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phenomenon that the ability to form G418-resistant
colonies depends on persistent expression of
neomycin phosphotransferase from replicating
HCV RNAs. siHCV decreased the formed G418-
resistant colonies by 99.6%.

The 5° untranslated region (UTR) and the up-
stream portion of the core region are the most
conserved parts in the HCV genome, with an nt
identity of 99.6% (211,212). Therefore, the 5 UTR
appears to be an ideal target for siRNA. Yokota et al.
(213) investigated the effect of siRNA targeting the
5" UTR on HCV IRES-mediated translation, HCV
replication, and protein expression. siRNA de-
creased luciferase activity by 81% at a concentration
of only 2.5 nM in Huh7 cells transiently transfected
with an HCV IRS reporter gene vector. This vector
expresses mRNA consisting of the HCV 5" UTR and
the upstream part of the core region, connected in-
frame with the firefly luciferase (FL) gene as
reporter. siRNA decreased luciferase activity, the
non-structural viral proteins NS3, -4, and -5, and
intracellular replication of HCV genome RNA in
Huh7 cells stably expressing an HCV Feo replicon
that expressed mRNA consisting of FL. and NS3, -4,
-5A, and -5B.

The high degree of sequence diversity between
different HCV genotypes and the notoriously error-
prone replication of HCV are the major problems in
the development of siRNA-based gene therapies.

Kronke et al. (214) developed two alternative
strategies to overcome these obstacles. In one
approach, they used endoribonuclease-prepared siR-
NAs (esiRNAs) to simultaneously target multiple
sites of the HCV genome and investigated the effect
of esiRNAs on the replication of subgenomic and
genomic HCV replicon in Huh cells transfected with
HCV replicon encoding FL as a reporter. siRNAs
directed against various regions of the HCV coding
sequence as well as the 5" UTR efficiently inhibited
reporter gene expression to ~1%. siRNAs also
reduced the number of subgenomic replicon RNAs
to ~1%. In an alternative approach, pseudotyped
retroviruses encoding shRNA were generated. A
retroviral vector expressing shRNA targeting domain
IV or nearby coding sequences inhibited reporter
gene expression in Huh cells.

Takigawa et al. (215) utilized two methods to
express shRNAs: one utilizing an expression plasmid
and the other utilizing a recombinant lentivirus
vector. The efficacy of a number of shRNAs directed
against different target regions of the HCV genome
in Huh cells transfected with HCV subgenomic
replicon was determined. In both systems, shRNAs
against NS3-1 (nucleotides 2052-2060) and NS5B
(nucleotides 7326-7344) most efficiently sup-

pressed expression of NS3 protein and reduced the
amount of HCV replicon RNA.

The proteasome o-subunit PSMA7 modulates
HCV-IRES activity in cell culture (216). The Hu
antigen R (HuR) is a member of the ELAV-like
protein family (217), which binds to HCV 3" UTR
RNA sequences (218).

Korf et al. (219) investigated the effect of a panel
of DNA-based retroviral vectors expressing siRNAs
against the highly conserved HCV-5" and -3° UTRs
or the putative HCV cofactors PSMA7 and HuR on
HCV IRES-mediated translation and subgenomic
replication. siRNAs directed against highly con-
served HCV-5" and -3’ UTRs reduced HCV-IRES
activity from the dual-gene luciferase reporter in
Huh7 cells. These cells had been transfected with
the dual-gene HCV-IRES reporter construct driven
by the SV40 promoter to direct cap-dependent
translation of renilla luciferase and cap-independent
HCV IRES-mediated translation of FL. siRNAs
inhibited HCV replicon RNA and HCV-NS5B
protein expression in Huh cells harboring single-
gene, subgenomic HCV replicons composed of
regions such as the HCV 5 UTR, nucleotides
342-389 of the core-encoding sequence, the HCV
non-structural proteins NS3 to -5B, and the HCV 3’
UTR. siRNAs directed against PSMA7 and HuR
reduced HCV-IRES activity from the dual-gene
HCV-IRES reporter construct. siRNAs inhibited
HCV replicon RNA and HCV-NS5B protein ex-
pression in Huh cells harboring single-gene, sub-
genomic HCV replicons. Selected combinations of
HCV-directed siRNAs and siRNAs targeting
PSMA7 and HuR or a combination of two siRNAs
against these cofactors caused an additive inhibitory
effect to that of subgenomic HCV replicons in
Huh cells harboring single-gene, subgenomic HCV
replicons.

