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Fig. 1. (a) ¥ plot of two haplotype frequency sets, F; and F, are drawn. { plots for three sites are consisted of four rows. The top row is
for the empty set, the second top row is for three single sites, the third top row is for three site-pairs and the bottom row is for the site-
trio. The circle on the left in the third top row for ¥, ,, is connected to two circles in the second top row, V,, and V,, representing the
relation of {54} C {sa,ss} and {sg} C {s4,58}. The bottom row has one white (F;) or black (F,) circle, corresponding to the site-trio. It is
connected to three circles in the third top row, because every site-pair is a subset of the trio. The circles are connected when numbers of
elements of two subsets are different by one and the smaller subset is a subset of the larger. Black circles represent | value being 1 and
white 0. (b) Power sets for 1-7 element set are drawn. They are also { plots of clones with n =1,...,7 are shown. Every \ plot has one
circle at the top as the empty set and one.circle at the bottom corresponding to the self subset. (c) Various s plots are displayed. The
corresponding haplotype frequencies and D, values are shown in Table I (columns 3 to 14). { values were shown in gray scale in (a) and (c).

For the case of F;, D;={0,0,0,0,0,0,0} and for F,
D;=1{0,0,0,1,1,1,1}. The elements for the divisions of
SNP pairs into single SNPs are 0 for both cases, which
corresponds to the fact 7* of three SNP pairs are 0. For
F, all the other elements of D, are also 0, indicating
that the three sites are truly in linkage equilibrium
(LE). On the other hand, the last four elements of D,

for F, are different from zero. These four elements
represent components of LD in these three sites
that can not be described by pairwise LD indices
but should be described by taking account of LD for
the trio.

Because the number of divisions into subsets
becomes very large when the number of sites is
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714 Yamada and Matsuda

increased, we propose to choose a part of the
elements of D, for visual presentation of D, and they
are plotted into two triangles. One triangle is
consisted of d's for divisions of all the site-pairs into
single sites (pairwise triangle). The other triangle
is consisted of dg’s for divisions of all the subsets
of sites whose elements are in tandem into single
sites (tandem triangle). In case of four sites, the
pairwise triangle is consisted of dg((s1,52) = {(51),
(52))), dg((51,83) = {(51),(s3)}), dg((51,54) = {(51), (50)}),
dg((s2,83) = {(52),(53)})), dg((52,54) = {(52),(54)}) and
de((s3,54) = {(s3),(54)}). The tandem triangle is con-
sisted of dg((s1,52) = {(51),(2)}), de((s2,53) — {(s2),
(53))), dg((s3,54) = {(s3),(52)}), de(($1,52,83) = {(s1),
(52),(53)}), dg((s2,53,54) = {(52),(53),(s4)}) and dy((s1,52,
$3,54) = {(51),(52),(53),(54)}). Because the pairwise tri-
angle and the tandem triangle share d,’s for divisions
of the site-pairs in tandem, the corresponding parts of
the two triangles are overlapped and displayed as
shown in Figure 2(a). D, plots for F; and F, with three
sites are shown in Figure 2(b).

MORE EXAMPLES OF ¥ AND D,
FOR THREE SNPS

Now ¥ and D, are calculated in additional
examples with three sites. When all three sites are
monomorphic (See column 3 “Clonel” and column 4
“Clone2” in Table I and Fig. 1(c)-(i)), all |{’s are 1
and all dys are 0. When one of three sites are
polymorphic (See column 5 “1 SNP” in Table I and
Fig. 1(c)-(ii)), I¥!’s for the subsets containing the
polymorphic site are not 1. All dg’s are 0. Three
examples with two SNPs are shown in column 6 “two
SNPs in absolute LD”, column 7 “two SNPs in LE”
and column 8 “two SNPs in partial LD”, and Figure
1(c)—(iii),(iv),(v)). When two SNPs are in the absolute
LD, a black circle of ¥, .. in Figure 1(c)-(iii)
represents the allelic association. All d;’s are 0 when
two SNPs are in LE. When two SNPs in LD,
de((sa,sB) = {(sa),(sp)}) stands for the strength of
LD between the two SNPs. (Columns 6 and 8 of
Table I).

Columns 9 and 10, “3 SNPs in absolute LD-1" and
“3 SNPs in absolute LD-2” in Table I and Fig.
1(c)—(vi),(vii) present examples where all the three
sites are polymorphic and only two haplotypes exist.
These two differ in their allele frequencies. The
former has two haplotypes with the same frequency
and the latter’s haplotypes have different frequency.
All three SNP pairs are in their absolute LD (** = 1). ¥
plots distinguish these two by gray color in the circles
for three single SNPs and the trio. The difference
between two examples is observed in dg((s4,58,5¢) —
{(54), (s8), (sC)})- :

When three SNPs are in LE as shown in column 11 of
Table |, all d;’s are 0 (Fig. 1(c)—(viii)). The gradation in
gray scale from top to bottom in the ¥ plot is a feature
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of LE throughout the sites. Columns 12, 13 and 14 are
the examples with partial LD in three polymorphic
sites. All of them have the same four haplotypes out of
eight and their frequencies are 0.2 or 0.3. s4 and sg are
in the absolute LD for all the three examples, as their
dg((sB,5c) = {(sB),(sc)}) = 1. Their difference appears
in the distribution of non-zero values in their D, and
their ¥ plots (Fig. 1(c)-(ix),(x),(xi)). Their D, plots are
shown in Figure 2(c).

