cadherin, a specific endothelial cell-cell adhesion molecule,

we observed VE-cadherin at cell-cell junctions (Figs. 3C, D)

Late EPCs, but not early EPCs, participated in tube formation
with HUVECs

xed with HUVECs and incuba
the tubular

ncorporated into

firm this, early EPCs or late EPCs

and they were applied to the same

ormation systems. To distinguish the EPCs from

HUVECs, the EPCs were labeled with PKH26 Red. Tubular

structures formed by these EPCs and HUVECs were then

scopy. The early EPC

> observed in the tubular structure

However, by a three-dimz

that the ce and

were cture formed by

HUVECs articipated in tube
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formation with HUVECs (Fig. 4B). To quantify the incorpora-
tion of EPCs into tube structure was calculated by the area of
EPC per the indicated length of tubular structure. The

incorporation of late EPCs into tubular structures was over 5-

old larger than that of early EPCs (Fig. 4C

]

Late EPCs integrated into pre-existing tubular structures
formed by HUVECs while early EPCs caused tubular sprouting

EPCs cot

u
E

In order to inves
HUVECs in preformed tubular structures,

igate whether 1d substitute for

PCs and HUVECs
were independently cultured. HUVECs labeled with PKH26 Red
were seeded onto the substrate and EPCs labeled with PKH26
gel. The patterned HUVECs on

Green were suspended in Matr

the substrate were tr:

ferred to the EPC-containing Matrigel
1 toward the tul

were observed adjacent after ¢

The late EF

1 (F1g. SA

tubes 10 h later (Fig. SB). Th 1fter, they were ncc

into the tubular structure 24 h later (

EPCs did not

In contrast, early

migrate toward the tubes and were not

Fig. 5 - Incorporation of EPCs into preformed tubular structures. HUVECs labeled with PKH26 Red were seeded on the substrate
and EPCs labeled with PKH26 Green were suspended in Matrigel. The patterned HUVECs on the substrate were transferred to
the EPC-containing Matrigel. (A) Six hours after transplantation, late EPCs were migrating toward the tubular structure
preformed by HUVECs. (B) Ten hours after transplantation, late EPCs were attached to the tube. (C) Twenty-four hours after
transplantation, late EPCs were incorporated into the tubular structure preformed by HUVECs (yellow arrow heads). Scale
bar=30 pm. (D) Twenty-four hours after transplantation, early EPCs had not been incorporated into the tubular structure
preformed by HUVECs. The HUVECs in the tubular structure were sprouting and migrating. Scale bar=100 pm.
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No. of EPCs-formed vessels/host vessels

Early EPCs

Late EPCs

Fig. 6 — In vivo angiogenesis assay. After occlusion of murine auricular vessel, early (A) or late (B) EPCs labeled with PKH26

Red were subcutaneously injected into the occluded pinna. Forty-eight hours after the cell injection, the mice were given BS1-
lectin (green) intravenously and sacrificed. Scale bar=5 pm. (C) The numbers of blood vessels derived from each EPCs observed
in 5 sections were normalized to the number of recipient blood vessels. The data are shown as the mean and SE of three
mice and data are mean of 5 fields/mouse."'P<0.01 vs. early EPCs.

incorporated during the cbservation period. However, after

HUVECs were transferred to Matrigel containing early EPCs,
the HUVECs in the tubular structures initiated sprouting and

migrated toward early EPCs as evidenced by branching

patterns between the tubular structures (Fig
In vivo angiogenesis assay

I'o confirm the tube forming activity of each EPCs in vivo, the

vessels derived from implanted EPCs were observed in the ear
vessel occlusion model, early or late EPCs labeled with PKH26
Red were injected into the occluded pinna. Blood vessels derived
from the late EPCs were observed in the pinna, but only a few
blood vessels derived from early EPCs were observed (Fig. 6)

Discussion

We investigated the tube-forming capacity of early EPCs and

late EPCs isolated from human peripheral blood and umbilical

cord blood, respectively In the previous report, it was

demonstrated that late EPCs were enriched in umbilical cord

blood compared with adult peripheral bloed [23]. Therefore,

we isolated late EPCs from human umbilical cord blood. We

used our novel method for capillary engineering which makes
use of photo-catalytic lithography. Traditional assays for
assessing characteristics of tube formation in vitro have been

carried out by cultivation of endothelial cells in type I collagen

and Matrigel. However, these methods could not distinguish
between tube formation and morphological changes in the
cells. The luminal structure of the vascular tube made in our

pres

ent method was confirmed by an electron microscopy, a

confocal laser microscopy and dye microinjection (22]. This
technique is unique because the method allows one to focus
on the process of tube formation. In contrast, tube formation
in collagen and Matrigel evaluates the total activity of
endothelial cells including migration, invasion and tube
formation [24]. Using this novel method, we demonstrated

that late EPCs partici

pated in the formation of tubular
ie, HUVECs. It is

interesting that late EPCs migrated toward and adjacent to

structures with mature endotheli

s and f

sting tubular strug

WETE 1I1( U.‘}\UI}HE'E:




into the structure itself. In contrast, early EPCs could not form
tubular structures, and they induced migration and sprouting
of HUVECs present in the tubular structure. In a previous study
using Matrigel, Hur et al. [18] demonstrated that early EPCs were
incorporated into tubules when co-cultured with HUVECS,
although the formation was weaker than that of late EPCs.
However, that paper demonstrated the incorporation of EPCs
into network structures of HUVECs on Matrigel, but could not
show the incorperation of EPCs in tubular structures.

