After this report, several BDNF SNP analyses appeared,
as mentioned in the Introduction. These SNPs were gen-
erally considered risk factors for both diseases, but recent
reports have not mentioned this possibility. According to
Shimizu et al [43], the rates of BDNF SNP depend on
ethnic differences. Our incidence of Val66Met was al-
most the same as that found by these authors which was
also estimated from Japanese data. In addition, Desai et
al. [44] recently described a difference in Val66Met and
C270T distribution patterns of Caucasian Americans and
African-Americans[44]. In case of C270T polymorphism,
our results were similar to those reported by another Jap-
anese group [13] as well as to the findings observed in
African-Americans [44].

As for the risk of sporadic DLB, we reported that ApoE
is a predisposing factor for this disease as it is for AD [32].
Moreover, paraoxonase-1 [45] is associated with the Lewy
body stage [45]. However, harboring a BDNF polymor-
phism has not conclusively been shown to raise the PD
risk, while no data are available on DLB.

The aim of our current study was to determine wheth-
er the Val66Met and C270T polymorphisms represent
risk factors for developing AD or DLB, and for this task
we used autopsy samples, with which the diagnosis had
been confirmed. BDNF has been found to promote sur-
vival of all major neuronal tissue types affected in AD
and PD/DLB, such as hippocampal and neocortical neu-
rons, cholinergic septal and basal forebrain neurons, and
nigral dopaminergic neurons [2]. Taken together, these
findings indicate that BDNF plays a pivotal role in pro-
tecting hippocampal and nigral neurons, and evidence of
its dysfunction could be suggestive of AD or DLB patho-
genesis.
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Hyperlipidemiais a common feature of diabetes and isrelated
to cardiovascular disease. The very low-density lipoprotein
receptor (VLDL-R) is a member of the low-density lipoprotein
receptor (LDL-R) family. It binds and internalizes triglycer-
ide-rich lipoproteins with high specificity. We examined the
etiology of hyperlipidemia in the insulin-deficient state.
VLDL-R expression in heart and skeletal muscle were mea-
sured in rats with streptozotocin (STZ)-induced diabetes. STZ
rats showed severe hyperlipidemia on d 21 and 28, with a
dramatic decline in VLDL-R protein in skeletal muscle
(>90%), heart (~50%) and a loss of adipose tissues itself on d
28. The reduction of VLDL-R protein in skeletal muscle could
not be explained simply by a decrease at the transcriptional
level, because a dissociation between VLDL-R protein and

mRNA expression was observed. The expression of LDL-R and
LDL-R-related protein in liver showed no consistent changes.
Furthermore, no effect on VLDL-triglyceride production in
liver was observed in STZ rats. A decrease in postheparin
plasma lipoprotein lipase activity started on d 7 and contin-
ued to d 28 at the 50%level even though severe hyperlipidemia
was detected only on d 21 and 28. In rat myoblast cells, serum
deprivation for 24 h induced a reduction in VLDL-R proteins.
Insulin (10~¢ M), but not IGF-I (10 ng/ml), restored the de-
creased VLDL-R proteins by serum deprivation. These results
suggest that the combination of VLDL-R deficiency and re-
duced plasma lipoprotein lipase activity may be responsible
for severe hyperlipidemia in insulin-deficient diabetes. (En-
docrinology 146: 3286-3294, 2005)

N DIABETES MELLITUS, hyperlipidemia is often ob-
served as a result of impaired insulin action (1, 2), and
their causal relations to macrovascular disease and diabetic
macroangiopathy have been discussed (3). For the insulin-
deficient diabetic model, streptozotocin (STZ)-induced dia-
betic rats (STZ rats) have been used for the study of diabetic
hyperlipidemia (4-14). Several mechanisms of diabetic hy-
perlipidemia in STZ rats have been proposed, including in-
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creased intestinal absorption of dietary cholesterol (10-14),
increased very low-density lipoprotein (VLDL) production
in liver at an early period after STZ treatment (4), and de-
creased removal of VLDL-triglyceride (TG) from the circu-
lation (4, 5). Lipoprotein lipase (LPL) hydrolyzes circulating
TG, leading to the release of free fatty acids (FFAs), which are
stored as TG in adipose tissue and serve as energy sources
in skeletal muscle and heart (15). Several studies have mea-
sured LPL activity in skeletal muscle and heart in insulin-
deficient diabetic animal models. Decreased activity (7,9, 16),
no change in activity (5, 17), and increased activity (6, 8) all
have been observed. Variations in LPL activity probably
contribute to the abnormalities in lipoprotein metabolism
and the duration of the diabetic state. Recently, it has been
reported that intestinal acyl-coenzyme A:cholesterol acyl-
transferase (ACAT-2), microsomal triglyceride transfer pro-
tein (MTP), and ATP-binding cassette transporter (ABCG5/
G8) are also related to hyperlipidemia in STZ rats (12-14).
However, the precise mechanisms of insulin-deficient dia-
betic hyperlipidemia are unclear.

