain

Gad mice exhibit an autosomal recessively inherited
disorder caused by an in-frame deletion that includes exons
7 and 8 of Uchll, leading to a lack of UCH-LI expression
(Saigoh et al., 1999). These mice show sensory ataxia at an
early stage, followed by motor ataxia at a later stage.
Pathologically, the mutant is characterized by ‘dying-back’-
type axonal degeneration and formation of spheroid bodies in
nerve terminals. In addition, gad mice show abnormal
accumulation of APP, B-amyloid (Ichihara et al., 1995), Ub,
and proteasome subunit-positive deposits (Saigoh et al., 1999)
in the degenerating neuronal axons. These results clearly
indicate that UCH-L1 is essential for the functional main-
tenance of some subsets of neuronal axons.

On the contrary, most neurons show no signs of degeneration
in the brains of gad mice. By analyzing these neurons in gad
mice, we found that a lack of UCH-L1 protects cells from acute
stress-induced apoptosis (Harada et al., 2004). In wild-type
mouse retina, light stimuli and ischemic retinal injury induced
strong Ub expression in the inner retina with an expression
pattern similar to that of UCH-L1. On the other hand, gad mice
showed reduced Ub induction after light stimuli and ischemia,
whereas the expression levels of anti-apoptotic and pro-survival
proteins were significantly higher. Consistently, ischemia-
induced caspase activity and neural cell apoptosis were
suppressed to ~70% in gad mice. The heat-induced apoptosis

of testicular cells was also suppressed in gad mice (Kwon et al.,
2004). These reports demonstrate that UCH-L1 is involved in
the regulation of stress-induced apoptosis, presumably through
Ub induction. '

4. Oxidative modification of UCH-L1 and
neurodegeneration

Recently, an increased amount of oxidatively modified
UCH-L1 in the brains of AD and PD patients, compared to
normal brains, was reported (Castegna et al., 2002; Choi et al.,
2004; Butterfield et al., 2006). The oxidative stress may cause
such modifications to the protein. At present, several
methionine residues and one cysteine residue of UCH-L1
have been reported as possible targets of oxidation; these form
methionine sulfoxide and cysteinic acid (Cys—SO3H), respec-
tively, in PD and AD brains. Furthermore, the level of carbonyl-
modified UCH-L1, which is also induced by oxidative stress,
was found to be increased in PD and AD brains (Choi et al.,
2004).

Consistent with the above data, addition of 4-hydroxy-2-
nonenal (HNE; one of the carbonyls) induced the HNE
modification of recombinant UCH-L1 in vitro (Nishikawa et al.,
2003). HNE is an endogenous neurotoxin and a candidate
mediator of oxidative stress caused by lipid hyperoxidation,
known to trigger the cell death of neurons. In addition, proteins
modified by HNE at lysine, histidine and/or cysteine residues
are accumulated in the nigral neurons and the Lewy bodies of
PD patients (Yoritaka et al., 1996; Castellani et al., 2002) and in
the neurofibrillary tangles of AD patients (Montine et al,
1997). Cysteine (C90) and histidine (H161) form the active
center of UCH-L1 along with asparagine (N176). Thus, the
alteration of UCH-L1 activity was presumed to occur as a result
of HNE modification. In agreement with this hypothesis, the
hydrolase activities of HNE-modified UCH-L1 were reduced to
about 40-80% of non-modified UCH-L1, and were inversely
correlated with the degree of modification (Nishikawa et al.,
2003). Oxidative stress is now recognized as an important
factor, which is implicated in the pathogenesis of a number of
age-related neurodegenerative diseases including PD and AD
(Halliwell, 2006; Lin and Beal, 2006). Thus, the oxidative
modification and subsequent decrease in the enzymatic activity
of UCH-L1 may affect the function and survival of neurons,
leading to the pathogenesis of AD and PD.