Estimation of haplotype frequency using ¥ from
unphased genotype data. When unphased geno-
type data of SNP pairs are given, frequencies of four
haplotypes have to be estimated, and ¥ transforms
this estimation into a monovariate problem.

Example: when genotype counts are observed for
two SNPs, allele frequencies of both SNPs are
calculated based on their own genotype counts. They
give Y, =fa—f. and Y,, =fp—fp. In order to
estimate frequencies of all four haplotypes, V, ., is
the only variable. Therefore estimation of haplotype
frequencies of SNP pairs turns to be the same with
maximal likelihood estimation of monovariate, s, , .
Once V;, ;, is estimated, {fs, fab, fa8, fa»} can be given by

fas =33(‘|’5A,53 + Vs, + Vg, + (79}
far =3 (V5,55 + Vs, — Vs, + V),
faB =5 (=Wsp 55 = Vs, + Vg + Wg),
far =5 Wspsp = Vs, — Vg + W)

This topic is discussed in the section “Usage of ¥ for
haplotype frequency inference”.

NOTATIONS
SITES

® Consider a set of DNA sequences with the same
length n. The sites are not necessarily polymorphic.

® Let S(n)(1s) denote the first set of n sites. All the
sites are potentially diallelic although some of
them can be monomorphic;

S(n)(lst) = {S]:SZ’ e ,Sn}.
® Let Pow(5(n)(15)) denote a power set of S(n)(1s)

(Fig. 1(b)) [Weisstein, 2006a].

Pow(S(n)(1s)) ={S(0)(1s),
S(D(Ast), S(1)(2na)s - - - S(D(nep),
S2)(1st), S(2)(2nd)s - - - » S@)(xC2y ),
5(3)(15t)’ sy 5(3)(nc3.h), sy
S(n - 1)(1St)1 L] S(n - l)(ncn—llh)’
S(m)(1s)}.

® S(i)(jsn) represents the ji, subset with i sites in
Pow(S(m)(1a)), (i=0,1,...,m;j=1,2,...,,. C;). S(0)(1s)
is an empty set and the last element of
Pow(5(n)(14)) is S(n)(1g) itself.
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Fig. 2. D, plots. (a) The pairwise triangle, the upper half of D, plots, are consisted of squares for the site pairs. The tandem triangle, the
lower half of D; plots, are consisted of squares for the subsets of sites in tandem. The squares for the site pairs in tandem are arranged
on the bottom of the pairwise triangle and on the top of the tandem triangle. Therefore they are overlapped in the right drawing. (b) D,
plots for F; and F,. Their difference appears in the lower tandem triangle but not in the upper pairwise triangle. (¢) D; plots for
examples of Columns 12, 13 and 14 (Table I).
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® Number of subsets which have i elements is ,C;.
The total number of elements of Pow(S(n)(1)) is
1 onCi=2m
j=Q N ~i

HAPLOTYPES

® Let H(i)(j) and F(i)(ji) denote the 2 haplotypes
and their frequency of S(i)(j).

H(i)(ja) =th(D)(en), 12, - . -
F(i)(jm) =thOGw). 20(im)s - - -

B (D)},
(DG}

® Let V(i)(ju,) denote alternating positive/negative
signs for H(i)(j;) as mentioned in the section
“INTRODUCTORY EXAMPLES”.

V(D)) = {v1()en), 020G, - - -, 02 (Den)}-

Initially dummy value, 1 or —1, is given to two alleles
of individual n sites in S(n)(1s). When a haplotype
has even number of sites of value —1, dummy value
of the haplotype is 1, and when it has odd number,
the value is —1.

Example: Assume i = 3 and two alleles of s; are A and
T, for s3, G and C and for s3, C and A where value 1 is
assigned to the first allele of each site. Two of three
sites (the first and third sites) of haplotype TGA is the
allele of (—1), therefore the dummy value of haplo-
type TGA is 1.

® Partial haplotype. When S(pi)(4;,) C S(p;)(g;,) and
B (pi)(@iy,) s a part of . (p))(d;, ), h, (pa)(qr,h) is called

as a part1a1 haplotype of . (pi)(g;,)in S(p:)(gi,,)- Let
uk { ojth denote the ordmal numt)er to indicate a
1

partial haplotype in S(p;)(g:,) for S(p;)(g;, )- ,
Example: Consider the sample example in the
previous bullet. S5(2)(1s) = {s1,52) is a subset of
S3)(1st) = (51,52, 83}, (S(2)(1st) C S3)(1s1))-

H3)(1st) ={h1(3)(Lst), h2(3)(1st), h3(3)(1st), ha(3)(1st),
hs(3)(st), he(B)(1st), h7(3)(1st), hs(3)(1st))
={IIAGCII’ IIAGAII’ IIACCII’ IIACAII, IIT_(;C’I’
II—YEAII’ IITCCII, IITCAII}’
H(2)(1st) ={h1(2)(1st), h2(2)(1st), 13(2)(1st), Ba(2)(1st)}
:{IIAGII’ IIACII’ IIT_G—'I, IITC’I}’
h3(2)(1s) = “TG" is a part of hs5(3)(1s) = “TGC”" and
he(5)(1s) = “TGA”. Then ugél = 3 and uégi =3.

DIVISION OF A SET OF SITES INTO SUBSETS
¢ Divisions of a set of sites.