The VLDL receptor (VLDL-R) is a member of the low-
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density lipoprotein (LDL) receptor (LDL-R) family and is
most abundant in extrahepatic tissues such as brain, heart,
skeletal muscle, and adipose tissue (18). Because heart and
skeletal muscle use fatty acids (FAs) as an energy source, and
adipose tissue use FAs for energy storage, the VLDL-R is
thought to play a role in the delivery of FAs as TG-rich
lipoproteins to peripheral tissues (19). The VLDL-R binds
with high affinity apolipoprotein E (apoE)-containing par-
ticles, such as VLDL and intermediate density lipoprotein
from Watanabe heritable hyperlipidemic rabbits, as well as
B-VLDL obtained from cholesterol-fed rabbits, but does not
bind LDL. In contrast, VLDL from fasted normal human
subjects binds with lower affinity than VLDL prepared from
Watanabe heritable hyperlipidemic rabbits or B-VLDL from
cholesterol-fed rabbits. The low-affinity binding of fasted
human VLDL to the VLDL receptor can be overcome by
enriching VLDL with either apoE or LPL (18-21). There are
three mechanisms between LPL and the VLDL-R: 1) direct
binding to the receptor, 2) mediation of the binding lipopro-
tein particles to heparan sulfate proteoglycans before inter-
action with the receptor, and 3) its lipolytic activity, con-
verting VLDL particles to smaller remnants (apoE-rich
particles) before these can become endocytosed by receptors.
After our findings of unique ligand-binding specificity of the
VLDL-R for VLDL particles, Niemeier and colleagues (22)
showed that the same mechanism was operating for chylo-
micron particles. The VLDL-R also interacts with numerous
other ligands, including LPL (21, 23), urokinase plasminogen
activator /plasminogen activator inhibitor-1 complex (23), re-
ceptor-associated protein (RAP) (24), and the atherogenic
lipoprotein(a) (25). VLDL-R expression, mostly in macro-
phages, has been demonstrated in human and rabbit ath-
erosclerotic lesions (25-28), and we suggested that the
VLDL-R contributes to macrophage foam cell formation in
the early phase of atherosclerosis via uptake of remnant
lipoproteins (29). Furthermore, we showed a novel VLDL-R
pathway for FA metabolism in the heart (30). Taken together,
these findings suggest that the VLDL-R plays an important
role in lipoprotein metabolism of VLDL and other TG-rich
lipoprotein particles in concert with LPL as a peripheral
lipoprotein receptor (31).

It has recently been reported that VLDL-R mRNA in skel-
etal muscle is reduced in experimental hypothyroidism and
is increased in hyperthyroidism (32). Reductions of VLDL-R
expression have been described in rats with chronic renal
insufficiency and nephrotic syndrome and in Imai rats with
spontaneous focal glomerulosclerosis (33-35). Rats with
these conditions showed marked hypertriglyceridemia, ele-
vated plasma VLDL concentration, and impaired VLDL
clearance.

To investigate the role of the VLDL-R in the disorder of
lipoprotein metabolism in insulin-deficient diabetes, we
studied VLDL-R expression in STZ rats and rat myoblasts (L6
cells).