Our results showed that early EPCs were not capable of
constructing tubular luminal structures even when they were
co-cultured with mature endothelial cells. Instead, they
stimulated the migration and sprouting of HUVECs from the
tubular structure. These phenomena may be interpreted by
the release of some growth factors from early EPCs. In our
experiment, the amount of secreted interleukin-8 from early
EPCs was significantly higher than that from late EPCs (0.81=
0.07 vs. 0.44+0.02, ng/ml, P<0.01). It has been also reported
that early EPCs secrete angiogenic factors such as VEGF [18,21],
hepatocyte growth factor (HGF), and granulocyte-colony
stimulating factor (G-CSF) [21]. These factors are known to
stimulate endothelial cell migration and proliferation. In vivo
experiments, implanted late EPCs in the occlusion tissues
cause to construct new blood vessels by themselves, but early
EPC could not. This result may be discussed with a hierarchy
of EPCs [23]. It has been zlso reported that the different types
of cells derived from peripheral blood have distinct actions in
healing activity [25]. In this study, we demonstrated specific
and distinct behaviors of early and late EPCs in tube formation
and how they affected mature ECs in tube formation.

Although numerous reports have demonstrate that early
EPCs have the potential to construct new blood vessels by
themselves [5,6], some studies argued that early EPCs were not
actually incorporated into newly formed vessels [26,27]. This
discrepancy may be due to marked heterogeneity of EPCs used
in their experiments. Numerous studies have fractioned EPC
by phenotypic markers such as CD34, CD133, and VEGFR2 and
various methods of EPCs isolation have been reported
[5,6,28,29]. Among them CD34 has been often used for the
marker of EPCs. However, Romagnani et al. showed that CD14
positive MNC-derived EPCs, which had been fractioned as
CD34 negative, express very low level of CD34 using an
antibody-conjugated magnetofluorescent liposomes (ACMFL)
technique [30]. From these results, they suggested that CD14"
CD34'°¥ cells are the major source of early EPCs obtained from
human peripheral blood MNC. This subset exhibited clono-
genicity and multipotency to differentiate not only into
endothelial cells, but also into osteocytes, or neural cells [30].
This report suggests that it is difficult to sort EPCs into highly
defined fractions by ordinary FACS technigque. In fact, each
EPC population in previous studies is supposed to have a
different phenotype even from the same source. To avoid
these complexities, we collected and isolated early and late
EPCs by focusing on their characteristics such as morphologies
and proliferation pattern, and compared their tube-forming
activities in short duration in vitro assays.

While the regenerative potential of EPCs has been demon-
strated in animal models of myocardial and limbischemia, the
number of EPC available for transplantation is very important
for cell-based therapy. Because EPCs are derived from a
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limited endogenous pool, itis necessary to expand the number
of EPCs in vitro or modulate phenotypes of EPCs. Iwaguro et al.
reported that VEGF gene transfer in EPCs stimulated neovas-
cularization in an in vivo model [31]. Murasawa et al.
demonstrated that gene transfer of human telomerase reverse
transcriptase into EPCs enhanced their angiogenic properties,
mitogenic and migratory activities, and cell survival [32]. From
the standpoint of cellular proliferation and phenotypic
stability, late EPCs are superior to early EPCs. Therefore, the
use of late EPCs for tissue engineering has been challenged
[33-35). With our method of generating transplantable capil-
lary networks, the formation of tubular structures in vitro is a
necessary precondition. The data presented here are thus
important since the results demonstrate that late EPCs are a
candidate for tissue engineering.

In conclusion, our data provide the first definitive evidence
that early EPCs promote angiogenesis through migration and
proliferation of mature endothelial cells, whereas late EPCs
can form blood vessels. These results suggest that early EPCs
and late EPCs have different roles in neovascularization in
vivo. Finally, we expect that the novel culture system using a
patterned substrate might be useful for future in vitro analyses
of neovascularization.
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A Human Phospholamban Promoter Polymorphism
in Dilated Cardiomyopathy Alters Transcriptional
Regulation by Glucocorticoids
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Communicated by Nancy B. Spinner
Depressed calcium handling by the sarcoplasmic reticulum (SR) Ca-ATPase and its regulator phospholamban
(PLN) is a key characteristic of human and experimental heart failure. Accumulating evidence indicates that
increases in the relative levels of PLN to Ca-ATPase in failing hearts and resulting inhibition of Ca
sequestration during diastole, impairs contractility. Here, we identified a genetic variant in the PLN promoter
region, which increases its expression and may serve as a genetic modifier in dilated cardiomyopathy (DCM).
The variant AF177763.1:2.203A > C (at position —36bp relative to the PLN transcriptional start site) was found
only in the heterozygous form in 1 out of 296 normal subjects and in 22 out of 381 cardiomyopathy patients
(heart failure at age of 18—44 years, ejection fraction = 22 +9%). In vitro analysis, using luciferase as a reporter
gene in rat neonatal cardiomyocytes, indicated that the PLN-variant increased activity by 24% compared to the
wild type. Furthermore, the g.203A > C substitution altered the specific sequence of the steroid receptor for the
glucocorticoid nuclear receptor (GR)/transcription factor in the PLN promoter, resulting in enhanced binding
to the mutated DNA site. These findings suggest that the g.203A>C genetic variant in the human PLN
promoter may contribute to depressed contractility and accelerate functional deterioration in heart failure. Hum

Mutat 0,1-8, 2008. © 2008 Wiley-Liss, Inc.