Consider a division of a set of n sites. S(n)(1g) is
divided into m non-empty subsets that are mutually
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exclusive  (S(m)(1s) = UL, Si(pid)(gi,);1=1,2,...,m;
pi#On=31" n;q =1, ,...,,,C,,S NS = {¢} for
any i and j (i#j). Let S(n)(ls‘) — {51(p1)
(G14)s - - -» Sm(Pr)(@my, )} denote this division pattern.
Example: The above mentioned example 5(3)(1s) =
{51,52,53} is divided into four different division
patterns; Into S(2)(15) = {s1,52} and S5(1)(3;4) = {s3},
or into 5(2)(2.4) = {s1,53} and S(1)(2n4) = {52}, or into
S(2)(3:4) = {52,53} and S(1)(1s) = {51}, or into three
single sites S(1)(1s) = {51}, S(1)(2ng) = {s2} and
S(1)Bra) = {s3}.

® Division of a haplotype into partial haplotypes.

When S(n)(14) is divided into m subsets, H(n)(1s) is
also divided into their m partial haplotypes, each of
which is a haplotype in Si(p))(gi,). hx(1)(1s), the kth
haplotype of length 1 in 5(n)(15), is expressed as a set,

h(n)(1st) = (h """‘m (P1)(q1,). 1 quz'h (P2)q2,).-- 51 o

kgt kanlgy L nlgp

(P:)(q:,h), .. ,hui'l'jf’"\h (pm)(qmm))-

where 1, P (P)(@in) represents the uj

Si (P:)(qu) “that is a part of h(n)(1s).
Example: when S(3)(1s) = {s1,52,53} is divided into

S(2)(2na) = {51,853} and S(1)(2ng) = {52}, hs(3)(1st) =
“TGC” is divided into h3(2)(2,q) = “TC” and h;(1)
(2nd) = “G”. Therefore u?ﬁ:‘]“s‘ =3 and u; %"]“ =1

hs(3)(Tst) = (1,220 (2)2na), b, 120a (1)(2na)
= (13(2)(2na), B (1) (2na)).

haplotype in

® Dummy values and division and partial haplotypes.

Dummy value of h(n)(1s) is also expressed as,

v(n)(1a) = H V it (i) (i)

kanlg

Example:  05(3)(1st) = v3(2)(2na) X v1(1)(2ng) = (=1)X

1) = —1.
SNP-BASED HETEROGENEITY TENSOR ¥

® We define ¥ for 5(n)(1s), which is consisted of 2"
elements, each of which is a value for an element of
Pow(S(n)(1st))-

¥ = (WD) (m},

where Y(i)(j;m) represents a value for an element,
S()(jw), in Pow(S(n)(1g), the ju, subset with i sites.

Because the elements of ¥ are arranged in the multi-
dimensional structure with indices, i and j, we call ¥
as “SNP-based heterogeneity tensor” (tensor: a multi-
dimensional array). [Rowland and Weissltein, 2006].
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Further details of ¥ will be defined in the following
sections.

SNP-BASED HETEROGENEITY
TENSOR ¥

DEFINITIONS

Here we give basic rules for y(i)(js) so that all of ¥ s
are defined by a systematic way, that correspond to
subsets of SNPs with various size.

® (0)(1g) is defined as 1.
® Y(i)(jot); 1> 0 is defined below:

2
V(O)Ge) = > _@@ist) * fiDist)) M
k=1

With these definitions, ‘¥ has the following features:

® When DNA sequence population is a clone,
absolute value of all the elements of ¥ is 1 or —1.

® When DNA sequence population is in the limit
randomness, all the elements of ¥, except for
Y(0)(1s), are 0.

® Otherwise Y(i)(jin) ranges from —1 to 1 according
to the heterogeneity condition of the population.

¥ GIVES A BASE FOR HAPLOTYPE FREQUENCY
SPACE

This section gives a note on relation between
haplotype frequencies, F(n)(1s) and ¥. Both F(rn)(1s)
and ¥ have 2" elements. They are in one-to-one
correspondence. This bijective relation can be proven
by showing that the determinant of the matrix, that
transforms F(n)(1s) to ', is different from zero, which
will recurrently be proven with Laplace expansion of
determinant. (proof not shown) [Weisstein, 2006b].

The transformation from F(n)(1s) to ¥ is expressed by

zi
V@) =D _@DGiw) x fi@)Gw))i =0,1,....7;
) k=1

i=1,2....C; k=12,...,2" )

The reverse transformation from ¥ back to F(n)(14) is
expressed by

nlncp

1) = D D (D) < UP)a),
p=0 9=1

1,2,...Cp; k=1,2,...,2%
@3)

Each element of F(n)(1s) represents the frequency of
one of the 2" distinct haplotypes. Because the sum of the

p=0,1,...,n; g=

2" elements of F(n)(1s) is 1 and fixed, their degree of
freedom is 2"—1. Because F(n)(1y) and ¥ are mutually
in one-to-one correspondence, the degree of freedom of
¥ should be also 2"—1. One of the 2" elements of ¥ is 1
and constant, therefore all the other 2"—1 elements are
mutually independent. This means that the dimension
of the haplotype frequency space is 2"—1 and 2"-1
elements of ¥ except for Y(0)(1s) consist a base of
the space.

LINKAGE DISEQUILIBRIUM AND ¥

INTER-SITE RANDOMNESS AND
INDEPENDENCY

The inter-site randomness is defined for division
patterns of a SNP set as follows. Consider a division
of S(n)(1s) into m mutually exclusive non-empty
subsets  Div:S(n)(1st) = {S1(p1)(G14,)s - - - » Sm(Pr)(Gimy,)}-
In this situation, when the inter-site randomness is
at its maximal conformation, the frequency of all
haplotypes in Si(pi)(4i,) is mutually independent.