HBV X protein induces HIV-1 replication and
transcription through NF-xB binding sites in the
HIV-1 long terminal repeat promoter (220). Speci-
fically, the NS5a HCV protein activates NF-xB, in
turn activating the promoter function of HIV-LTR
(221,222),

Strayer et al. (223) exploited these findings to
illustrate the potential applicability of such condi-
tional expression approaches to drive the transcrip-
tion of siRNA targeting HCV mRN#A. siRNA was
delivered with Tag-deleted SV40-derived vectors
containing HIV-1 LTR. siRNA reduced the HCV-
NS5A mRNA level by >98% in HepG?2 cells stably
expressing the HCV full genome. Specificity was
confirmed by the finding that the siRNA delivered
with the SV40-derived vector containing mutated
HIV-1 LTR had no effect on the mRNA level.



Hamazaki et al. (224) synthesized shRNAs target-
ing the HCV IRES core gene transcript using Ty
RNA polymerase and investigated the effect of
shRNAs on the replication of HCV RNA in an
HCV replicon stably expressing the HCV subge-
nome. shRNAs inhibited HCV replication by
>00%. shRNAs did not induce luciferase activity
in Huh?7 cells or an HCV replicon transfected with a
luciferase reporter gene-expressing vector with IFN-
regulatory factor-3 binding regions. shRNAs did not
induce IFN-B and did not activate PKR or 2',5'-
OAS in Huh7 cells and HCV replicon. These
findings indicate that the shRNAs inhibit replication
of HCV RNA without inducing an IFN response.

Inhibition of HBV gene expression and
replication by RNAi

HBV is an enveloped virus with a partially ds
relaxed-circular 3.2-kb DNA genome encoding
polymerase, X protein, core antigen (C), and surface
(PreS and S) (Fig. 2). With an estimated 400 million
chronic carriers worldwide, HBV infection remains
one of the most prevalent chronic viral infections in
humans (225). Chronic infections have serious
consequences, including cirrhosis and HCC (226),
and are responsible for >1 million deaths annually
(225). Current treatments for chronic HBV are
suboptimal. Nucleoside or nt analogs, such as
lamivudine and adefovir dipivoxil, suppress HBV
replication effectively (227,228), but suffer from the
selection of drug-resistant mutations and a high rate
of relapse when treatment is discontinued (229).
Although IFN-a and pegylated IFN-o have both
immunomodulatory and antiviral effects, they
achieve a sustained response in only a small percen-
tage of patients and are usually associated with a
wide array of side-effects (230,231). Thus, alterna-
tive therapeutic approaches for chronic HBV are
needed. A number of groups have attempted to
verify the usefulness of RNAi as a therapeutic tool in
several model systems, as described below. The
findings indicate that siRNA and shRNA against
HBV efficiently interfere with HBV gene expression
and replication.

McCaffrey et al. (232) investigated the effect of
U6 shRNAs targeting C and S regions on the
production of HBV intermediates in Huh7 cells,
plus immunocompetent and immunodeficient mice
transfected with a plasmid containing the HBV
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Fig. 2. Schematic representation of the HBV genome.
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genome with some sequences duplicated to allow
complete expression of all genes. shRNA reduced
the amounts of HBsAg in culture medium and
mouse serum by 94.2% and 84.5%, respectively.
Immunohistochemistry indicated that shRNA re-
duced HBV core antigen (HBcAg) by >99%.
Immunocompetent and immunocompromised mice
treated with shRNA had 77% and 92% less HBV
RNA, respectively. shRNA reduced HBV ss and
ds DNA-replicative intermediates to undetectable
levels.

Giladi et al. (233) investigated the effect of siRNA
targeting HBsAg on HBV gene expression and
replication in both HepG2.2.215 cells transfected
with HBV plasmid and in mice transfected with
HBV plasmid. In their systems, injection of Balb/c
mice with the HBV genomic plasmid resulted in the
production and secretion of HBV-related antigens
and replicative intermediates into the serum for >1
week. By 10 days, viral particle production subsides,
concomitant with the appearance of anti-HBV anti-
bodies. siRNA reduced the amount of HBsAg and
HBV nucleocapsid antigen (HBeAg) in culture
media by >80%. siRNA reduced HBV 3.6-kb and
2.1/2.4-kb mRNA species, and also reduced the
amounts of HBsAg and HBeAg in mouse serum by
90% and 80%, respectively. Immunohistochemistry
indicated that the siRNA diminished HBsAg-posi-
tive cells by >0.1%. siRNA reduced the three
species of mRNAs by ~50%. siRNA diminished
HBV DNA in serum by >100-fold.