Materials and Methods
Experimental animals and cultured myoblasts
Adult 8-wk-old male Sprague Dawley (SD) rats (280-310 g) were

obtained from Japan SLC (Shizuoka, Japan). Rats were randomly di-
vided into nondiabetes (contral) and diabetes (STZ) groups. The animals
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were made diabetic under halothane anesthesia, followed by injection
of STZ (60 mg/kg body weight, iv; Sigma-Aldrich Corp., St. Louis, MO)
into the tail vein. An equivalent volume (1 ml/kg) of saline was ad-
ministered to the nondiabetic controls. Hyperglycemia was tested 24 h
after STZ administration by a blood glucose meter. All STZ-treated rats
were kept for 1-4 wk after STZ injection, at which time they were killed
after 5 h of fasting, and their tissues and plasma-samples were collected.
All animals were maintained under a 12-h light (0700-1900 h), 12-h dark
cycle and given a standard laboratory diet (Oriental Yeast, Tokyo, Japan)
and water. All experiments were conducted in accordance with the
National Institutes of Health and Welfare Guide for the Care and Use
of Laboratory Animals. Rat myoblasts (L6 cells, [CRB9081) were pur-
chased from Health Science Research Resources Bank (Osaka, Japan).

Antibodies against VLDL-R, LDL-R, LDL-R-related protein-
1 (LRP1), and glyceraldehyde-3-phosphate dehydrogenase
(GAPDH)

Rabbit polyclonal antibody (VR2) to the carboxyl terminus of the
VLDL-R was made using a synthetic peptide, CASVGHTYPAISVVST-
DDDLA, which is encoded in several tissues and species (29). The
specificity of rabbit antibody VR2 was confirmed by immunoblotting
against a membrane fraction from Id1A-7 cells (LDL-R-deficient Chinese
hamster ovary cells) expressing human type 1 VLDL-R, human LDL-R,
and human apoE receptor 2 (data not shown). Hybridoma cells pro-
ducing a monoclonal antibody against rat LDL-R (IgG 4A4, CRL-1898)
and rat LRP1 (IgG 11H4, CRL-1936) were purchased from American
Type Culture Collection (Manassas, VA). Anti-GAPDH monoclonal an-
tibody was purchased from Chemicon International (Temecula, CA).

Isolation of membrane fraction from tissues and Western
blot analysis ’

Membrane fractions were prepared according to a standard method
(36). Cellular protein was measured using the bicinchoninic acid protein
assay kit (Pierce Chemical Co., Rockford, IL). SDS-PAGE was performed
on the fractions with 5-20"% slab gels containing 0.1'% sodium dodecyl
sulfate. Total membrane and cell protein (30 ug/lane) for heart, liver,
and skeletal muscle were applied and transferred to a polyvinylidene
difluoride membrane (Millipore Corp., Bedford, MA) using a Trans-blot
(Atto, Tokyo, Japan). Detection of antibodies was performed using a
second antibody and was visualized by enhanced chemiluminescence
(ECL, Pharmacia Biotech, Uppsala, Sweden).

RNA extraction and Northern blot analysis

Total RNA from heart, liver, and skeletal muscle (soleus muscle) was
extracted using the guanidinium thiocyanate method with phenol-chlo-
roform extraction (37). Total RNA (15 ug) was loaded onto a 1% agarose-
gel with 9% formaldehyde, which was separated in MOPS [3-(N-mor-
pholino)-propanesulfonic acid] buffer. The RNAs were transferred on to
the nylon membrane (GeneScreen Plus, NEN Life Science Products,
Boston, MA) by capillary transfer. After UV cross-linking, the membrane
was prehybridized and hybridized with ¢cDNA fragments labeled
I'y-nP]deoxy-CTP by the random primer method, using Random Primer
DNA Labeling kits (Takara Shuzo Co., Ltd., Shiga, Japan). The VLDL-R
probe was prepared from digested rat VLDL-R ¢cDNA. .

RT-PCR

To analyze isoforms of VLDL-R mRNA, RT-PCR was carried out as
previously described (20). cDNA was synthesized from 10 ug total RNA
from heart and skeletal muscle, using oligo(deoxythymidine),g primer
and SuperScript. One tenth of the cDNA was subjected to PCR with a
sense primer (5'-CTAGTCAACAACCTGAATGATG-3') and an anti-
sense primer (5'-AAGAATGGCCCATGCAGAA-3'). The cDNA was
amplified with 250 nm of each primer and 0.75 U Tag DNA polymerase
in a 50-ul volume of buffer, as recomumended by the supplier. The
reaction mixture was heated to 94 C for 3 min, followed by 30 cycles of
reannealing at 62 C for 1 min, elongation at 72 C for 1 min, and dena-
turation at 94 C for 1 min. The PCR products were separated by agarose
gel electrophoresis and stained with ethidium bromide.
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Hepatic VLDL production with Triton WR1339 (TG
secretion rate)