5. Decreased level of UCH-L1 and AD

As mentioned above, UCH-L1 is often present in the Ub-
positive inclusions known as neurofibrillary tangles found in
AD (Lowe et al., 1990). A recent report indicated that brains
from patients with sporadic AD contain decreased levels of
soluble UCH-L1, which is inversely proportional to tangle
number (Choi et al., 2004). In addition, gad mice show an
accumulation of amyloid precursor protein (APP) and B-
amyloid, typical proteins accumulated in the inclusions of AD
brains (Ichihara et al., 1995). Thus, a reduction in the levels of
functional UCH-L1 was speculated to contribute to the
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pathogenesis of AD. Recently, a group showed that the
introduction of UCH-L1 rescued the synaptic and cognitive
function of AD model mice (Gong et al., 2006). They used
double Tg mice, over-expressing APP together with presenilin
1 (PS1), as an AD mouse model. At a young age following 3-
amyloid elevation, these mice showed cognitive defects such
as inhibition of long-term potentiation (LTP), a type of
synaptic plasticity related to memory. The protein level of
UCH-L1 was significantly decreased in the hippocampi of
these APP/PS1 Tg mice. Remarkably, synaptic function was
restored to normal level when UCH-L1 protein fused to the
transduction domain of HIV-transactivator protein (TAT) was
transduced to hippocampal slices from APP/PS1 Tg mice. In
fact, introduction of TAT-UCH-L1 to APP/PS1 mice, over
time, improved their contextual leaming. This therapeutic
effect may be dependent on the enzymatic activity of UCH-L1
because the C90S mutant did not show any significant effect.
These findings clearly demonstrate a link between decreased
UCH-L1 function and the pathogenesis of AD. Further
analysis may prove UCH-L1 to be a useful therapeutic target
for treating AD.

6. I193M mutation with gain of toxic function of
UCH-L1 and PD

In 1998, a cytosine to guanine (C277G) mutation in the
UCHLI gene was reported in a German family affected with PD
(Leroy et al., 1998). This missense mutation leads to an 193M
amino acid substitution in the UCH-L1 protein. In this German
family, four out of seven family members were affected with
the autosomal dominant form of PD. All of the patients
clinically resembled those with sporadic PD. However, there
was an unaffected presumed carrier of this mutation in the
family. Moreover, gene linkage analysis of UCHLI in other PD
families failed to discover new families carrying this mutation.
Therefore, the link between the 193M mutation in UCH-L1 and
the development of PD has been questioned, with the
assumption that the C277G alteration in the UCHLI gene is
a rare polymorphism. To clarify the link between UCHLI
mutation and PD, a series of experiments, including the in vitro
biochemical analysis of mutant UCH-L1 and an analysis of Tg
mice expressing UCH-L1"*M, were performed.

The analysis of recombinant UCH-L1*M showed a decrease
in its deubiquitinating activity to about 55% of the UCH-L1%"
activity level, using the model substrate Ub-amino methyl
cumarine (AMC) (Table 1) (Leroy et al., 1998; Nishikawa et al.,
2003). However, gad mice, which bear no activity of UCH-L1,
show no signs of dopaminergic cell loss, the typical pathological
hallmarks of PD. In addition, heterozygous mice, which are
presumed to show half of the activity level seen in wild-type
mice, are asymptomatic (Saigoh et al., 1999). Despite the species
difference between mice and humans, these results indicate that
the molecular mechanism involved in PD cannot simply be
explained by decreased enzymatic activity (Saigoh et al., 1999).

We next compared the secondary structures of UCH-L1V7
and UCH-L1"*M using recombinant proteins. Circular dichro-
ism analysis showed that the UCH-L1'"*™ contains a decreased
level of a-helix compared with UCH-L1™T (Table 1)
(Nishikawa et al.,, 2003). It is reported that the SH-SYS5Y
cells expressing UCH-L1"®M form an increased number of
UCH-L1-positive aggregates compared with cells expressing
UCH-L1¥T or UCH-L1%°° an enzymatic activity-defective
mutant (Ardley et al., 2004). Thus, the I93M mutation may
change the conformation of UCH-L1, leading to altered
biochemical properties.

To ascertain if the I93M mutation gives rise to a gain of toxic
function in vivo, we made a transgenic (Tg) mouse expressing
UCH-L1¥3M (193M Tg mouse) and analyzed this mouse to
determine if UCH-L1"*™ could induce dopaminergic neuron
loss. The 193M Tg mice showed several pathological changes
related to PD (Setsuie et al., 2007). They showed an age-
dependent decline in the number of tyrosine hydroxylase (TH)-
positive dopaminergic neurons in the substantia nigra. The
striatal dopamine content also decreased in parallel with the
decrease in the number of dopaminergic neurons. Although we
did not find any signs of Lewy body formation, we found silver
staining-positive argyrophilic grains and abnormal electron
dense core vesicles, which are also found in the autopsied
brains of PD patients. In addition, we found aggregates
containing both UCH-LI and Ub in the perinuclei of
dopaminergic neurons in the substantia nigra of I93M Tg
mice. Therefore, the gain of toxic function caused by the I93M
mutation in UCH-L1 might be the main factor contributing to
the pathogenesis of PD.