Konishi et al. (234) investigated the effect of
siRNA targeting to polyadenylation (PA), precore
(Prec), and S regions on replication of HBV in
HepG2.2.215 cells transfected with HBV plasmid.
HBsAg secretion into culture media was inhibited by
78%, 67%, and 42% with siRNAs against the PA,
PreC, and S regions, respectively. siRNA against the
PA region decreased levels of HBV pre-genomic
RNA and HBV RNA containing the PA signal
sequence by 72% and 86%, respectively. siRNA
decreased the level of HBV core-associated DNA, a
replication intermediate, by 71%. Immunohisto-
chemistry indicated that siRNA decreased HBsAg-
positive cells by 30-40%.

Shlomai and Shaul (235) investigated the effect of
siRNA-producing vectors targeting the C and X
ORF regions at the level of HBV proteins, tran-
scripts, and HBV replicative forms in Huh and
HepG2.2.15 cells. siRNAs against X and C regions
significantly decreased levels of X and C proteins in
Huh?7 cells transfected with X and C region plas-
mids, respectively. siRNA against the X region
significantly decreased the number of green fluor-
escent protein-positive cells in Huh7 cells trans-
fected with HBV-GFP plasmid, in which the C
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region was replaced with GFP. siRNA against the X
region decreased core protein in HepG2.2.15 cells
stably expressing HBV. siRNA against the X region
decreased levels of all viral transcripts and viral
replicative intermediates by ~68% and =95%,
respectively in Huh7 cells transfected with 1.3 X
HBV genome plasmid. siRNA against the C region
decreased levels of all viral transcripts and viral
replicative intermediates by =~13% and 40%, re-
spectively in the Huh7 cells transfected with 1.3 X
HBV genome plasmid.

Hamasaki et al. (236) investigated the effect of
shRNA targeting to the core region on replication of
HBV in Huh7 and HepG2 cells transfected with
HBV genome plasmid. shRNA decreased the
amount of HBeAg in culture media by 4.6- and
4.9-fold in Huh and HepG2 cells, respectively.
shRNA decreased 3.5-kb mRNA of HBV plus the
viral replicative intermediates, open circular and ss
HBV-DNA in Huh cells.

Ying et al. (237) investigated the effect of siRNA
targeting of the C region on viral replication in
HepAD38 cells (producing wild-type virus) and
HepADS59 cells (producing 3TC-resistant YMDD
variant). siRNA inhibited viral DNA synthesis by
98% and 89% in HepAD38 cells and HepADS59
cells, respectively. siRNA decreased HBV core
protein synthesis in HepAD38 cells, in which HBV
replication was induced by removal of tetracycline
from the culture medium.

Klein et al. (238) developed a novel mouse model
to study HBV replication and investigated the effect
of siRNA targeting of the ORFs of the S and C
regions on expression of HBsAg and HBeAg using
this model. In this model it is possible to introduce a
replication-competent vector into hepatocytes and to
activate HBV replication by a high-volume injection
via the tail vein using an HBV replication-competent
vector. siRNA rtargeting to the ORF of the S region
decreased HBsAg and HBeAg in the serum by nearly
70% and 80%, respectively. siRNA decreased pre-C/
C and S RNA levels in the liver. siRNA targeting to
the ORF of the C region located outside the S region
decreased HBeAg protein in serum and mRNA
levels in the liver by 60% and 74%, respectively,
whereas siRNA had no effect on the HBsAg protein
level.

Chen et al. (239) investigated U6 shRNAs target-
ing different putative secondary structures on HBV
pregenomic RNA, HBV RNA, and HBV replication
in HepG2 cells transfected with HBV plasmids.
Targeted sequences included direct repeat elements
or regions coding for C, PreS, S, polymerase, and X
protein. shRNAs decreased HBV RNA and the
relative copy number of HBV DNA by up to 90%
and by 90-97%, respectively.

Wu et al. (240) investigated the effect of plasmid-
expressing siRNA targeting HBV C region nucleo-
tides 2052-2070 on the replication and expression
of HBV in mice transfected with HBV plasmid
containing a 1.3-fold-overlength genome of
HBYV. siRNA decreased serum HBsAg and HBV C
mRNA levels on Day 6 by =90% and 85%,
respectively. Immunohistochemistry indicated that
siRNA decreased HBcAg-positive cells from 5.4%
to 0.9%.