KEY WORDS: promoter; polymorphism; transcriptional factor; GR; GRE; cardiomyopathy; PLN; SR Ca-ATPase

INTRODUCTION

Heart failure is a multifactorial syndrome in which intrinsic
myocardial dysfunction contributes to cardiac dilation and
diminished ejection performance, leading to progressive cardiac
deterioration or sudden death [Richardson et al., 1996; Seidman
and Seidman, 2001]. Genes causally associated with cardiomyo-
pathy have been identified through nonbiased genetic analysis or
by candidate gene studies in experimental system |Geisterfer-
Lowrance et al., 1996; Franz et al., 2001]. Thus, molecular
modifiers of heart failure include mutations of genes that encode
cytoskeletal, sarcomeric, nuclear membrane, and calcium handling
sarcoplasmic reticulum (SR) proteins. These findings have
implicated pathogenic mechanisms whereby perturbation of
structural integrity, contractile force dynamics, and calcium
regulation within the cardiac myocyte intrinsically contribute to
myocardial disease.

Abnomal calcium homeostasis is a prototypical mechanism for
contractile dysfunction in failing cardiomyocytes. Depressed
calcium cycling in experimental and human heart failure reflects,
at least in part, impaired calcium sequestration by the SR [Chien,
2000; Maclennan and Kranias, 2003]). Calcium sequestration is
mediated by a Ca-transport ATPase (SERCAZ2a), whose activity is

© 2008 WILEY-LISS, INC.

modulated by alteration in the expression and phosphorylation of
phospholamban (PLN; MIM# 172405) [Luo et al., 1996; Simmer-
man and Jones, 1998]. In experimental models, expression levels
of PLN closely cormelate with basal contractile parameters and
their responses to PB-agonists [Luo et al, 1994; Kadambi et al,,
1996; Brittsan et al., 2000; Dash et al., 2001]. In human heart
failure, the levels of PLN are increased relative to SERCAZ2a,
resulting in higher inhibition of the Ca-pump's Ca-affinity, which
impairs relaxation [Beuckelmann et al., 1992; Meyer et al., 1995;
Hasenfuss, 1998]. As a double insult, the phosphorylation status of
PLN is decreased, leading to increased inhibitory function
and further depression of SR Ca-cycling. Thus, PLN is a major
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Ca-regulatory protein and efforts have concentrated on identifying
naturally occurring mutations in the human PLN gene, which may
perturb its activity and contribute to dilated cardiomyopathy
(DCM). Indeed, three mutations in the coding region of the
human PLN gene have been identified that are associated with
familial cardiomyopathy [Haghighi et al., 2003, 2006; Schmitt
et al., 2003). However, parallel studies on genetic variants in the
PLN promoter region, which may alter its expression levels, are
limiting.

The PLN gene is located on human chromosome 6 [Fujii et al.,
1991] and the 200bp of its 5 flanking region exhibits significant
sequence homology between human, rabbit, rat, and mouse [Fujii
et al., 1991; Haghighi et al, 1997; McTieman et al, 1999a,
1999b]. Importantly, this segment of the 5’ upstream region of the
human PLN gene contains conserved consensus motifs for GATA,
CP1/NF-y, M-CAT, and E-box elements, which are also found in
other mammalian species [Haghighi et al., 1997; McTieman et al.,
1999a). However, the importance of these elements in regulation of
PLN gene expression under physiological and pathophysiological
conditions remains uninvestigated. Indeed, most studies indicate
that cardiac PLN expression levels are maintained under stress and
remodeling conditions, including pressure overload, hypertrophy,
and failure [Ito et al., 2001; Kogler et al., 2003; Mills et al., 2006].
A recent study reported the presence of a rare human mutation in
this highly conserved PLN promoter region (A>G at -77hbp),
which was associated with increased PLN (1.5-fokd) expression
[Minamisawa et al., 2003]. This variant was found in 1 out of 87
hypertrophic cardiomyopathy patients, suggesting a role of the PLN
promoter mutant in depressed Ca cycling, leading to hypertrophy.

In this study, we sought to identify naturally occurring PLN
promoter mutations in nonfamilial heart failure patients. A novel
point genetic variant (A >C) at position AF177763.1:g.203A>C
(at —36bp relative to the PLN transcriptional start site: -36A > C)
in the 5 UTR region of the PLN gene was detected only in the
heterozygous state in 22 heart failure patients and one normal
subject. In vitro studies on the functional significance of this
genetic variant revealed that it increases PLN expression levels by
altering glucocorticoid nuclear receptor (GR) -mediated regulation
of transcription.