Table 1
Association between UCH-L1 mutants and PD
WT 193M S18Y References
Incidence of PD 1 1 ®
Functional comparison
Hydrolase activity (100%) 1l 1 Leroy et al. (1998), Nishikawa et al. (2003)
Ligase activity (100%) l I Liu et al. (2002)
Mono-Ub binding affinity + ND ND | Osaka et al. (2003)
Structural comparison
a-Helix content (Normal) l + Nishikawa et al. (2003), Naito et al. (2006)
Globularity” + + + Naito et al. (2006)

® For references please see the text.

® The spherical shape is indicated as + and the ellipsoidal degree is indicated by +.
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7. S18Y polymorphism in UCH-L1 and PD

A polymorphism in UCH-L1 resulting in the amino acid
substitution of serine 18 to tyrosine was first reported in 1999
with the possible protective effect against PD (Maraganore
et al., 1999). This polymorphism is relatively common in
Japanese (allele frequency is 39-54%) and Chinese (~50%)
populations, but is rare in European (14-20%) populations (Liu
et al, 2002). Further analysis indicated that this inverse
association between this polymorphism and PD exists in some
populations, such as in Japanese and Chinese but not in others
(Maraganore et al., 1999; Mellick and Silburn, 2000;
Wintermeyer et al., 2000; Levecque et al, 2001, Wang
et al., 2002; Elbaz et al., 2003; Toda et al., 2003; Maraganore
et al., 2004; Facheris et al., 2005; Healy et al., 2006; Tan et al.,
2006; Carmine Belin et al., 2007). This association was most
apparent for younger cases of PD compared with younger
controls. In addition, the protection was dependent on the S18Y
allele dosage.

A group showed that the Ub ligase activity of UCH-L1, as
mentioned above, is responsible for this reduced risk for PD
associated with the S18Y polymorphism (Liu et al., 2002). Ub
ligase activity of UCH-L1 was shown towards a-synuclein
(probably di-ubiquitinated a-synuclein) as a substrate, leading
to Ub chain formation (elongation) through lysine 63 of the Ub
molecules (Fig. 1). When substrates are poly-ubiquitinated via
lysine 63 of Ub, they escape from Ub-proteasomal system
(UPS)-dependent protein degradation leading to the stabiliza-
tion of the substrate. UCH-L1™" tended to form dimers in
contrast to UCH-L151®Y jeading to increased ligase activity in
UCH-L1V7T (Table 1). Thus, the stability of a-synuclein may be
enhanced in the presence of UCH-L1™T compared to UCH-
L15'8Y. This difference may reduce the protein level of a-
synuclein and reduce the risk of PD in subjects with the S18Y
polymorphism. From these experiments, the authors proposed a
mechanism in which the ligase activity of UCH-L1 might affect
the morbidity of PD in the brain.

Using small angle neutron scattering (SANS), we compared
the structural differences that exist between UCH-L1 variants,
wild type, I93M and S18Y in aqueous solution (Naito et al.,
2006). SANS is an effective method to analyze detailed protein
configuration in solution. Using this method, all of the
recombinant UCH-L1 variants formed dimers in water. I93M
was more’ ellipsoidal compared with wild-type protein, and
S18Y promoted globularity compared with wild-type protein
(Table 1). Thus, the shape of the mutant UCH-L1 in water
correlated with the risk of PD. Although further analysis should
be performed to determine the significance of UCH-L1
dimerization and the S18Y polymorphism for neurodegenera-
tion, the experiments performed in these two laboratories have
provided some clues.