Morrissey et al. (241) introduced some chemical
modifications to siRNAs to improve their stability
and investigated the effect of targeting siRNAs to the
HBYV genome in a mouse and a HepG2 cell model of
HBYV replication. The combination of modifications
included 2’-fluoro, 2'-O-methyl, and 2’-deoxy su-
gars, phosphorothionate linkage, and terminus cap-
ping chemistries, plus complete removal of 2-OH.
The modified siRNA duplex prolonged the half-life
~900-fold compared with the unmodified siRNA
duplexes in 90% human serum at 37°C. The
modified siRNA targeting a site located at starting
5" nt 263 in the HBV genome decreased HBsAg in
the culture media by x~80% in HepG2 cells trans-
fected with replication-competent HBV expression
plasmid. The 263 siRNA decreased the HBV RNA
level by 71% in mice transfected with complete HBV
genome vector. The 263 siRNA and unmodified
siRNA decreased serum HBV DNA by 1027 and
10722 at a dose of 1 pg. Similar results were
obtained for serum HBsAg levels. When the 263
siRNA was delivered 3 days after transfection of
the HBV vector it decreased serum HBV DNA levels
by 1077,

The same group (242) also synthesized stable
nucleic acid-lipid particle (SNALP) formulations of
stabilized siRNA, investigating its efficacy using
several criteria. Stabilized siRNA-SNALP almost
completely eliminated HBsAg protein in culture
media of HepG?2 cells transfected with HBV plasmid
with an IC59 of —1 nM. Stabilized siRNA-SNALP
prolonged the half-life in plasma to approximately
eightfold compared to stabilized siRNA in mice.
Non-stabilized siRNA-SNALP strongly induced
serum IFN-o or inflammatory cytokines (IL-6,
TNF-a), plus serum aspartate aminotransferase
and alanine aminotransferase, whereas such effects
were not observed in the stabilized siRNA-SNALP.
Stabilized siRNA-SNALP reduced serum HBV
DNA by >10"'Y in a mouse model of HBV
replication. The reduction in HBV DNA was dose-
dependent and lasted for up to 6 weeks. Further-
more, reductions were seen in serum HBV DNA for
up to 6 weeks with weekly dosing.

Uprichard et al. (243) investigated the effect of
Ad vector expressing U6 RNA polymerase III-driven



shRNAs targeting HBV regions overlapping 3.5-,
2.4-, and 2.1-kb RNA on preexisting HBV gene
expression and replication in HBV transgenic mice.
The HBV-specific siRNA numbers, HBV 546 and
HBV 765, refer to the initial nt of siRNA relative to
the unique viral EcoRI site. shRNAs decreased the
amount of HBsAg and HBeAg in serum by five- to
sixfold on Day 4. The reduction in HBsAg and
HBeAg levels continued until 13 days. shRNAs
decreased the 2.1-kb envelope and 3.5-kb viral
RNA in the liver by >50-fold and by four- to
fivefold on Day 20, respectively. The same authors
also did similar experiments using HBV transgenic
mice that are genetically deficient for the expression
of IFN-y and the IFN-o/p receptor, as in vivo Ad
does induce IFNs that clear HBV DNA from the
liver. HBV 765 decreased HBsAg and HBeAg on
Day 26 by ~20-fold and 10-fold, respectively. HBV
765 decreased 2.1- and 3.5-kb RNA on Days 17-26
to an undetectable level and by 10-fold, respectively.
This pattern of HBV RNA inhibition was main-
tained through to Day 26. HBV 765 decreased HBV
replicative intermediate to virtually undetectable
levels on Days 17-26. Immunohistochemistry
indicated that HBV 765 decreased HBcAg-positive
cells in the liver to an undetectable level on Days 17
and 26.

Wu et al. (244) investigated the effect of the
human H1 promoter-encoded shRNAs targeting
the S regions on the viral proteins, RNA, and DNA
for three HBV genotypes in several models. shRNA
decreased HBsAg and HBeAg protein in the
culture media on Days 6 and 2 by 98.2% and
62.6%, respectively in Huh7 cells transfected with
HBV genotype A plasmid. shRNA markedly de-
creased HBV RNA in cells and HBV replicative
DNA in culture media and the cytoplasm. shRNA
decreased HBsAg in the serum by >99% on Day
4 in mice transfected with HBV genotype A
plasmid. Immunohistochemistry indicated that
shRNA decreased HBcAg-positive cells in the liver
by >95%. shRNA also decreased HBsAg and
HBeAg in the culture media by ~95% and 85%,
respectively in Huh7 cells transfected with HBV
genotype B or C plasmids. In these experiments, a
clone from a patient with genotype C was resistant
to shRNA. This mutant clone was found to exhibit
a silent mutation in the target regions and could be
selected out in the presence of shRNA in cell
culture. .