In this condition, fi(n)(1st)=T11; fp,q,m(pl)(q,m), and

u(m(1s)= [IiL 0, rii (p)@i,)- By a Sitnple transfor-
mation, ¥ in the max1mlzed inter-site randomness

can be expressed by

2?1
V) (1s)=>_((m)(1s) x ve(n)(1st))
i=k

2" m
=Z (Hf Pi q’m (Pz)(%th) X Hv ”! ‘hm (Pz)(%h)>
k= :

H (Z(f](p')(qlm) X U](Vx)(‘]z,;,)))

i=1

\i’(pz)(qzu.) 4)

s

N
n

Figure 1(c)-(viii) shows an example of n=23 in the
maximized inter-site randomness LE for all divi-
sion patterns, in which the equation (4) is satisfied.

GENERALIZED LINKAGE DISEQUILIBRIUM
INDEX, D,

When alleles at the sites are associated on the same
chromosome, they are called to be in LD. In LE no
allelic association is present. Therefore when the
equation (4), ¥(n)(1e) = [T, V(pi)gi,) for Div,S(n)
(1s) = {S1(p1) (G14); - -» Sm(pm)(@Gmy)}, is satisfied, it
can be said that S(n)(1s) is in LE for the particular
division pattern Div. The deviation from the equation
(4) represents the degree of LD for S(n)(1s) with

Genet. Epidemiol. DOI 10.1002/gepi
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respect to the particular Div. Therefore LE and LD are
defined for ways to divide a set of sites.

We introduce generalized linkage disequilibrium
index, d (Div) for Div as:

Y(m)(1s) + 1 )
15 vip) @) +1/)°

L W(m(e) -1 )) :
* (1 e ied@i) -1/ ) ©)

When denominator of either expression in the
parenthesis of “max” is zero, the other value should
be selected for dg(Div).

By this definition, d (Div) satisfies:

dg(Div) = max((l -

® d/,(Div) takes a value in the range 0-1.
® D/ (Div) takes zero in LE.

For a pair of two sites and its division into two
single SNPs, this is expressed by

o ~ Y(2)(1e) + 1 |
Dy(Pair) = max ( <1 VAV (2ad) + 1)’

V@)1 — 1
) <] T VOV o) — 1)) ©

For a SNP pair, FQ2)(1s) = {fi(2)(1s), 2(2)(1st), f3(2)
(1s), f4(2)(s)}. For simplicity, F = {f1,f2.f3,fa} will be
used hereafter. The numerator of equation (6) is
expressed as Y(1)(1s)¥(1)(2na) — V(1) = —((f1 - fo
—f3+fa) — (i + f2) — (s + fa)) x ((fL + f3) — (f2 + fo)))-
The right-hand side of the equation is transformed
into —4 x (fi x fs — fo x f3) (Appendix 1). This expres-
sion of numerator is proportional to the numerator
of other conventional LD indices including D’ and 7*
[Devlin and Risch, 1995], which indicates Dg(Pair) is
an appropriate index for SNP pairs. Dg(Pair) has a
standardized value of the numerator that takes 1
when ¥(2)(15) = +1, and takes 0 in case of LE. Values
of Dg(Pair) are plotted for comparison with other
conventional LD indices, IV, 7¥* and r in Figure 3.
Let A/a and B/b denote alleles of two SNPs. In
Figure 3(a), major alleles of two SNPs, A and B, are
fixed at 0.8. Frequency of haplotype AB (fy), is
parameterized from 0.6 to 0.8 under the condition
where frequency of haplotype Ab (f,) equals the one
of aB (f3). In Figure 3(b), the frequency of haplotype
AB (f;) is parameterized from 0 to 0.8 under the
condition where frequency of haplotype aB is fixed at
zero. Dy(Pair) takes the same value with D’ and 7,
when f; x fy —fo X f3 is positive and when f, =fs.
However, when the symmetry of f, =f3 is lost, the
values of Dg(Pair), D" and r diverge. Both D (Pair) and
7 are 1 when f; +fy = 1, and both converge to zero
when f] +f3 =1. )

Genet. Epidemiol. DOI 10.1002/gepi
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Fig. 3. Plots of Dy, D', r* and r. (a) SNP A and SNP B with
respectively alleles A, a and B, b. Allele frequencies P(A) and P(B)
are fixed at 0.8, and P(AB) is parameterized from 0.6 to 0.8 under
the condition of P(Ab) = P(aB). (b) P(AB) is parameterized from 0
to 0.8 under the condition of P(aB) = 0. ’

' ADDITIONAL EXAMPLES

In addition to the examples presented in the section
INTRODUCTORY EXAMPLES, a few more examples
will be helpful.

¥ FOR TWO SITES

Assume there are two sites, S(2)(1s) = {51,52}.
The power set Pow(S(2)(1s0)) = {{},{s1}.{s2},{s1,52}}.

H@)(1s) = {m (2)(1s), 12 (1), h3(2)(1s0), ha(2)(Lst)
={"00","01","10”,11"'}.
For a subset S5(2)(15)=1{s1,52},
F)(1st) ={f1(2)(1s1).f2(2)(1st).f3(2) (1), fa(2)(1s1)),
V(2)(1St)={11_1’—131}a
Y1) =f(2)(1s) — 2(D(1st) = (D (1st) + fa)(1s1)-
The single site frequencies are derived by summing full
haplotype frequencies across alleles at the other sites.
For a subset 5(1)(1s) = {s1},
FM (1) ={(L (1) +2)1s)), (3D (1s) +fa (2 (1se))},
V(D(1)={1,-1},

V(1) =)L)+ As)) = (3(2)(Ast) +f2(2)(Ast))-
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For a subset 5(1)(2na)=1{52},

F(1D)(2na)={(h ) (1s)+13(2)(1s)), (f2(2) (1) +f2(2) (1))},
V(1)(2na)={1,-1}

V(1) (2na)=(f1(2)(1s)+£3(2) (1)) — (F2(2)(1st) +f2(2)(1s1)).
For a subset S(0)(1y),

Y(0)(Is)=1.
F={Y0)(1s), ¥(D(As0),W(1)(2na), ¥(2)(1s0)},

Y plots of these cases are shown and explained in
Figure 4.