MATERIALS AND METHODS
Mutation Identification

Informed consent was obtained from participating subjects. All
protocols were approved by the institutional review board of
the Onassis Cardiac Surgery Center (Athens, Greece) or the
University of Cincinnati College of Medicine, (Cincinnati, OH).
Genomic DNA was isolated either from whole blood or from
paraffin blocks containing heart tissue. The genomic reference
with GenBank accession number AF177763.1 was used to retrieve
the PLN sequence corresponding to proximal promoter and exon
1. A 600-bp fragment of the PLN gene, containing the PLN
promoter region was amplified by PCR, using 60ng of genomic
DNA and a high-fidelity Tag polymerase. The primers were: sense,
5'CTAAGCCTGAAGATGC3' and antisense, 5’CCAGTAACCA
GGATC3', tagged with MI13 forward and reverse primer
sequences, respectively. The conditions were: one cycle at 94°C
for 3 min, linked to 30 cycles ar 94°C for 1 min, 47°C for 1 min,
and 72°C for 1 min, followed by one cycle at 94°C for 1 min, 53°C
for 1min, and 72°C for 10min. The gel purified PLN DNA
fragment was sequenced using automated dye-primer chemistry.
The generated sequences were compared with the reported human
PLN sequences by a computational method and the electropher-

ograms were inspected individually for confinmation. The
GenBank accession number AF177763.1 was used as a reference
for numbering the PLN promoter polymorphism.

Echocardiography

Comprehensive 2D and Doppler echocardiography was
performed according to the recommendations of the American
Society of Echocardiography [Levy et al., 1990]. Left ventricular
dimensions (interventricular septum end-diastolic thickness
[IVEDT], left ventricular posterior wall end-diastolic thickness
[PWEDT], left ventricular end-systolic and end-diastolic diameter
[LVESD and LVEDD]) were measured with M-mode echacardio-
graphy, using the left parasternal window. Left ventricular volumes
and ejection fraction (LVEF) were determined by apical two-
and four-chamber views using the modified Simpson rule [Levy
et al.,, 1990].

Cloning of the Human PLN Gene Promoter-Reporter
Constructs

A PCR-based strategy was employed using high-fidelity DNA
polymerase to amplify the mutant region from human PLN genomic
DNA, comprising the upstream PLN promoter. A 510-bp DNA
fragment was PCR-amplified from normal and DCM genomic DNA
utilizing the primers 5-TACCTGTGTTTATTTTTCTC-3' and 5'-
AAGAAGAATTACCAAAGTCAGCY'. To facilitate cloning, Kpn I
and Xho 1 sites were added to the beginning of the primers. The
510-bp fragment containing the engineered Kpn I and Xho I sites
was subcloned into the pBlueScript vector (Stratagene, La Jolla,
CA). The upstream PLN promoter region was verified by DNA
sequence analysis. Then, the PLN promoter fragment containing
either the nucleotide transition, —36A>C, or the wild type
sequences of the PLN gene was digested with Sac I and Pst I, and
cloned into pGL3-Basic (Promega, Madison, WI) to create the PLN
promoter-luciferase reporter constructs.

About 600bp of 5" upstream of the PLN gene sequences were
scanned for putative transcription factor binding sites, using public
domain software (Transcription Element Search Software;
www.chil.upenn.edu/tess; TFBLAST of TRANSFAC 6.0; Biobase
Corporation, Beverly, MA; www.gene-regulation.com/cgi-bin/pub/
programs/tfblast/tfblast.cgi).

Cardiomyocyte Culture, Transient Transfection,
and Luciferase Assays

Ventricular myocytes were isolated from 1-day-old Sprague-
Dawley rats and cultured as described [Minamisawa et al., 2003].
For promoter-reporter studies, after 24 hr incubation with serum-
free medium, the myocytes were transiently cotransfected with
300ng of each PLN luciferase test plasmid and 75 ng of phRL-TK
control plasmid (Promega). The cells were harvested in Passive
Lysis Buffer (Promega) 48 hr after transfection, and were stored at
—80°C until processed for the luciferase assay. The cells were
allowed to grow in the absence or presence of 3 uM dexamethasone
for the last 45 hr of the 48-hr incubation period. Luciferase assays
were performed according to the protocol of the Dual Luciferase
Assay System (Promega). Each data point represents the mean and
the standard error of the mean (SEM) of seven experiments.

Electrophoretic Mobility Shift Assays

Nuclear extracts from ventricular tissue samples were prepared
as described previously [Brown et al., 2005] with modifications.
Briefly, ventricular tissue was pulverized at liquid N; temperatures,
homogenized at low speed in buffer containing 10mM HEPES



(pH9), 1.5mM MgCl;, 10 mM KCI, 0.5 mM dithiothreitol (DTT),
25 pg/ml leupeptin, 0.2 mM sodium orthovanadate, and 0.1% (vol/
vol) Triton X, then vortexed and incubated on ice for 10 min.
After centrifugation (5,000g for 10 min), the pellet was suspended
in solution containing 20mM HEPES (pH 7.9), 25% (volfvol)
glycerol, 0.6 M KCI, 1.5mM MgCl;, 0.2mM EDTA, 0.5mM
phenylmethanesulphonylfluoride (PMSF), 0.5mM DTT, 25 pg/ml
leupeptin, and 0.2 mM sodium orthovanadate, and then vortexed.
This suspension was incubated on ice for 40 min with rigorous
vortexing every 10 min. After centrifugation (10,000¢ for 15 min),
the supernatant was retained as a crude nuclear extract. Protein
concentrations were determined using a Bio-Rad (Hercules, CA)
protein assay with bovine serum albumin as a standard.