On d 28 after saline or STZ treatment, SD (control) and STZ rats were
food-deprived overnight. Each rat was injected in the tail vein at 250
mg/kg bady weight with a 150 g/liter solution of Triton WR1339 (Sig-
ma-Aldrich Corp.) in9 g/liter NaCl. Blood samples of 100 ul were drawn
before the Triton WR1339 injection and 45, 90, 135, 180, and 360 min later.
The plasma TG concentration was measured in each sample as described
below. The TG secretion rate was calculated from the increments in the
plasma TG concentration per minute, multiplied by plasma volume
(estimated as 4% of the body weight). The result was expressed as
millimoles per hour per 100 g body weight (38).

Serum measurements

Blood samiples were collected from the heart into plane glass tubes
after 5 h of food deprivation. After clotting, samples were centrifuged,
and serum was collected and stored at ~80 C until assayed. Serum
glucose, TG, and cholesterol levels were measured with kits (Daiichi
Pure Chemicals, Tokyo, Japan). The high-density lipoprotein (HDL)
cholesterol concentration was measured after precipitation of apoB-
containing lipoprotein with dextran sulfate, phosphotungustate, and

magnesium chloride. The VLDL/LDL cholesterol concentration was,

calculated by subtraction of HDL cholesterol from total cholesterol (TC).
Serum insulin was measured with using a commercial kit (SCETT Co.,
Ltd., Tokyo, Japan). Postheparin plasma was collected 5 min after iv
injection of 500 U heparin/kg. Plasma LPL activity was measured using
a commercial kit (Progen Biotechnik, Heidelberg, Germany).

Scanning and statistical analysis

The results were scarmed and analyzed using the Intelligent Quan-
tifier System (Genomic Solutions, Ann Arbor, MI). Values are presented
as the mean * sp. Statistical analysis was performed using the Mann-
Whitney U test, and the level of statistical significance was set at P < 0.05.

Results
General characteristics and lipid profile

The STZ injection caused a reduction in serum insulin
levels that was accompanied by hyperglycemia (Fig. 1, A and
B, and Table 1). Body weight gain over 4 wk was reduced in
the diabetic rats (STZ rats) compared with the controls (SD
rats; 392.5 + 36.84 vs. 253.75 £ 29.73 g; P < 0.05). In STZ rats,
serum TC and TG concentrations increased gradually, and a
progressive rise with time was detected. The TC concentra-
.Hon was 2.5- and 4.2-fold higher than the control values on
d 21 and 28, respectively (P < 0.05; Fig. 1C). Serum TG levels
were also 6.7- and 12.7-fold higher than the controls on d 21
and 28 (P < 0.05), respectively (Fig. 1D). The serum VLDL/
LDL cholesterol concentration was significantly increased by
5.2-fold on d 28 (P < 0.05; Table 1). Agarose-gel electro-
phoresis showed high concentrations of broad B-migrating
lipoproteins in STZ rats on d 28, indicating that high TC and
TG concentrations were due to the accumulation of remnant
lipoproteins (VLDL remnant and chylomicron remnant).
Lane C in Fig 1 shows a human plasma lipoprotein pattern
with LDL-sized particles and HDL-sized particles. SD rats
contained mainly HDL-sized particles on d 0 and 28, but STZ
rats on d 28 contained mainly the remnant lipoproteins
(broad B-migrating lipoproteins) that were usually detected
in human type Il dyslipidemia (Fig. 1E). Serum levels of T,
in STZ rats showed decreases of 26% on d 28, but these were
not statistically significant, and there was no elevation of
TSH in STZ rats (Table 1). It was unlikely that severe hy-
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perlipidemia on d 28 was due to hypothyroidism caused by
a long-term diabetic state.