Carmona et al. (245) investigated the effect of a
panel of shRNAs targeting the HBx ORF region on
HBV replication in several models. To facilitate
intracellular processing, the shRNAs included mis-
matches in the 25-bp stem region and a terminal
loop of micro RNA-23. Two shRNAs (—5 and —6)
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decreased HBsAg secretion and HBV-GFP fusion
marker protein without inducing IFN responses by
>95% and ~60% in Huh7 cells transfected with
HBV plasmid and HBV-GFP fusion plasmid,
respectively. The two shRNAs did not affect IFN
response: induction of IFN-B, OAS1, and MxA in
Huh?7 cells. shRNAs decreased HBV RNA to =35%
in Huh7 cells transfected with HBV plasmid.
shRNA5 decreased HBsAg in serum to a back-
ground level over a period of 4 days in HBV
transgenic mice. Immunohistochemistry indicated
that shRNAS5 decreased HBcAg-positive cells in the
liver to an almost undetectable level. The two
shRNAs decreased HBsAg and viral particle con-
centration in serum by >99% on Day 4 in mice.
Carmona et al. incorporated the two shRNAs into an
Ad vector to assess the antiviral efficacy of these
shRNAs in a context similar to that of natural HBV
infection. The two Ad vector shRNAs decreased
HBsAg and HBeAg in serum by >90% and ~50%
by Day 12. Ad shRNAs —5 and —6 decreased the
virion count in serum by 60% and 98% in mice,
respectively.

Kim et al. (246) investigated the effect of siRNA
and U6 shRNAs targeting positions 1374-1392 of
the HBx sequence on the HBx mRNA level
in HepG2-HBX expressing HBx mRNA and
HepG2-K8 producing HBV particle. siRNA and
tU6 shRNA reduced the HBx mRNA level by up to
80-90% in these cells. They also investigated
the effect of siRNA and U6 shRNA on GFP
expression in HepG2 cells transfected with HBx—
eGFP fusion plasmid. siRNA and U6 shRNA
reduced GFP expression by 90%. Chromosomal
integration of U6 shRNA into HepG2 cells was
also confirmed.

Chen et al. (247) investigated the effect of a ds
adeno-associated virus eight-pseudotyped vector
expressing shRNA targeting the S1 region of HBV
on levels of HBV protein, mRNA, and replicative
DNA in HBV transgenic mice. This shRNA
decreased HBsAg protein and HBV genome in
serum by >99% at 14 days. shRNA decreased
2.4/2.1- and 3.5-kb HBV transcripts by 93% and
81%, respectively. shRNA almost completely elimi-
nated HBV replicative intermediates, intrahepatic
relaxed-circular, and ss linear viral DNA. Immu-
nohistochemistry indicated that shRNA almost
completely eliminated HBcAg-positive cells in the
liver. These reductions persisted for >120 days.
Reductions in HBsAg, HBV DNA, and HBV
replicative intermediates at 120 days were
66.1%, 77.1%, and 75.8%, respectively. shRNA
induced only negligible amounts of IFN-y and -f,
and 2',5-OAS.
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Abstract.

The caspase activation cascade and mitochondrial changes are major biochemical

reactions in the apoptotic cell death machinery. We attempted to clarify the temporal relationship
between caspase activation, cytochrome ¢ release, mitochondrial depolarization, and morpho-
logical changes that take place during tumor necrosis factor (TNF)-a-induced cell death in HelLa
cells. These reactions were analyzed at the single-cell level with 0.5 — I min resolution by using
green fluorescent protein (GFP)-variant-derived probes and chemical probes. Cytochrome ¢
release, caspase activation, and cellular shrinkage were always observed in this order within
10 min in all dying cells. This sequence of events was thus considered a critical pathway of cell
death. Mitochondrial depolarization was also observed in all dying cells observed, but frequently
occurred after caspase activation and cellular shrinkage. Mitochondrial depolarization is therefore
likely to be a reaction that does not induce caspase activation and subsequent cellular shrinkage.
Mitochondrial changes are important for apoptotic cell death; moreover, cytochrome ¢ release,
and not depolarization, is a key reaction related to cell death. In addition, we also found that the .
apoptotic pathway proceeds only when cells are exposed to TNF-a. These findings suggest that
the entire cell death process proceeds rapidly during TNF-a exposure.