A double-stranded 20-bp oligodeoxynucleotide, containing
the PLN promoter wild type (5-CCTCCCTAG}HA}
{ACACTTTTTC-3"; underlined, glucocorticoid binding element)
or mutant form (5-CCTCCCTAGHC}HACACTITITTC-3;
bold, mutated nucleotide) was end-labeled using [y-"*P]ATP
and T4 polynucleotide kinase (Promega), and was purified using a
G-50 Sephadex column (Amersham Pharmacia Biotech, Piscat-
away, NJ). The binding reactions were performed in a final volume
of 10 ul that contained 20 pg of nuclear protein, 10 mM Tris - HCI
(pH 7.5), 50mM NaCl, 1mM MgCl;, 0.5mM EDTA, 0.5 mM
DTT, 4% glycerol (volivol), and 1pg of poly(dl-dC). After
a 10-min preincubation at room temperature, the labeled probe
{1 x 10° cpm/reaction) was added to each reaction and the
reactions were incubated for an additional 20min at room
temperature. The DNA-protein complexes were separated on
6% nondenaturing polyacrylamide gels in 1 x Tris borate-EDTA
buffer. Gels were vacuum-dried and exposed to X-ray film at
—20°C, using intensifying screens. Competition assays with 100-
fold molar excess of unlabeled consensus oligodeoxynucleotide
or control nonspecific oligodeoxynucleotide were performed to
ensure that the signal was specific. The commercially available
oligonucleotide containing the common glucocorticoid consensus,
5'-GACGGTACAAAATGTTCTAGG-3' (Active Motif, Carls-
bad, CA) and antiglucocorticoid antibodies (Santa Cruz Biotech-
nology, Santa Cruz, CA) were used for specific hinding activity
confiration. A double-stranded 22-bp oligndeoxynucleotide
(5'-AGTTGAGGGGACTTTCCCAGGC-3') containing a con-
sensus nuclear factor-xB (NF-xB) binding site (underlined) was
used as positive control.

Statistics

Data are presented as mean+SEM. Statistical analysis
was performed using two-way analysis of variance (ANOVA)
followed by Student-Newman-Keuls test. A P value of <0.05 was
considered statistically significant. The agreement with the Hardy-
Weinberg expectations (HWE) of genotype frequencies was
determined using the chi-squared test based on the number of
observed and expected heterozygotes and the exact test based on
the number of observed and expected genotypes [Guo and
Thompson, 1992].

RESULTS
Clinical History

A total of 381 DCM patients and 296 normal subjects without
any known cardiomyopathy history were recruited from the
University Hospital, Cincinnati Heart Failure/Transplant Program
(Cincinnati, OH) and the Onassis Cardiac Surgery Center
(Athens, Greece). The clinical characteristics and the demo-
graphic data for the DCM populations are summarized in Table 1.
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1aBLE L Clinical Characteristics of the United States and Greek DCM

Patients With Heart Failure
Ethnicity
United States Greek

n 163 218
Age (years) 4495 +3.3 40+6.2
Gender (%)

Male 72 82

Female 28 18
Etiology (%)

Dilated cardiomyopathy 94.27 100

Ischemic cardiomyopathy 576 —
Functional class (% NYHA 1II/1V) 672 70.6

LVEF (%) 23.6+8 26446
DCM, dilated liomyopathy; LVEF, left ejection fraction; NYHA, New

York Heart Association Classification.

Comorbid conditions in the cohorts included: hypertension (8%),
diabetes (6%), hypercholesterolemia (12%), and atrial fibrillation
(12%). The medications used by rthe DCM patients were
angiotensin-converting enzyme (ACE) inhibitors (97%), diuretics
(94%), digoxin (98%), beta blockers (75%), Ca-channel blockers
(12%), and antiarthythmics (45%).

Identification of a Genetic Variant in the Human PLN
Promoter Region

In the initial discovery study, the PLN gene promoter region
600bp upstream from the transcriptional start site [McTiernan
et al., 1999a] was sequenced in 40 unrelated Greek DCM patients.
The sequencing of this region identified a single nucleotide
transition from A>C at position AF177763.1:g.203A>C
(at -36bp relative to the PLN transcriptional start site:
-36A>C) (Fig 1A). We subsequently screened an additional
178 Greek DCM patients to detennine the frequency of this PLN
genetic variant. The —36A > C substitution was found in another
15 patients (16/218 total) and it was only present in the
heterozygous form, reflecting an allelic frequency of 3.66% in
the Greek DCM population. To confirm the presence of this novel
PLN promoter variant in a different heart failure population, 163
Caucasian DCM patients (University Hospital, Cincinnati Heart
Failure/Transplant Program, University of Cincinnati, OH) were
also screened. The —36A>C variant was found in the hetero-
zygous form in six patients, reflecting an allelic frequency of 1.84%.
The characteristics of the patients with the identified transition in
the PLN gene in the two cohorts were similar (Table 2). The PLN
—-36A>C variant carriers presented with heart failure symptoms
and were diagnosed with cardiomyopathy at ages ranging from 18
to 44 years. Echocardiography studies indicated severe left
ventricular dilatation and systolic dysfunction (e.g., ejection
fraction of 22+49%). Their symptoms remained under control
with drug treatments. However, some patients’ symptoms
progressively deteriorated (New York Heart Association [NYHA]
Classification, NYHA class III), leading to the death of one patient
at the age of 48 years and heart transplantation in another patient
at the age of 46 years. The promoter variant —36A >C was found
in only 1 normal control subject out of 296 screened. There were
no departures from Hardy-Weinberg equilibrium for allelic
frequencies in either DCM or control populations.