Expression of VLDL-R protein in heart and skeletal muscle

The expression of VLDL-R protein in heart tissue showed
no change in the control rats, whereas in STZ rats it had
decreased to 70% on d 14 and 21 and to 50% on d 28 (Fig. 2,
A and C). The expression of VLDL-R protein in skeletal
muscle in STZ rats had decreased to 60% on d 3, to 30% on
d 14, and to 10% on d 21. On d 28, VLDL-R in skeletal muscle
was less than 10% of that in the controls (Fig. 2, B and D).
LDL-R protein levels in skeletal muscle showed no consistent
changes in control or STZ rats (data not shown).

mRNA levels of VLDL-R in heart and skeletal muscle

In heart tissue, there was little change in the mRNA level
of VLDL-R in either STZ or control rats during these periods
(Fig.3A). Alsoin skeletal muscle, the mRNA level of VLDL-R
did not change during the study periods, but it increased on
d 7 in control rats and decreased slightly on d 28 in STZ rats
(Fig. 3B). It was intriguing that there was a dissociation
between VLDL-R protein and mRNA expression in STZ rats.
To obtain exact results for VLDL-R mRNA levels in heart and
skeletal muscle, we also checked VLDL-R/GAPDH mRNA
levels on d 28 by scanning the VLDL-R and GAPDH density.
Figure 3C indicates that VLDL-R/GAPDH mRNA levels
were decreased by 40% and 24% in heart and skeletal muscle,
respectively, but we could not find a statistical significance
in the difference between the two groups. Even though we
could not clearly indicate the discrepancy between VLDL-R
protein and mRNA in heart, it was obvious that the de-
creased VLDL-R protein level was not related to the VLDL-R
mRNA level in skeletal muscle. In contrast, the splice isoform
of the VLDL-R mRNA (20) examined by RT-PCR showed no
significant difference in the expression of type 1 and type 2
VLDL-R mRNA in heart and skeletal muscle during the
study periods (data not shown).

Hepatic TG production rate (TGPR) and postheparin
plasma LPL activity

TGPRs were determined after Triton WR1339 injection,
which prevents VLDL catabolism and thereby allows TGPR
to be calculated. The TGPR during 3 h on d 28 showed no
statistically significant difference between control and STZ
rats (0.12 % 0.03 vs. 0.10 = 0.03 mmol /h /100 g body weight).
TGPR over 6 h was greater in the controls than in STZ rats
(0.13 £ 0.01 ws. 0.10 = 0.02 mmol/h/100 g body weight),
although this was not statistically significant (Fig. 4A). There
was no difference in VLDL production by liver between the
two groups, indicating that the hyperlipidemia in STZ rats on
d 28 was not due to VLDL overproduction in liver. In con-
trast, heparin-releasable plasma LPL activity in STZ rats was
reduced early on d 7 compared with the control level, even
though there was no significant lipoprotein abnormality be-
tween SD and STZ rats (Fig. 1, C and D). On d 21 and 28,
severe hyperlipidemia was observed in STZ rats, but the
plasma LPL activity level was not changed during the study
period (~50% of that in control rats; Fig. 4B). These data
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indicated that a modest insulin deficiency quickly induced
low plasma LPL activity, and a severe insulin deficiency was
necessary for a reduction of VLDL-R expression in heart and
skeletal muscle in STZ rats.

VLDL-R expression in adipose tissue

VLDL-R is also expressed in adipose tissue. In STZ rats on
d 28, the total mass of adipose tissue almost disappeared in
heart, intestine, kidney, and testis (data not shown), indi-
cating an absolute deficiency of VLDL-R protein in adipose
tissue of STZ rats produced by a long-term diabetic state.
Thus, we were not able to measure VLDL-R expression in
adipose tissue.

LDL-R and LRP1 expression in liver

We also examined the expression of other lipoprotein re-
ceptors in liver, namely, LDL-R and LRI’1, because LDL-R
and LRP1 were hepatic remnant lipoprotein receptors. Nei-
ther showed any change in SD or STZ rats, and scanning
analysis also indicated that insulin-deficient diabetes did not
change hepatic LDL-R and LRP1 protein expressions (Fig.
5A).

Effect of insulin and IGF-I on expression of VLDL-R in rat
myoblasts (L6 cells)

VLDL-R protein was decreased after deprivation of fetal
calf serum for 24 h; treatment with insulin (107° M), but not
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TABLE 1. Characteristics of rats with or without diabetes lost adipose tissue itself due to a long-term diabetic state; there
mellitus was almost total disappearance of VLDL-R expression in adi-
pose tissue on' d 28. Reduction of VLDL-R protein was not

Variables 8D rats STZ rats i g . ) )