D, FOR SIX SITES

In the section “INTRODUCTORY EXAMPLES”, F,
was shown to have LD components that are not
detected by pairwise LD measures but detected by
D,. In this section, we deal with six site examples,
that are consisted of two sets of three sites;
S =1{S,,5;} = {sa,58,5c,S4»58,5c}. Haplotype fre-
quencies for the former and the latter three sites are
identical with Fp; F, = {fasc,fasc, favc, fanes faBC, faBes
fave-fave} = {0.25,0,0,0.25,0,0.25,0.25,0} and F;={fapc,
fawe favesfavefopc fope fave foye} =1{0.25,0,0,0.25,
0,0.25,0.25,0}. In the first case of six sites, casel, the
haplotypes of the former three sites and the haplo-
types of the latter are in one-to-one correspondence;

F(casel)={fapcazc.fabcave fabeaBe facavc
={0.25,0.25,0.25,0.25}.

The D, plot of casel is shown in Figure 5(a). The black
square on the bottom representing the division of all
the six sites into six single sites, explains LD in the
region as a whole. Four black squares in the third row
from the bottom, representing site-trios, which are in
LD themselves. Three black squares in the third row
from the top, representing site-pairs intervened by
two sites, are also in LD. In the second case, case2,
each haplotype in the former site-set are evenly
connected to every haplotype in the latter site-set.

F(case2)={fapcasc.faBcave faBcaBe fapcavc favcascs
favcayosfaveaosfabavc,
faBearBCr faBeary o sfaBea B faBea O Sfabcacrs
farcawe sfavca B sfabcarcr}

={0.0625,0.0625,0.0625,0.0625,0.0625,0.0625,
0.0625,0.0625,
0.0625,0.0625,0.0625,0.0625,0.0625,0.0625,
0.0625,0.0625}.

D, plot of this case is shown in Figure 5(b), All the

pairwise d,'s are 0. The black square on the bottom

representing the division of all the six sites into six
single sites, explains LD in the region as a whole. Two

(i (1)) (HI)A (w)A
Y

T

Fig. 4. { plots for two sites. (a) Four patterns of y where two sites
are monomorphic or their allele frequency is 0.5. (a)-(i) F(2)(15) =
{1,0,0,0} (a clone). ¥= {1,1,1,1}. (a)-(ii) One site is monomorphic
and the other site is polymorphic and its allele frequency is 0.5.
F(2)(15) = {0.5,0.5,0,0}. ¥={1,1,0,0}. (a)-(iii) and (a)-(iv) Allele
frequencies of both sites are 0.5. (a)-(iii) Absolute LD. F(2)(15) =
{0.5,0,0,0.5) and W¥={1,0,0,1}. (a)-(iv) LE. FQ2)1y)=
{0.25,0.25,0.25,0.25} and ¥= {1,0,0,0). The black-and-white cir-
cles distinguish the four patterns. The absolute LD was indicated
by ¥(2)(14) = 1 and LE was by (2)(1:) = 0. (b) shows patterns of
¥ where allele frequency of two sites are not necessarily 0.5.
(b)-(i) is an example of a clone. When one site is polymorphic and
its allele frequency is not 0.5, { plot appears like (b)-(ii)
(F(2)(1st) = {0.6,0.4,0,0}. ¥={1,1,0.2,0.2). When both sites are
polymorphic and their allele frequencies are the same but not 0.5,
they are in the absolute LD and its { plot is (b)-(iii)
(F(2)(1s) = {0.6,0,0,0.4). ¥={1,0.2,0.2,1}. (b)—(iv) is a plot when
two sites are in LE and allele frequencies of both sites are the
same (F(2)(14 = {0.36,0.24,0.24,0.16), W= {1,0.2,0.2,0]). (b)=(v)
represents two sites having different allele frequencies and
being in LD with D'=1 but their %1 Q) ly) =
{0.6,0.2,0,0.2}, ¥= {1,0.6,0.2,0.6). (b)—(vi) is a plot when two sites
have different allele frequencies and they are in LE.
F(2)(14) = {0.48,0.32,0.12,0.08}, ¥= {1,0.6,0.2,0.12}.

black squares for (54,58,5¢)— {(54),(s8),(sc)} and (54'.58',

sc)—> {(sa),(s8),(s¢)} stands for LD at the trio level.
When the latter three sites are monomorphic for

three of four haplotypes in the former set (case3),

F(case3)={fapcawc faBcate,faBcaBe faBCabC fabcab e
faBeam o facamc facaye)
={0.0625,0.0625,0.0625,0.0625,0.25,0.25,0.25}.
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D, plot of this case is shown in Figure 5(c). Pairwise
d,'s are weakly present for the site-pairs in the latter
three sites. The square for the division of all the six
sites into six single sites indicates strong LD in this
region overall and the square for the division of the
latter three sites into single sites also indicates the
presence of LD.