Keywords: tumor necrosis factor (TNF)-a, cytochrome ¢, mitochondrial depolarization, caspase,
real-time imaging '

Introduction

Apoptosis is a mechanism of cell death that is
mediated by various intracellular reactions. A family of
cysteine proteases, the caspases, forms the activation
cascade, and these proteases play a central role in the
apoptotic cell death machinery (1, 2). The caspases
usually exist as pro-proteins in living cells and are
activated by cleavage at the time when cell death is
induced. In an early phase of the cell death process,
initiator caspases are activated, which in turn activate
effector caspases (3 —7). Activated effector caspases
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cleave a number of different target proteins, and this
cleavage leads ultimately to apoptotic cell death (8, 9).
Mitochondria also play an important role in the cell
death process (10—13). Cellular stresses induce
mitochondrial changes, including an increase in outer
mitochondrial membrane permeability; various mito-
chondrial proteins such as cytochrome ¢ (cyt.c) and
second mitochondrial activator of caspases (Smac) are
released into the cytosol. Released proteins directly or
indirectly regulate caspase activation and/or other
reactions, which eventually induce cell death.

Various factors in the cell death process have been
identified, but correlation among these factors remains
unclear. Cell death events such as caspase activation and
mitochondrial changes are rapid processes, and the onset
of these events varies between individual cells (14 —17).
So, it is difficult to determine how and when such
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reactions occur in cells as based on analyses of cell
populations, which can only be used to detect an average
value for a large number of individual cells. In order to
gain a better understanding of the cell death mechanism,
simultaneous multi-events analyses should be conducted
at the single-cell level and with high spatial and temporal
resolution. Real-time imaging with confocal microscopy
is a powerful method of detecting the manner in which
such rapid intracellular reactions take place (18, 19).

Fluorescence resonance energy transfer (FRET) is
useful for imaging analyses. Variants of green fluores-
cent protein (GFP) are currently widely employed;
several families of fluorescent proteins have recently
been reported to be useful for FRET analysis (19 —22).
Previously, we developed genetically-encoded sensors
for caspase activation that consist of two fluorescent
proteins linked by a small peptide (23, 24). Cyan-,
green-, yellow-, and red-fluorescent proteins (CFP,
GFP, YFP, DsRed) were used in combination as the
fluorescent proteins. The small peptide was derived from
a substrate of caspase, poly(ADP-ribose)polymerase;
this fusion protein was primarily cleaved by caspase 3
(23). The sensor protein exhibits FRET in its intact form.

‘However, in the presence of active caspase, the peptide
is cleaved, and the two fluorescent proteins are rendered
far apart; in this case, the sensor protein no longer
exhibits any FRET. Caspase activation is detected as a
reduction in FRET. We have previously reported that the
use of various color combinations facilitates real-time
imaging analysis. In particular, GFP-DsRed and YFP-
DsRed have been shown to be as sensitive as CFP-YFP,
which is commonly used as the FRET pair. FRET probes
that consist of such color variations may be useful for
simultaneous multi-event imaging (24).

In this study, we used the YFP-DsRed version of the
effector-caspase sensor (YRec), CFP-tagged cyt.c
(cyt.c-CFP), and tetramethylrhodamine methyl ester
(TMRM) in order to detect caspase activation, cyt.c
release from the mitochondria, and mitochondrial
depolarization, respectively. By applying two of these
probes simultaneously, two events could be monitored
in the same cell, and the temporal relationships between
caspase activation and mitochondrial changes could be
examined at the single-cell level. In addition, we also
analyzed the interval from tumor necrosis factor (TNF)-
a exposure to cellular shrinkage by analyzing the cell
population in order to investigate time course of the
whole cell death process.

Materials and Methods

Plasmid construction
A plasmid encoding YRec, YFP-peptide-DsRed, was

generated as previously reported (24). The sequence
encoding the 11 amino acids at the C-terminus of YFP
was eliminated in this construct. The C-terminal-
truncated forms of the YFP gene were generated by
PCR with primers containing the Nhel site or the
BspEl site and pEYFP-C1 (Clontech, Palo Alto, CA,
USA) as a template, and the restricted fragment was
inserted into the Nhel/BspEI sites of pEYFP-C1 in order
to generate a plasmid carrying truncated YFP. The
oligonucleotides encoding the caspase’s substrate
sequence was inserted into the BspEl — Agel site of the
p(truncated YFP)-C1 vector to generate pYFP-PARP.
The substrate sequence was derived from PARP
(KRKGDEVDGVDE, 5-CCGGAAAGAGAAAAGG
CGATGAGGTGGATGGAGTGGATGAA-3' and 5'-
CCGGTTCATCCACTCCATCCACCTCATCGCCTTT
TCTCTTT-3"). DsRed was generated from pDsRed2-
CI1(Clontech) by PCR, at the Agel/Notl sites, and the
restricted fragment was inserted into the Agel — Notl
sites of pYFP-PARP to generate a plasmid carrying
YFP-PARP-DsRed2 (YRec). YRec was cleaved by
caspase-3 (23, 24).