Body weight (g) 3925 % 3684 253.75 < 29.73° associated with a reduction of VLDL-R mRNA, especna]l.y.m
Serum insulin (ng/ml) 8.98 * 0.88 0.61 * 0.19 skeletal muscle. In contrast, postheparin plasma LPL activity
Serum glucose (mmol/liter) 10.96 = 4.95 33.93 = 4.30° had been reduced at an early stage (on d 7) after STZ injection.
TC (mmolliter) 2.12 = 0.52 8.97 £ 6.457 It has been reported that there are several mechanisms for
%S%Blﬁlziz )lesterol (1];2 i 8?3 zggi i ;42,%3 ' insulin-deficient diabetic hyperlipidemia. Insulin deficiency

(mmol/liter) stimulates lipolysis in adipose tissues, increasing the deliv-
HDL cholesterol (mmolliter)  0.70 = 0.07 1.16 * 0.08° ery of FFA from adipose tissues to liver and consequently
FFA (mmol/iter) 0.81 £ 0.18 1.36 = 0.39 also the production of TG in liver. Insulin deficiency also
T, (ng/dl) 78.31 * 7.74 57.85 + 17.58

reduces plasma LPL activity. Rats injected with STZ showed

After a 5. fast, blood was taken from SD (contral SandSTZ marked reduction of serum insulin, hyperglycemia, and
€r 4 o-n 1ast, 0iood was taken Irom controi;n = an arlinidea . o3 feo
rats (n = 8)on d 28. Values are presented as the mean * sb. Statistical hprrllPldela. The phenoty.pc 1n our ST_Z rats was consis
significance was analyzed by the Mann-Whitney U test. tent with the results previously described (4-14). The
¢ Significantly different from the controls, P < 0.05. marked increase in serum cholesterol and TG levels in STZ
rats was mainly due to elevation of remnant lipoproteins

IGF-I (10 ng/ml), restored the VLDL-R proteins (Fig. 5B).  (broad -migrating lipoproteins by agarose-gel electrophore-

Thus, VLDL-R expression was dependent on insulin even in sis). Accumulated remnant lipoproteins might be made up of

TSH (ng/ml) 7.23 * 2.60 6.35 + 1.61

a rat muscle cell line as well as in skeletal muscle in STZ rats. Chylom_icron remnant and VLDL remnant lipoproteins that
. . were specific ligands for the VLDL-R (21, 31). Because there
Discussion was no difference in the hepatic TGPR between the two

The results of this study raise the possibility that severe groups of rats in our experiments, the remnant lipoproteins
hyperlipidemia ond 21 and 28in STZ rats may be caused inpart ~ in STZ rats were not due to overproduction of VLDL by liver.
by VLDL-R deficiency in skeletal muscle, heart, and adipose ~ In contrast, LDL-R and LRP1 expression in liver did not
tissues in addition to decreased plasma LPL activity. We found ~ change in STZ rats compared with that in controls. Swami
that VLDL-R protein was greatly reduced in skeletal muscle (to ~ and colleagues (39) reported that hepatic LDL-R levels were
<10%) and was reduced in heart (50%) on d 28. STZ rats also ~ unaffected by diabetes using STZ rats. These data indicated
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Fi6. 3. Northern blot analysis of VLDL-R mRNA in
heart (A) and skeletal muscle (B) in representative SD
(control) and STZ rats. Total RNA (15 pg/lane) was iso-
lated from tissues as described in Materials and Methods
and was separated by electrophoresis on 1.0% aga-
rose/9% formaldehyde gel. RNA was transferred to a
nylon membrane and hybridized with 32P-labeled 0.5 kb
c¢DNA to rat VLDL-R mRNA and 1.3 kb DNA to rat
GAPDH mRNA. The intensities of signals in heart and 2

O

VLDL-R |#
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STZ rat

(days)

0 7 28 3 7 14 28

N

skeletal muscle on d 28 were quantified by densitometric

scanning as VLDL-R/GAPDH mRNA (C). [, SD rats; W, 1
STZ rats.

Rerative intensity
13

that LDL-R and LRP’1 (hepatic lipoprotein receptors for rem-
nant lipoproteins) were not responsible for the accumulated
remnant lipoproteins in STZ rats.