D, PLOTS FOR REAL DATA

A region with 22 sites was chosen from HapMap
project data set [The International HapMap Consor-
tium, 2005] and haplotype frequency was estimated
with fastPhase, one of the popular haplotype infer-
rence applications for large scale data [Scheet and
Stephens, 2006]. Nineteen haplotypes were inferred
and their Dy plot was shown in Figure 5(d), that
displayed that the pairwise triangle and the tandem
triangle captured LD components of the region
differently.

USAGE OF ¥ FOR HAPLOTYPE
FREQUENCY INFERENCE

LIKELTHOOD FUNCTION OF GENOTYPE DATA
FOR SNP PAIRS IS EXPRESSED AS A MONO-
VARIATE FUNCTION OF ¥ AND THE HAPLO-
TYPE FREQUENCY IS OBTAINED BY SOLVING
THE DERIVATIVES OF UNIVARIATE FUNCTION.

Although ¥ is calculable when frequency of all
haplotypes are given, the majority of LD mapping
studies are based on unphased genotype data of
SNPs, where the haplotype frequency has to be
inferred. As described in the section “¥ Gives a Base
for Haplotype Frequency Space”, F(n)(1s) and ¥ are
in one-to-one correspondence. Therefore the inference
of F(n)(1s) is equivalent to the inference of V.

Consider haplotype frequency inference from un-
phased genotype data of a SNP pair. For two SNPs,
the four haplotype frequencies are expressed with ¥ as:

fi=3100@)As) YD (Lst) +Y(1)(2na) +W(O0)(1s)),

f2=1(=¥ @150 +V(D)(st) = W(1)(2a) +W(O)(1st)),
fr=1(=¥@2)(1s) = Y(DAst) +V(1)(2na) + WO (1s0)), (7)
fa=3(W@)(1s) = Y(1)(1s0) = W(1)(2na) +W(0)(150))-

In(L), logarithm of likelihood function to obtaih a un-
phased genotype data is expressed as a function of f;;

In(L) =Gy log(f1) + Galog(f2) + Glog(fs)
+Galog(fs)+ Gslog(fifs +fof3)+C,

where G;(i =1,...4) represents the number of chromo-
somes that are deterministically known from unphased
genotype data, and Gs is the number of double
heterozygotes, and C is a constant.

The EM algorithm attempts to maximize L by
handling f1,f.,f3 and f4 as variables where f; + f> and
fi +f; are fixed at the value given by method of
moments. Because f; is expressed with ¥, In(L) is also
a function of ¥. Although ¥ for SNP pairs has
four elements, Y(0)(1s) is always constant and value
of Y(1)(As) and VY(1)(2,q) are known under the
condition where f; +f, and f; +f3 are given by the
method of moments (Y(1)(1) = (f; + f2) — (s + f4) and
VY(DR2u) = (fi +f3) — (f2 + f4)). Therefore the equa-
tions (6) are transformed to:

fi =1 (0Q)(1s) + 1),
f2 = 3=V — c2),
f3 =1(=¥2)(1s) — c3),
fo= 31(\1’(2)(150 + c4).

where ¢; denotes constant terms of frequency with
appropriate signs. :

1t is shown that In(L) is expressed as a monovariate
function of Y(2)(14). In(L) is defined for the finite
range of {{(2)(1s), where 0 < f; < 1, and the function is
continuous and differentiable in the range. Therefore
the global maximum can be obtained by solving its
derivatives with conventional searching methods.

Equation transformations and its Newton-Raphson
estimation of the derivatives are described in Appen-
dix 2.

In the case of n =2, maximum likelihood estimates
of ¥ was obtained by solving a univariate likelihood
function, as above. Similarly, when ¥ is solved for all
subsets of 5(m)(15) except for S(n)(14) itself where all
the elements of ¥ for S(n)(1s) but Y(n)(1s) are given,
the likelihood function can be expressed as a
univariate function of y(n)(1s). Appendix 3 gives this
generalization of likelihood function expressed as a
univariate functionof y(n)(1g) (n=1,2,...).

®

COMPARISON WITH THE EM ALGORITHM

The EM algorithm is known to give reliable
estimates of haplotype frequencies of SNP pairs in
the majority of cases, but is susceptible to conver-
gence to a local maximum [Nin, 2004]. Figure 6a
shows an example of convergence to a local max-
imum of In(L) for a SNP pair from the HapMap
Project. We evaluated how frequently the standard
EM algorithm converges to a local minimum but not
to the global maximum using HapMap Project data
[The International HapMap Consortum, 2005].

W-based method and the EM algorithm were
applied to 10 million SNP pairs of chromosome 10
within a 250 kb window with 45 unrelated Japanese of
the HapMap project. The average number of itera-
tions of EM method was 222, and the average
number of iterations to solve five derivatives in V-
based method was 126.1. The results of the ¥-based
method indicated that 39.8% of the pairs did not have
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local extrema, while 61.1% of pairs had a single local
extreme in the search range and 0.025% had multiple
local extrema. Among the pairs with one local
extreme, 81.5% of them was a local maximum, and
the remainder was a local minimum. Difference of
In(L) between inferences of the two methods was
shown in Fig. 6(b). Peak 1 (Fig. 6(b)) represented 4.5%
of SNP pairs for which the EM algorithm gave
slightly higher likelihood. The EM algorithm gave
better inference due to luck to start at the best value
for the majority of SNP pairs in the peak 1. Peak 2
(Fig. 6(b)) represented 9.3% of pairs and two methods
gave almost identical results. Peaks 3 and 4 (Fig. 6(b))
represented 86.1% of pairs for which the ‘¥-based
method gave slightly better result. When we allowed
the EM algorithm method to stop earlier with looser
convergence threshold, peaks 1, 2 and 4 did not
change but a part of peak 3 shifted to right (Fig. 6(c)).
This change indicated that the EM algorithm method
could give better estimate for a part of SNP pairs in
peak 3 by modifying its parameters but that the EM
algorithm method converged to a local maximum for
SNP pairs in peak 4. However the peak 4 represented
only 0.09% of total SNP pairs. More detailed
characterization of SNP pairs for which the EM
algorithm method converged to a local maximum
were described in the Appendix 3. Conditions of
inference of the standard EM algorithm and the ‘Y-
based algorithm are available in the Appendix 5.