8. Concluding remarks and future prospects
UCH-L1 is indicated as a multi-functional protein (Fig. 1)

with abundant expression in neurons. In addition, it has become
apparent that UCH-L1 may contribute to the pathogenesis of PD

and AD. Thus, it is a probable diagnostic and medicinal target of
these diseases. However, the mechanism of neurodegeneration
induced by 193M mutation and the mechanisms underlying the
decreased expression, amino-terminal truncation and increased
oxidative modification of UCH-L1 in neurodegenerative
diseases have yet to be revealed. In addition, there are several
unresolved issues regarding the molecular functions and
regulation of UCH-L1. The in vivo substrates need to be defined.
The ways in which the function and localization of UCH-L1 are
regulated are largely unknown. The identification and the
analysis of the interacting partners might give us some clues, one
of which is Jun activation domain binding protein (JAB1) in
H1299 cell, a lung cancer cell line (Fig. 1) (Caballero et al,,
2002), though their interaction in the brain is unknown. Recently,
aphysiological function of an isozyme UCH-L3 was identified in
the oxidative stress-induced apoptosis of photoreceptor cells,
neurons that reside in the retina (Semenova et al., 2003; Sano
et al., 2006). In addition, a reciprocal function of UCH-L1 and
UCH-L3 has been proposed in the heat stress-induced apoptosis
of testis in mice (Kwon et al., 2004). Thus, the functional
diversity between UCH-L1 and UCH-L3 should also be defined.
In addition to neurodegeneration, UCH-L1 is thought to be
involved in the regulation of ATP receptors in neurons (Manago
et al., 2005), in the morphology of neuronal precursors (Sakuraj
et al., 2006), in the normal function of the testis and the ovary
(Kwon et al., 2005; Sekiguchi et al., 2006) and in various human
diseases such as cancer (Hibi et al., 1999). Thus, UCH-L1 might
contribute to more diverse phenomena than were previously
thought.
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Abstract—UCH-L3 (ubiquitin C-terminal hydrolase-L3) is a de-ubiquitinating enzyme that is a component of the ubiquitin-protea-
some system and known to be involved in programmed cell death. A previous study of high-throughput drug screening identified an
isatin derivative as a UCH-L3 inhibitor. In this study, we attempted to identify a novel inhibitor with a different structural basis. We
performed in silico structure-based drug design (SBDD) using human UCH-L3 crystal structure data (PDB code; 1XD3) and the
virtual compound library (ChemBridge CNS-Set), which includes 32,799 chemicals. By a two-step virtual screening method using
DOCK software (first screening) and GOLD software (second screening), we identified 10 compounds with GOLD scores of over
60. To address whether these compounds exhibit an inhibitory effect on the de-ubiquitinating activity of UCH-L3, we performed an
enzymatic assay using ubiquitin-7-amido-4-methylcoumarin (Ub-AMC) as the substrate. As a result, we identified three compounds
with similar basic dihydro-pyrrole skeletons as UCH-L3 inhibitors. These novel compounds may be useful for the research of UCH-

L3 function, and in drug development for UCH-L3-associated diseases.

© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

The ubiquitin-proteasome system is responsible for the
regulation of cellular proteolysis. In this system, ubiqui-
tination serves as a targeting signal for proteolysis.!
Ubiquitin C-terminal hydrolase-L3 (UCH-L3) is one
of the components of the ubiquitin—proteasome system
and hydrolyzes ubiquitin C-terminal adducts for the
recycling of cellular ubiquitin.2 Ubiquitin with C-termi-
nal adducts is a substrate for UCH-L3, and ubiquitin
with a free C-terminus is recycled within the ubiqui-
tin-proteasome system. There is some evidence that
UCH-L3 plays an important role in programmed cell
death. Programmed cell death is implicated in a number
of human diseases, including neurodegenerative dis-
ease,> autoimmune disease,® cancers>®, etc. Loss of
UCH-L3 leads to programmed cell death by apoptosis

Keywords: UCH-L3; Dihydro-pyrrole; Structure-based drug design;

Virtual screening. :
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of certain type of cells in vivo, germ line cells and pho-
toreceptor cells.”® High-level expression of UCH-L3
genes and proteins, and acceleration of UCH-L3 enzy-
matic activity is reported in multiple types of cancer
cells,>® suggesting that UCH-L3 activity may be
required for cancer cell survival. Therefore, UCH-L3 is
a potential target for drug development to control
programmed cell death in specific types of cells including
cancer cells.