The promoter region of the human PLN gene, containing
the genetic variant is a highly conserved region among species
(Fig. 1B) [McTieman et al., 1999a]. Therefore, it was hypothe-
sized that this change in nucleotide sequence might alter PLN
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FIGURE 1. Genomic DNA sequence analysis of the PLN promoter region. A: Partial nucleotide sequences of the PLN promoter region
in normal subjects and DCM patients heterozygous for the AF177763.1:9.203A >C (at -36bp from transcriptional start site: -36 A >C)
substitution. B: Sequence comparison of the proximal mammalian PLN promoter sequences was performed by the FASTA program
(http://fasta.bioch.virginia.edu/fasta_www2/fasta_list2.shtml) (GenBank reference sequence numbers AF177763.1, AF037348.1,
1.03381.1, and M63600.1). The numbers correspond to human nucleotides upstream of exon 1 (transcription start site, underlined).
The position of the A > C transition (boxed) is indicated. Gaps are shown by dash. Polymorphism numbering is based on using the
GenBank accession numberAF177763.1 for human PLN sequence corresponding to proximal promoter and exon 1 and the transcrip-
tion start site as a reference. [Color figure can be viewed in the online issue, which is available at http: //www.interscience.wiley.com. ]

1ABLE 2. Clinical Characteristics of Dilated Cardiomyopathy Patients With
the -36A >C Substitution in the PLN Gene*

Wild-typeallele  Mutant allele

n 359 22
Age (years) 42 +31 4046
Etiology (%)
Dilated cardiomyopathy 94.27 100
Functional class (% NYHA HI/1V) 67.2 66.66
LVEF (%) 245+8 2249

*Polymorphism numbering is based on using the GenBank accessi b
>

AF177763.1 for h PLN corresp g to p I and exon
1as a reference.
DCM, dilated cardiomyopathy;, LVEF, left lar ejection fr NYHA, New

York Heart Association Classification.

promoter activity and consequently its regulation of SERCAZa,
and thus contribute to the pathophysiology of heart failure.

In Vitro Assays of PLN Promoter Activity

To determine the potential functional importance of the
identified genetic variation on PLN transcriptional regulation,
we generated reporter constructs that expressed luciferase under
the control of the putative promoter sequences from the human
PLN gene. When neonatal rat cardiomyocytes were transiently
transfected with luciferase reporters under the control of wild-type
(PLN-WT) or “mutant” PLN (PLN-MT) promoters, the
—36A>C transition resulted in a significant increase of 24%
in transcriptional activity, compared to the wild-type promoter
(Fig. 2A). To examine whether the ~36A > C point transition in
the PLN gene may alter regulation by any of the sequence-specific
DNA-binding proteins, such as transcription factors, we performed
a computer sequence search for putative regulatory binding sites.

We identified a potential sequence for the glucocorticoid response
element (GRE) within the mouse PLN promoter (Fig. 2B). QOur
DNA scanning revealed that the —36A>C substitution was
within the putative glucocorticoid receptor binding site of the PLN
promoter gene. To further investigate the regulation of PLN gene
expression by the glucocorticoid response element, the luciferase
reporter constructs of PLN-WT and PLN-MT were transiently
transfected into rat neonatal cardiac cells in the absence or
presence of dexamethasone. The induced luciferase activity of
PIN-WT was significantly increased when dexamethasone was
present, while there was no effect of dexamethasone on the PLN-
MT, compared to basal levels (Fig. 2A). The lack of luciferase
activity induction in PLN-MT following stimulation of transfected
cells by dexamethasone may indicate that the genetic variant
abolished the direct or indirect mediation of the dexamethasone-
mediated enhancement of the reporter gene activity.