DISCUSSION

In this paper, a novel tensor ¥ was introduced to
quantitate genetic heterogeneity with SNPs in popu-
lations. The ¥ was consisted of 2" elements for a
sequence with 7 sites that were mutually transform-
able with 2" values of haplotype frequency. Actually
2"—1 non-constant variables in ¥ were the base of the
haplotype frequency space with 2"—1 dimensions.
Each element of ¥ represented one of subsets of n
sites and they were arranged in a structure of tensor
and gave information on two types of randomness of
the population, the allele frequency randomness and
the inter-site randomness. As an example of utility of
¥, we proposed a generalized LD index, Dg(Pair),
between two SNPs was formulated using the ele-
ments of ¥, and its basic feature was compared with
D’ and r*. Moreover LD index for a set of multiple
sites more than two, D,(Div) was also defined as a

natural extension of Dg(Pair). The components of D,
for SNP pairs were drawn in the pairwise triangle
and the representative components of D, for multiple
sites were drawn in the tandem triangle. For another
practical purpose, ¥ offered the absolute maximum
haplotype frequency inference for SNP pairs with
tolerable increase of computational burden and it
overcomes the problem to converge to a local
maximum by the EM algorithm method. Application
of the W-based haplotype inference algorithm to
larger SNP sets seemed possible but modifications
to limit computational burdens would be necessary.
Because populational DNA sequence heterogeneity
is a product of many genetic events over years and ¥
carry complete information on heterogeneity of
individual sites and inter-site dependency for any
combinations of sites in the region, it is necessarily
complex. In order to describe the complexity, ‘¥ has
almost fully simplified formula. (i) It uses minimum
number of variables (2" for sequence of length n). (ii)
All the variables are recurrently defined so that each
element represents a subset of the set of n sites. (iii)
The variables are arranged in a structure based on
their mutual relations (tensor structure). Although it
seems still difficult to use all the information
included in ¥ in order to untangle genetic hetero-
geneity of species, ¥ would contribute to formulate
and understand interspecies genetic heterogeneity.
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Fig. 6. Comparison of ¥ based-haplotype inference method and EM methods. (a) Plots of In(L) and R for an SNP pair from the HapMap
Project (See Appendix 2 for the definition of R. The pair has a genotype distribution of 10, 11, 6, 1, 12, 0, 0, 0, 0, for AABB, AABb,...,
aabb, and the estimated global maximum of haplotype frequency is h(AA) = 0.547, h(AB) = 0.291, h(aB) = 0.053, h(ab) = 0.109, D' = 0.45.
The standard EM method converges to h(AB) = 0.438, h(Ab) = 0.400, h(aB) = 0.162, h(ab) = 0.00, D’ =1.00. Vertical lines denote R=0,
at which In(L) takes a local minimum and local maximum. (b) Distribution of difference in In(L) between the two methods for 10° SNP
pairs from the HapMap Project. The convergence threshold for the EM method is 107'% (c) Comparison of EM convergence thresholds

(107% and 107'%).
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=(1-2(L+£)-QRAH+L)-Dx Q2 +f)-1)
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+(fi+f) -1
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=4(fi—fix(i+f2+f3)—f2xf3)

=4 x(1-fi—fa—fr)—faxf3)

=4(fi xfa—f2 x f3).
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estimation.

f =10 s) + c1),
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f3 =%(—\l/(2)(1st) — C3),
fa=3 (\I!(2)(lst) + cq),
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where ¢; denote constant terms of frequency with
appropriate signs.

Because
_ 4 1 o
Wiy & orisbd
_di 1 .
Doy~ & ori=23
and
d\y(2)(1 T+ = V@
from the equations (7), we have
_dinty
d(\ll(Z)(l st)) (\lJ(Z)(l st))
l Gl G2 G3 G4
_____ 2)(1
(fl f2 f3 +f f1f4+ff g WX t))>

The global maximum of In(L) is given by (2)(1s)
among the solutions of {[dIn(L)/d(W(2)(1s:))(V(2)
(1)) = 0 in the defined range of {(2)(14) or the two
endpoints of the range. Because In(L(y(2)(1s)) and
[dIn(L)/d(U(2)1:))IW(2)(1s)) are both continuous in
the defined range where 0 <f; <1, a conventional
searching algorithm gives the estimate of Y(2)(14)
corresponding to the global maximum of
In(L(V(2)(1s)). The followings are the steps to solve
the derivative.

Let In(LOVQQ)(1s) =

In(L(W(2)(1s1))) = T%%%i)j

take the form of
0, so that all the solutions
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of In(L(W(2)(15)) = 0 are included in the solutions of
R(@)(1s)) = 0.

R(W(2)(As1)) = (Gifofsfs — Gofifsfa — Gafifofs

+Gafifafa)(fufa + fof3) + (WLt Gsfrfofsfs =0.