Structure-based drug design (SBDD) is a method used
to discover novel leads for drug development as it
enables more rapid hit identification than the classical
screening methods of in vitro or in vivo biological
assays. The computer-based approach for drug screen-
ing, using molecular docking, is a shortcut method
when the crystal structure of a target protein is avail-
able. Key methodologies for docking small molecules
to protein were developed during the early 1980s,’
and various types of docking simulation software are
now available, for example, DOCK,!° GOLD, and
FlexX.!'! BCR-ABL tyrosine kinase inhibitors (ICsq
values ranging from 10 to 200 pM) were successfully
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identified by virtual screening of 200,000 compounds
against crystal structures using DOCK,'? implemented
by the anchor-and-grow algorithm with respect to li-
gand flexibility.!® Human thymidine phosphorylase
inhibitor (ICso = 77 pM) was also identified by virtual
screening of 250,521 compounds using DOCK.!3 Fur-
thermore, metallo-p-lactamase inhibitors (ICso values
less than 15 uM) were identified through virtual screen-
ing by GOLD,'* using the genetic algorithm for ligand
flexibility.

The advantage of chaining different docking programs
was evaluated and the results suggested that virtual
ligand screening is performed faster with reasonable
accuracy by using chained screening, than by using a
single program with default parameters.’ In this study,
the results of chained docking against UCH-L3 crystal
structure were examined by UCH-L3 hydrolysis
activity assay to validate the efficacy of the DOCK-
GOLD SBDD method. We identified three inhibitors
(ICso = 100-150 upM) of UCH-L3 by the DOCK-
GOLD virtual screening of 32,799 compounds.

2. Results and discussion
2.1. Protein preparation and chemical database

In the 3D structure of the UCH-L3-ubiquitin complex,
ubiquitin C-terminus is buried in the active site cleft
among four active site residues of UCH-L3: GIn89,
Cys95, His169, and Aspl84.'%!7 During the virtual
screening process by DOCK and GOLD, the protein-li-
gand interacting site was restricted to the binding site of
the three ubiquitin C-terminal amino residues (as de-
scribed in Section 4), in order that the outcome could
be verified by a ubiquitin C-terminal hydrolase enzy-
matic assay. The first DOCK screening was performed
against 32,799 compounds of CNS-Set, which was pre-
filtered by RPBS under the most modest filtering
condition. 8

2.2. DOCK and GOLD screenings
To screen for compounds that bind to the active site, the

first screening was performed by DOCK, and the
protein-ligand interaction area was restricted to the

ubiquitin binding site of UCH-L3 (see Section 4). The
top-scoring 1780 compounds (5.4% of the initial
32,799 compounds) with energy scores of less than
—30 kcal/mol were selected for further screening. These
compounds were then re-screened by GOLD twice, with
different genetic algorithm (GA) settings. To predict
binding ability to the active site cleft accurately, the
protein-ligand interacting area was defined in approxi-
mately the same way as in the first DOCK screening step
(see Section 4). Screening by GOLD consisted of two
rounds. Using the GOLD score, we initially extracted
the top scoring 100 compounds from 1780 compounds,
using the 7-8 times speed-up GA parameter settings.
These 100 compounds were then re-scored using the
default GA settings (see Section 4) to more accurately
predict binding ability. Ten compounds with GOLD
scores of over 60 were predicted to bind to the UCH-
L3 active site; that is, 0.03% of the total number of
chemical compounds was screened.

2.3. IC5y determination

A previous study demonstrated that compounds with
GOLD scores of about 60 may inhibit enzyme activity
with ICs, values of 10-100 uM.'” An enzyme assay
was performed among the top 10 chemicals to address
whether they actually bind to the UCH-L3 active site
with the predicted affinities (Table 1 and Fig. 1).

Ubiquitin-7-amido-4-methylcoumarin (Ub-AMC; AMC
attaches to the carboxyl terminus of ubiquitin) is a fluor-
ogenic substrate of UCH-L3 and other UCH isozymes.
UCH-L3 is known to hydrolyze Ub-AMC into free
ubiquitin and AMC,?*># and the hydrolyzed AMC
group is excited at light wavelength of 355 nm and emits
fluorescence at 460 nm. Hydrolysis activity of UCH-L3
is inhibited if a compound binds to its active site and
thus blocks interaction between the active site of
UCH-L3 and the ubiquitin C-terminus. Inhibition of
hydrolysis of Ub-AMC leads to a lower concentration
of free AMC and hence a lower level of fluorescence
intensity.