Our data indicated that severe hyperlipidemia in STZ rats
might be due to profoundly decreased VLDL-R protein in
skeletal muscle, almost complete loss in adipose tissues, and
a decrease to a lesser extent in heart tissue. VLDL-R is nor-
mally expressed abundantly in heart, skeletal muscle, and
adipose tissue and has a role in the binding and uptake of
remnant lipoproteins, such as the intermediate density li-
poprotein and chylomicron remnant, in concert with LPL
(31). Although VLDL-R knockout mice showed no obvious
lipoprotein abnormality, they were resistant to the develop-
ment of obesity after a high-fat diet or on an ob/obbackground
(40, 41). Furthermore, it has been reported that the metab-
olism of VLDL-TG was impaired in VLDL-R/LDL-R double-
knockout mice, and a long-term fasting state (16 h) in
VLDL-R knockout mice produced high plasma TG levels
compared with those in wild-mice (42). Goudriaan et al. (43)
also demonstrated a major role of the VLDL-R in postpran-
dial lipoproteins by enhancing LPL-mediated TG hydrolysis,
rather than by mediating FFA uptake. These results indicate
that the VLDL-R plays an important role in VLDL-TG me-
tabolism in heart, skeletal muscle, and adipose tissue under
conditions of severe stress (fasting or a high-fat diet) or on
an LDL-R deficient or ob/ob background. It is reasonable that
an insulin-deficient state also occurs under conditions of
stress, and the experiment in STZ rats gave us a chance to
determine the function of the VLDL-R in rats. For the mech-
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anism of insulin-deficient diabetic hyperlipidemia, Chen and
colleagues (5) pointed out that hypertriglyceridemia in STZ
rats was not due to VLDL overproduction in liver, and a
VLDL-TG removal defect associated with insulin deficiency
may not be explained simply by the decrease in muscle and
adipose tissue LPL activities. In our study, TC and TG con-
centrations on d 7 were not elevated, even though there was
a significant reduction of postheparin plasma LPL activity
(~50%) on d 7 in STZ rats. We suggest that the deficiency of
VLDL-R protein in heart, skeletal muscle, and adipose tissue
might be a crucial role of severe hyperlipidemia in STZ rats
in concert with the reduced plasma LPL activity, because LPL
accelerated the binding of TG-rich lipoproteins to the
VLDL-R. VLDL binding to the VLDL-R is weak, but LPL-
treated VLDL is recognized by the VLDL-R with high affinity
(21). Reduced plasma LPL activity was also one of the nec-
essary conditions for severe hyperlipidemia in STZ rats on d
21 and 28§ in our study. Yagyu et al. (44) indicated that the
disruption of VLDL-R resulted in hypertriglyceridemia as-
sociated with decreased LPL activity in mice. It is likely that
remnant lipoprotein particles that could not be taken up by
the VLDL-R in skeletal muscle, adipose tissue, and heart
accumulated in plasma of STZ rats. Furthermore, in rat myo-
blasts, VLDL-R expression was insulin dependent. We think
that both plasma LPL activity and VLDL-R expression are
insulin dependent, but the former is more sensitive to insulin
deficiency. Because postheparin plasma LPL activities did
not fully reflect specific tissue LPL activity, such as adipose
tissue, which probably declined progressively between 7 and
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lated as millimoles per hour per 100 g body weight. (O, SD rats; B, STZ
rats. B, Postheparin plasma LPL activity in SD (control) and STZ rats.
Postheparin plasma was collected 5 min after iv injection of 500 U
heparin/kg. Plasma LPL activity was determined by a commercial kit
as described in Materials and Methods. O, SD rats; B, STZ rats. *,
Significantly different from the controls, P < 0.05.

28 d in STZ rats, we were not able to neglect the specific tissue
LPL activity for hyperlipidemia in insulin-deficient diabetes.
We believe that the tissue LPL activity, more so than plasma
LPL activity, may be an important factor for the VLDL-R
binding of TG-rich lipoproteins in extrahepatic tissues; more
detailed experiments will be needed. FA transporters were
also candidates for hyperlipidemia in STZ rats, because de-
creased LPL activity might influence FA transporters or sim-
ple diffusion-mediated FFA uptake. However, the decreased
plasma LPL-mediated hyperlipidemia by FA transporters or
diffusion did not explain the accumulation of remnant li-
poproteins in STZ rats. The TGPR by the liver was not in-
creased in STZ rats. Reaven and colleagues (4, 5) also indi-
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ies IgG 4A4 and IgG 11H4, respectively. The intensities of signals in
LDL-R and LRP1 on d 28 were quantified by densitometric scanning.
[, SD rats; M, STZ rats. B, Effects of insulin and IGF-I on the VLDL-R
proteins in rat myoblasts (L6 cells). The effects of insulin (10~ M) and
IGF-I (10 ng/ml) without fetal calf serum were examined for 24 h.
VLDL receptor and GAPDH proteins (30 pug/lane) were detected using
specific antibody VR2 and anti-GAPDH antibedy, respectively.

cated no change or decreased VLDL secretion from liver on
d 7 in STZ rats. FFAs may be metabolized into lipoprotein as
VLDL, and consequently, VLDL production from liver might
be increased in STZ rats if FFAs are responsible for
hyperlipidemia.