Now solutions of R(W(2)(1s)) cover all candidate
values of Y(2)(I¢) as the global maximum of
In(L(y(2)(1st))- Then, R can be re-expressed as:

R(W(2)(1st))

= 1)’(G1¥@) (1) + W@)(La) + c3) YR (Ast) + )
+ G2(W(2)(1st) + c)(W()(Ls) + c3)(W(2)(1st)ca)
+ Ga(W(@)(1st) + )W) (1st) + c2)(W(2)(Lst) +C4)
+ Ga(W(2)(1st) + c)(W(2)(Tst) + c2)(W(2)(1s) + €3))
X (W) (Ast) + )W) (As) + ca) + (W) (1st) +2)
x (W(2)(1st) +c3))
+4GsU(2 () (W (2)(Lse) + c)W2)(1s) + c2)(W(2)(1s)

+c3)(W(2)(1s0) +c4)) =0

R(P(2)(14)) is a fifth-order polynomial equation, and
its first through fifth derivative equations are
obtained by regular transformation. Actually the fifth
derivative is given as

d5
——— =R (2)(14
@ @)

5
= (i) x5x4x3x2x(2G1+2G2+2G3+2G4+4Gs)

1 5
= (Z) %240 X Nchromosomess

where Ninromosomes Stands for number of chromo-
somes in the genotype data. [d*/(dy(2)(1e))*]
R(Y(2)(1s1)) =0 is a first-order function and it is solved
arithmetically. Thereafter solutions of [d®/(dy(2)
(L)’ IROU)(1s)) =0, [d*/(@W2) (1) IRWQR)(1a)) =0,
[d/(@V2)1NIRW(2)(1s))=0 and R(Y(2)(1s))=0 are
obtained using the Newton-Raphson method. The
value of In(L)¥(2)(15) for all local maxima and the
two endpoints are then calculated and the absolute
maximum is determined.

APPENDIX 3

Generalization of likelihood function expressed as a
function of Y(n)(1).

Assume n SNPs that construct I = {y;} composite
genotypes. o; individuals are observed to have a
genotype v;. Further, assume y; has n; heterozygous
sites, and let ©(y;) = ((81,01),(82,82), -, (Buc;, B}
denote the set of potential haplotype pairs for vy,

where nc; is the number of haplotype pairs for y;:
(nc; = 1 when n; = 0, and nc; = 2"~1) otherwise. The
In(L) for the observed genotype data is expressed as

In@) =Y o xIn (Z (f(e,-)f(é,-))) +C ™)
=

v;el

where f(0;) denotes frequency of 8;. When all ¥’s
except for Y(n)(1) are solved, Y(n)(1) is the_ only
unsolved variable in ‘Y. Therefore all f(8;) and f(6)) are
expressed as a univariate function of Y™ and
equation (%) is also a univariate function of Y(n)(1)
and differentiable as follows:

d ne; Nerd
4= 3 aix W<Zi=l (F&)f (9;)))
d(W(n)(1)) i s o) '

Denote the subset of n; SNPs that are heterozygous in
genotype v; by S™  (y,), and let P(S™) _(v,)) be its
power set and let S(Pi)(qi)(sgteit)em(\(i)) be an element of
P(Spinero(1))-  Because  [d/d(W(m)(1)]f(6) ==£(1/2"),
numerator of an element in (k), [d/d(Y(n)(1))] (Z'»":”

it j=1
(f(6)f(9))), can be expressed as

viel

d/d(¥(m)(1) (Z (f(ej)f(éj))) :21_n x 2+ )
j=1

v(p:)(g:) x ¥ (p)(g:),

SIS (TNEPSH) (@)uAS (g:)

where (1) denotes W for a subset u and v(u) is the
value of corresponding haplotype.

APPENDIX 4

Classification of SNP pairs for which the EM
algorithm did not direct toward the global maximum.

The SNP pairs that were not affected by the
tightening of the threshold can be grouped into four
categories (Patterns 1-4). The SNP pairs of Pattern 1
(85.0% of unaffected pairs) had a symmetric distribu-
tion of deterministic chromosomes for only two
haplotypes with double heterozygotes. Such pairs
exhibited two global maximum estimates at the two
ends of the range of y(2)(1s). As the EM algorithm
started from the symmetric haplotype frequency in
LE, the solution did not move from the LE condition
due to this symmetry. For pairs in Pattern 2 (10.7%),
the EM algorithm converged to D' = 1, whereas the
D’ # 1 condition gave the global maximum. Pairs in
Pattern 3 (4.1%) were the opposite case, where the EM
method converged to D' # 1 and the W-based method
converged to D' = 1. Pairs in Pattern 4 (0.28%) had
multiple local maxima and the EM converged to a
local maximum that was not the global maximum.

Genet. Epidemiol. DOI 10.1002/ gepi

— 129 —



726 Yamada and Matsuda

APPENDIX 5

Settings of programs to perform the standard EM
_algorithm and the W¥-based algorithm.

For the standard EM, the maximum number of
iterations was set at 10°, and the calculation was
stopped when the difference in log;oL between
iterations became less than 10~'2. Without limitation
on the maximum number of iterations, calculation
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did not end due to the slowness of convergence for
some cases. For the W-based method, no limitation
was applied on the maximum number of iterations,
and the iteration was stopped only when the
difference in estimated x between iterations became
less than 107°. Convergence of the Newton-Raphson
method was fast in this case and it was unnecessary
to set a limitation on the maximum number of
iterations for the ¥-based method.
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