We experimentally determined the affinity constant
(Kn) of Ub-AMC hydrolysis by human UCH-L3 as
83.3 £ 1.5nM (mean + SEM, from three independent
experiments). The candidate compounds identified by

Table 1. GOLD scores of the top 10 ranked chemicals after GOLD calculation®

Docking Compound name GOLD scores

rank/Compound

No.
1 1-Benzyl-3-hydroxy-4-(5-methyl-2-furoyl)-5-(3-pyridinyl)-1,5-dihydro-2 H-pyrrol-2-one 66.01
2 3-[4-Methyl-5-({[3-(2-thienyl)-1,2 4-oxadiazol-5-yllmethyl} thio)-4H-1,2 4-triazol- 3-yl}- 1 H-ind ole 65.62
3 N-{4-[1-(2-Furoyl)-5-(2-furyl)-4,5-dihydro-1 H-pyrazol-3-yl]phenyl} methanesulfonamide 64.85
4 N'-Cyclopropyl-N*(4-methoxyphenyl)- N>-[(4-methylphenyl)sulfonyljglycinamide 64.76
5 N-{3-[1-Acetyl-5-(2-thienyl)-4,5-dihydro- | H-pyrazol-3-yl]phenyl}ethanesulfonamide 64.23
6 3-Hydroxy-5-(4-methoxyphenyl)-1-(1.3,4-thiadiazol-2-yl)-4-(2-thienylcarbonyl)-1,5-dihydro-2 H-pyrrol-2-one  62.96
7 5-(4-Fluorophenyl)-3-hydroxy-4-(5-methyl-2-furoyl)- 1-(3-pyridinylmethyl)-1,5-dihydro-2 H-pyrrol-2-one 62.73
8 N'-Cyclopropyl-N*[(4-methoxyphenyl)sulfonyl]- N*-(4-methylphenyl)glycinamide 62.52
9 N'-Cyclopentyl-N*-(3-methoxyphenyl)- N2-(phenylsulfonyl)glycinamide 62.39

10 4-({[5-(2-Furyl)-4-phenyl-4 H-12 4-triazol-3-yljthio} methyl)- 1.3-thiazol-2-amine 62.35

*Ten compounds are listed according to the top 10 rank of GOLD scores and assigned the number corresponding to GOLD score ranks.
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Figure 1. Top 10 ranked compounds identified by DOCK and GOLD screening. Note that there are several shared basic skeletons and functional
groups: 1,5-dihydro-2 H-pyrrol-2-one (drawn in red, compounds 1, 6, and 7), glycinamide (boxed in red, compounds 4, 8, and 9), cycloalkane group
(circled in red, compounds 4 and 8; cyclopropyl, compound 9; cyclopentyl), 4,5-dihydro-1 H-pyrazol-3-yl phenyl (drawn in blue, compounds 3 and 5),
sulfonamide (pointed, compounds 3 and 5), and 4H-1,2,4-triazol-3-yl (drawn in green, compounds 2 and 10).

DOCK-GOLD chained docking screening were tested
for their ability to inhibit the hydrolysis activity of
UCH-L3, at the Ub-AMC concentration equivalent
to the K, value. Four compounds among these candi-
dates inhibited enzyme activity (Fig. 2a). We did not
test the inhibitory effects of compound 3, as it is a flu-
orogenic chemical with an emission wavelength of
460 nm. Compounds 1, 6, and 7 significantly inhibited
the hydrolysis activity of UCH-L3 (initial velocity of
Ub-AMC hydrolysis; nM/s [Fig. 2b]). Compounds 1
(401 pM), 6 (375 uM), and 7 (350 uM) inhibited the
hydrolysis activity by 83.2%1.5%, 76.5 £ 0.6%, and
76.8 £ 1.0%, respectively, as compared with control
DMSO (p <001, vs control; Dunnett’s test). The
ICso value of compound 2 should hypothetically be
several hundred pM. Although compound 2
(380 uM) inhibited hydrolysis activity by 16.2 +2.1%
as compared with control DMSO, the difference was
not found to be significant by Dunnett’s test. Five
other compounds were unable to inhibit the UCH-
L3 hydrolysis activity: compound 4 (334 uM; final
concentration), compound 5 (331 uM), compound 8
(401 uM), compound 9 (386 uM), and compound 10

(387 uM) (Fig. 2b). Experimentally determined ICso
values of compounds 1, 6, and 7 (Fig. 3) were as fol-
lows: compound 1 (103 uM), compound 6 (154 uM),
and compound 7 (123 uM).