In addition to plasma LPL activity, VLDL-R expression,
tissue-specific LPL and FA transporters, intestinal ACAT-2
(10-12) and MTP (13), also might be proteins responsible for
insulin-deficient diabetic hyperlipidemia. However, it is un-
likely that those two proteins are involved in the severe
hyperlipidemia seen on d 21 and 28 in our study, because
ACAT-2 and MTP are increased within 14 d, like the reduced
plasma LPL activity. For ABCG5/ABCGS, researchers mea-
sured the reduced intestinal and hepatic ABCG5/ABCGS
expression and increased plasma plant cholesterols only 28 d
after STZ injection (14). At this time we are not able to exclude
ABCG5/ABCGS as a cause of the severe hyperlipidemia on
d 21 and 28, but we do not believe that the accumulated
remnant lipoproteins in STZ rats are composed of plant
cholesterols.

VLDL-R proteins in skeletal muscle and heart tissue were
reduced in rats with chronic renal insufficiency and puro-
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mycin-induced nephrotic syndrome due to decreased
VLDL-R mRNA levels (33, 34). Both LPL activity and
VLDL-R expression in skeletal muscle and adipose tissue
were decreased in Imai rats with spontaneous focal glomer-
ulosclerosis (35). In the present study, light and electron
microscopic examinations did not show the pathological
findings of diabetic nephropathy in the kidneys of STZ rats
on d 28 (data not shown), indicating the reduced VLDL-R
expression in STZ rats might be due to an insulin-deficient
state, not to renal insufficiency. It has also been reported that
VLDL-R protein expression in skeletal muscle, but not in
heart and adipose tissue, was reduced by thyroidectomy in
rats, which was reversed by the administration of excess
thyroid hormone (32). This result suggests that VLDL-R ex-
pression in muscle is strongly influenced by the thyroid
status of the animal. In the present study, hypothyroidism in
STZ rats was not observed, thereby excluding it as a major
cause of STZ-induced reduction of VLDL-R protein. The
reduction of VLDL-R protein in STZ rats was not accompa-
nied by a reduction of VLDL-R mRNA, especially in skeletal
muscle. This suggests that the reduction of VLDL-R protein
cannot simply be explained by the decreased VLDL-R tran-
scription. This phenomenon may be due to a decreased
VLDL-R translation or an increased VLDL-R protein degra-
dation in addition to the modestly decreased VLDL-R
transcription.

It has been recently reported that the ligand-binding ac-
tivity of the VLDL-R is inhibited by protein kinase C-depen-
dent phosphorylation with phorbol 12-myristate 13-acetate
in human monocyte-derived THP-1 cells, human endothelial
cells, and human vascular smooth muscle cells (45). Hyper-
glycemic conditions such as diabetes mellitus, which induce
protein kinase C activation, resulting in VLDL-R phosphor-
ylation and loss of ligand-binding activity, may impair the
uptake of TG-rich lipoproteins in cells. We also examined the
VLDL-R-binding activity in a ligand blotting study using
RAP, and we observed no changes in RAP-binding activity
in heart or skeletal muscle membranes from STZ rats (data
not shown).

In conclusion, the severe elevation of serum cholesterol
and TG concentrations (remnant lipoproteins) in STZ-in-
duced diabetic rats on d 21 and 28 was accompanied by a
deficiency of VLDL-R protein in heart, skeletal muscle, and
adipose tissues in cooperation with reduced postheparin
plasma LPL activity. This suggests that VLDL-R deficiency
may be one of the factors producing the impaired VLDL
catabolism in insulin-deficient diabetes. The precise mech-
anism leading to the dissociation between VLDL-R protein
and mRNA in STZ rats is uncertain, and it needs to be
determined whether insulin therapy could recover the re-
duced VLDL-R protein and hyperlipidemia in vivo. Addi-
tional investigation is required in the future.
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