Cyt.c was cloned from HeLa cells by RT-PCR with a
primer pair (5-TCGCTAGCGCTCCGGAGAATTAAA
TATGGGTATG-3' and 5-CGAGGATCCCTCATTAG
TAGCTTTTTTGAG-3"), and the restricted fragment
was inserted into the Nhel —BamHI sites of the
pECFP-N1 vector to generate a plasmid carrying cyt.c-
CFP. All cloned sequences were verified by sequencing.

Cell culture and transfection

HelLa cells were cultured in DMEM (Sigma-Aldrich,
St. Louis, MO, USA) supplemented with 100 units/ml
of penicillin G, 100 ug/ml of streptomycin, and 10%
fetal calf serum (GIBCO). The plasmid encoding the
fluorescent probes was transfected into HeLa cells
using Effectene Transfection Reagent (QIAGEN,
Hilden, Germany) according to the manufacturer’s
instructions. After being incubated for 12 —24 h with
the transfection reagent, the cells were washed with
PBS and cultivated on dishes suitable for an assay in
medium containing 500 ug/ml of G418 for an additional
1 - 3 days until the assay was performed. We found that
the cultivation period had no effect on cell death events
after TNF-a treatment.

Bioimaging with fluorescence microscopy

Transfected cells were cultured on a cover glass (25-
mm diameter, 0.15-0.18-mm thickness) for 1-3
days. Cells were treated with TNF-a (100 ng/ml,
dissolved in PBS) and cycloheximide (10 ug/ml,
dissolved in DMSQ) and then were incubated under the
usual culture conditions for 1 —2 h prior to the analysis.
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Table 1. Measurement conditions for real-time analysis by LSM510

Probe Excitation (nm) Beam splitter (nm) Emission (nm)

Cyt.c-CFP 458 515 467.5-497.5

YRec 488 545 505 - 530 (donor)"
560~ 615 (acceptor)*

TMRM 543 545 560 -°

*Emitted fluorescence was separated by a 545 dichroic mirror, and the fluorescence of the donor
(YFP) and that of the acceptor (DsRed) was obtained via a band-pass emission filter. "A long-

pass filter (LP560) was used.

Tetramethylrhodamine methyl ester (TMRM; 50 nM,
dissolved in DMSQ) was added to each sample 20 — 30
min prior to the analysis, when the mitochondrial
membrane potential was to be measured (23, 25).
Analyses were carried out by confocal laser scanning
fluorescent microscopy using a Carl Zeiss LSM510
system (Carl Zeiss, Jena, Germany). During the observa-
tions, the media were buffered with 10 mM HEPES
buffer (pH 7.4), and the cells were maintained at- 35°C —
37°C. DIC images and grayscale images for fluores-
cence channels were obtained in 00.5- or 1-min intervals.
Excitation lights for the cyt.c-CFP (458 nm) and YRec
(488 nm) were provided by an Ar laser with a 458 or a
488 dichroic mirror, respectively. Excitation lights for
the TMRM (543 nm) were provided by a HeNe laser
with a 543 dichroic mirror. Images of the probes were
obtained separately using a dichroic mirror and band-
pass or long-pass emission filters, as indicated in
Table 1. Contamination of the fluorescence between
channels was negligible under these conditions (data
not shown). For analyses involving YRec or TMRM,
images were processed and quantified using MetaFluor
software as follows: The average pixel intensity of the
fluorescence of the entire cell region was determined for
each channel. In the case of YRec, the ratio value was
calculated as the average pixel value of the fluorescence
ratio, (fluorescent intensity for the acceptor channel)
/(fluorescent intensity for the donor channel), in the
entire cell region. As the cells changed morphologically
during the observation, the entire cell region was
assessed separately for each image.

Simultaneous measurement of two probes was per-
formed according to the multi-track scanning mode, in
which two sets of excitation-detection conditions were
used in alternation. For cyt.c-CFP and YRec, CFP
fluorescence induced by excitation at 458 nm was
measured in the first track, and YFP and DsRed
fluorescence induced by excitation at 488 nm was
measured in the second track. For cyt.c-CFP and
TMRM, CFP fluorescence induced by excitation at
458 nm was measured in the first track, and TMRM

fluorescence induced by excitation at 543 nm was
measured i the second track. The scanning time
difference between tracks was ca. 3 — 8 s, which was not
significant in the temporal analysis.