To further examine the functional significance of the -36A>C
PLN promoter variant, gel mobility shift assays were employed.
Using nuclear extracts from mouse heart, the binding assays
showed that both synthetic WT (Fig. 3; lanes 13 and 14) and MT
(Fig. 3; lanes 11 and 12) oligonucleotides were able to form
a DNA-protein complex, indicating transcription factor binding.
However, stronger binding was observed with the PLN-MT
oligonucleotide, demonstrating that this sequence has a higher
affinity for transcription factor binding. Binding was completely
blocked in the presence of 100-fold excess of the cold-labeled WT
(Fig. 3; lanes 3 and 4) or MT oligonucleotide (Fig. 3; lanes 5
and 6), used as specific competitors. Nuclear lysate was used as a
negative control and it did not form any complexes in the presence
of either synthetic WT or MT oligonucleotide (Fig. 3; lanes 7-10).
However, an oligonucleotide containing a consensus NF-kB
binding site, used as a positive control for nuclear lysate activity,
yielded DNA-protein complexes in the lysates. These findings
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FIGURE 2. Effect of the —-36A >C genetic variant on human PLN promoter activity. A: Rat neonatal cardiomyocytes were transiently
transfected with a luciferase expression vector driven by PLN-WTor PLN-MT (-36A > C) promoters, and were cultured in the absence
(left) or presence (right) of 3 uM dexamethasone (Dex) for 45 hr. Transcriptional activity of the promoters was defined as a ratio of
firefly luciferase activity to Renilla luciferase activity in the same cells, and normalized to the mean basal transcriptional activity of
the promoter-less pGL3-basic vector. B: Sequence alignment of the normal and mutant human PLN upstream promoter regions. The
relative positions of the promoter starting site (-1) and of the potential regulatory sequences (underlined) are indicated. The values are
expressed as means+SEM (n = 7). *P <0.05 vs. PLN-WT without Dex (two-way ANOVA and Student-Neuman-Keuls test). Poly-
morphism numbering is based on using the GenBank accession numberAF177763.1 for human PLN sequence corresponding to prox-
imal promoter and exon 1 as a reference.
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FIGURE 3. Electrophoretic mobility gel shift assay of wild-type and genetically-altered glucocorticoid elements in the PLN promoter
sequences. Electrophoretic mobility gel shift assays were used to determine DNA-protein complex formation using nuclear extracts
from mouse hearts. NF-kB was used as a positive technical control (lanes 1 and 2); nonlabeled wild-type (PLN-WT, lanes 3 and 4) and
altered (PLN-MT, lanes 5 and 6) were used as specific competitors; and nuclear lysate as a negative control (lanes 7-10); PLN-MT
oligonucleotide (lanes 11 and 12) and PLN-WT oligonucleotide (lanes 13 and 14). Duplicate samples were assayed for each treatment.

suggest that the quality of the nuclear lysates and the binding
conditions were appropriate (Fig. 3; lanes 1 and 2).

To verify whether the hinding activity from heart nuclear
extracts reflects a specific interaction between the GR with the
PLN-WT and PLN-MT probes, as predicted based upon computer
searches, we employed a commercially available oligonucleotide,
containing a known consensus GRE sequence. This oligonucleo-
tide was used in DNA binding and competition studies, designed
to assess specificity of our DNA-protein complexes. The GRE

consensus oligonucleotide displayed a strong DNA-protein binding
complex in nuclear extracts (Fig. 4; lane 3). Furthermore, this
commercially available oligonucleotide could complerely block
DNA-protein complex formation with PLN-WT, PLN-MT, and
the GRE oligonucleotide in the nuclear extracts (100-fold excess;
Fig. 4; lanes 4-6). The consensus GRE containing oligonucleotide
and the PLN promoter-derived sequences (PLN-WT and PLN-
MT) demonstrated identical migration of the DNA-protein
complexes (Figs. 3 and 4). It was interesting to note that the



6 HUMAN MUTATION 0, 1-8, 2008

wT M

b |

Specilic Competitor: GRE
[
i =] = =
P32 abeled z & E Z
sligonuclentide 5 :1 = ,':: f
e e U o -
- —

PLN-WT

PLN-MT

PLN-W
PLN-MT

(R

“=Free probe

|

FIGURE 4. Electrophoretic mobility gel shift assay of the PLN wild-type and genetically-altered glucocorticoid element specificity in
the presence of common glucocorticoid consensus. Consensus glucocorticoid receptor element (GRE), PLN-WT, and PLN-MT motifs
were used to examine binding specificity in cardiac nuclear extracts from wild-type mice. Lanes 1-3: cardiac nuclear extracts reacted
with radiolabeled oligonucleotides of PLN-WT, PLN-MT, and consensus GRE sequences. Lanes 4-6: consensus GRE oligonucleotides
were used as specific competitor (100 x unlabeled GRE oligonucleotides). Lanes 7-9 and lanes 10-12: PLN-WTand PLN-MT oligo-
nucleotides were used as competitors (100 x -fold unlabeled oligonucleotide), respectively.

PLN-WT or PLN-MT oligonucleotides could not completely
compete with the common glucocorticoid consensus (Fig. 4; lanes
9 and 12). Taken together, these results indicate that the GR binds
specifically to the PLN-WT and PLN-MT promoter sequences,
albeit at lower affinity than the consensus GRE employed.