2.4. Competitive inhibitor

To show that the identified compounds bind to the
active site of the UCH-L3, various concentrations of
compound 1 and iodoacetamide (108 mM) were added
to UCH-L3/Ub-AMC reaction buffer. Iodoacetamide
is a non-competitive inhibitor of UCH-L3 (Fig. 4a). It
is a thiol alkylating agent of the UCH-L family and
derivatizes and inactivates the active site leading to loss
of UCH-L3 enzymatic activity.?? In the presence of
compound 1 and iodoacetamide, the percentage of
active UCH-L3 reduced by iodoacetamide treatment
was recovered in comparison with the control, and the
recovery was dependent on the concentration of com-
pound 1 (Fig. 4b). Our results showed that compound
1 is a competitive inhibitor of UCH-L3. This suggests
that compound 1 bound to the UCH-L3 active site to
prevent iodoacetamide from inactivating it.
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Figure 2. Analysis of UCH-L3 inhibitory effects of compounds 1-10.
(a) Kinetics of UCH-L3-catalyzed hydrolysis of Ub-AMC with the
compounds. Fluorescence intensity was converted to AMC concen-
tration by subtracting the intensity of fully hydrolyzed substrate from
that of solution without substrate. Concentrations of compounds are
as follows: compound 1 (401 uM); compound 2 (380 pM); compound 4
(334 uM); compound 5 (331 uM); compound 6 (375 pM); compound 7
(350 uM); compound 8 (401 uM); compound 9 (386 uM); and
compound 10 (387 uM). As a known inhibitor, ubiquitin-aldehyde
(Ub-H, 120 nM) was used. Each value represents the mean of three
independent experiments. (b) Inhibitory effects of compounds on initial
velocity of hydrolysis (V,) are shown. Fluorescence intensity was
converted by the same method described in (a). 4,5,6,7-Tetrachloro-
indan-1,3-dione (TCI, 20 uM) was used as a UCH-L3 selective
inhibitor- with ICsq of 600 nM.#? Each value represents the
mean * SEM of three independent experiments. Dunnett’s multiple
comparison test was performed using GraphPad Prism software ("
p < 0.01, DMSO as control).”®

In order to show that the compounds 1, 6, and 7 bind to
UCH-L3, Biacore 100 analysis was conducted. Biacore
100 analysis detects interaction between a small mole-
cule and protein and enables quantification of the inter-
action.”> The results showed that binding of each
compound to UCH-L3 increased and was dependent
on the concentration of the compound 6 (data not
shown).

2.5. Predicted binding mode

Figure 5 shows the predicted binding modes of com-
pounds 1, 6, and 7 to UCH-L3. Since chemical formulae
of the three compounds are similar to each other, the
predicted docked structures of these and UCH-L3 have
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Figure 3. 1Cs curves of compounds for UCH-L3 enzymatic activity.
(a) Compound 1, (b) compound 6, and (c) compound 7. The horizontal
axis shows the concentration of each compound. The vertical axis
shows the relative UCH-L3 enzymatic activity [%)] in comparison with
maximal initial velocity. ICsq values are shown in graphs. Each plotted
value represents the mean + SEM of three independent experiments.

similar binding modes. Two hydrogen bonds were ob-
served between the docked ligand and two amino acid
residues in the predicted compound 1/UCH-L3 complex
structure; the carbonyl group of compound 1 appears to
form a hydrogen bond to the NH group of Alall, and
the pyrrole C=0 appears to form a hydrogen bond to
the hydroxyl group of Thrl57. Three hydrogen bonds
were predicted between the docked ligand and two ami-
no acid residues in the compound 6/UCH-L3 complex
structure; the thiadiazole group of compound 6 appears
to form a hydrogen bond to the NH group of Leu9, and