DISCUSSION

In this study, we identified a novel variant (-36A>C) in the
human PLN promoter region in 22 heart failure patients and one
normal subject, which appears to enhance promoter activity and
alter the GR receptor binding element. Importantly, this PLN
promoter variant was identified in two heart failure populations.
The allelic frequencies in two ethnic populations and in controls
were in Hardy-Weinberg equilibrium, indicating that this genetic
variant is heritable and a combination of the -36A>C PLN
variant with other genetic and environmental maodifies may
contribute to the time course of the disease in the patients. The
identified nucleotide substitution is in close proximity to the
putative TATA (5'-TCATAA-3') boxes at position —48 to —53 in
an evolutionarily conserved PLN gene region between species, and
may play a significant role in regulating PLN gene expression.
Indeed, in vitro studies of this genetic variant indicated that it may
increase PLN expression levels and consequently, depress SR Ca
cycling associated with cardiomyopathy. The functional signifi-
cance of increased PLN levels in cardiac muscle has previously
been demonstrated through the generation and characterization of
transgenic mouse models [Kadambi et al, 1996; Dash et al,
2001]. Consistent with findings in transgenic mice, an increase in
the apparent stoichiometry of PLN to SERCAZ2a, as a result of the
PLN promoter genetic variant, may contribute to the depressed Ca
cycling and deterioration of cardiac function.

Recently, there has been a considerable upsurge of interest in
the influence of cis-acting genetic variations on gene transcription.
Furthermore, these mutations and polymorphisms, found in
various gene promoter regions, have been reported to affect gene

expression and impact function [Collins et al., 2003; Hudson,
2003; Buckland et al., 2004; Guy et al., 2004; Schulz et al., 2006].
Importantly, the PLN promoter variant (A > C, underlined below),
identified herein, was within a novel consensus sequence segment
that matched a glucocorticoid receptor-binding site (5'-AGAA-
GA-3'). Previous studies have shown that thyroid hormone and
glucocorticoids regulate the expression of several genes, including
calcium cycling proteins [Kiss et al., 1994, 1998; Smith and Smith,
1994; Brittsan et al., 1999; Muangmingsuk et al., 2000]. Thyroid
hormone was reported to mediate changes in PLN protein levels
[Kiss et al., 1994, 1998; Brittsan et al., 1999] possibly through
interaction with thyroid hormone elements residing in the PLN
promoter region. Glucocorticoids downregulate Na-Ca exchanger
mRNA levels and activity in aortic myocytes [Smith and Smith,
1994], while they increase expression of alpha-myosin heavy chain
(MHC) and decreased expression of beta-MHC in neonatal rat
cardiomyocytes [Muangmingsuk et al, 2000]. These changes
suggest that, similar to thyroid hormone-mediated transcriptional
activation, the glucocorticoid effects may also be mediated in
part through transcriptional mechanisms. Indeed, the level of PLN
transcripts was significantly decreased, when rat neonatal
cardiomyocytes were treated with cytokines (interleukin [IL]-1,
tumor necrosis factor [TNF]) [McTieman et al., 1997], while
dexamethasone significantly elevated the levels of PLN transcripts
[McTiernan et al, 1997], indicating the direct effects of
dexamethasone on PLN gene regulation. In this report, similar
results were obtained with dexamethasone induction of PLN-WT
promoter expression. In contrast, dexamethasone did not
increase the luciferase transcriptional activity of the PLN-MT
promoter, suggesting that the —36A>C substitution may have
abolished the interaction site for glucocorticoid receptor elements
in the PLN gene.

The role of transacting elements in the transcriptional
activity of the PLN gene remains poorly understood and the
nuclear proteins involved in the regulation of the gene through
binding to these elements are unknown. Our previous studies on



characterization of the mouse PLN promoter indicated that 200 bp
proximal to the transcriptional initiation site is sufficient for
moderare (40%) expression of PLN levels [Haghighi et al., 1997].
The dexamethasone-responsive PLN gene sequences are located
within the 200-bp proximal promoter region of the mouse and
human PLN gene, which are highly conserved between species
[Haghighi et al., 1997; McTiernan et al, 1999a]. Increased
luciferase activity in the promoter-reporter studies suggest that
GREs within this region may contribute to the maodulaton of
transcriptional regulation via DNA—protein interactions of the
PLN gene as further supported by electrophoretic mobility gel shift
assay studies. Obviously, the limitation of this study is that the
upregulation of the PLN promoter activity presented here is
primarily from in vitro studies; in vivo relevance of these finding
could not be performed due to lack of cardiac biopsies from
affected individuals.

The glucocorticoid receptor is a ligand-dependent transcription
factor with both hormone and DNA binding domains, affecting
the transcription of specific genes [Schoneveld et al, 2004].
Specifically, glhucocorticoid hormones are the major mediators of
systemic stress responses [Brent et al., 1991] and it has been
suggested that they may regulate SR function and cellular calcium
homeostasis in the myocardium [Rao et al., 2001; Aoyama et al.,
2005]. The possible mechanisms may involve modulation of PLN
phosphorylation through Ca/calmodulin-dependent protein kinase
II (CaM kinase II) [Rao et al., 2001]. Interestingly, the CaM
kinase I dependent phosphorylation site of PLN, Thrl7, has been
implicated in stress responses of the cardiomyocytes [Hagemann
et al., 2000; Zhaa et al., 2004]. Therefore, under stress conditions,
GR modulation of PLN activity and/or expression levels may
influence SR Ca cycling and myocardial function, which may be
beneficial during early cardiac remodeling but deleterious under
pathophysiological conditions. However, the abolished PLN GRE
site by the —36A > C genetic variant eliminates the GR-mediated
regulation, resulting in chronic increases in PLN expression levels
and inhibition of SERCA activity, which may accelerate
deterioration of function in DCM.
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