Analysis of cell survival rate

HeLa cells were cultured in 96-well plastic plates to
80% — 90% confluency and were then treated with TNF-
a. After the indicated culture durations, the cells were
treated with Alamar Blue (Dainippon Pharmaceutical,
Osaka) according to the manufacturer’s instructions.
Cell survival was measured as fluorescence at 590 nm
induced by excitation at 540 nm. Fluorescence was
measured using FlexStation (Molecular Devices,
Sunnyvale, CA, USA).

Results

Simultaneous imaging of cyt.c-CFP and caspase sensor

HeLa cells expressing both cyt.c-CFP and YRec were
treated with TNF-a, and changes in fluorescence were
observed. Figure A shows DIC images, fluorescent
images of CFP, and fluorescence ratio (DsRed/YFP)
images of YRec during cell death. Images were obtained
every 30 s; therefore, we were able to identify the time
points of these events at a resolution period of 30 s. The
CFP fluorescence indicated cyt.c-CFP localization, and
the fluorescence ratio (DsRed/YFP) indicated caspase
activation. CFP fluorescence was localized in the
mitochondria at 280.5 min, and it was delocalized at
281.0 min, indicating that cyt.c-CFP was released during
this period. The images shown in Fig. 1A indicate that
this cell started to shrink at 286.5 — 287.0 min.

When the caspase was activated in a cell, the YRec
was cleaved, which led to a reduction in the FRET from
YFP to DsRed. Thus, a reduction in the fluorescence
ratio (DsRed/YFP) reflected caspase activation. As
shown in Fig. 1B, the fluorescence ratio decreased
dramatically at 283.5 min in the cell shown here, thus
indicating the initiation of caspase activation at this
point in time. The increase in DsRed fluorescence
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(min) Fig. 1. Cyt.c-CFP release and caspase acti-

vation were monitored simultaneously in the
same cells. A: DIC (upper), images showing
the fluorescence of CI'P’ (middle) and the fluo-
rescence ratio of DsRed and YFP (DsRed
/YFP, lower) during cell death are shown in
pseudocolor. CFP and DsRed/YFP indicate
the localization of cyt.c-CFP and caspase
activation, respectively. B: Changes in YRec
fluorescence in the cell shown in panel A
were plotted. YFP and DsRed are shown with
their fluorescence ratios. The asterisks indicate
time points at which cyt.c-CFP were released
and cell shrinkage was observed. The horizon-
tal axis represents the point in time after the
addition of TNF-a.

Fig.2. Cyt.c-CFP release and mitochondrial depolari-
zation were monitored simultaneously in the same
cell. A: DIC (upper), images showing the fluorescence
of CFP (middle) and the fluorescence of TMRM
(lower) during cell death are shown in pseudocolor.
CFP and TMRM fluorescence indicate the localization
of cyt.c-CFP and the mitochondrial membrane poten-
tial, respectively. B: Changes in TMRM fluorescence
of the cells in panel A during cell death were plotted.
The asterisks indicate time points at which cyt.c-CFP
were released and cell shrinkage was observed. The
horizontal axis represents the point in time after the
addition of TNF-a.
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observed after this time point was unexpected, but is
thought to have been the result of cellular shrinkage.
Because the cell volume was reduced, the DsRed
became concentrated, and the fluorescence increased.
The reduction in the fluorescence ratio clearly indicated
a reduction in FRET, which indicated both the cleavage
of YRec as well as caspase activation. The asterisks
indicate the time point of cyt.c-CFP release and cellular
shrinkage, as determined based on the results shown in
Fig. 1A. In this cell, cyt.c-CFP was released 280.5 min
after the addition of TNF-a, and caspase activation was
initiated 3 min after cyt.c-CFP release; the cell then
started to shrink 3 min after caspase activation. Cyt.c-
CFP release, caspase activation, and cellular shrinkage
were observed in this order in all of the dying cells
examined.

Simultaneous imaging of cyt.c-CFP and TMRM

Hela cells expressing cyt.c-CFP were treated with
TMRM and TNF-a. Delocalization of cyt.c-CFP and
mitochondrial depolarization were observed with a
resolution period of 1 min. All dying cells exhibited
cyt.c-CFP release, mitochondrial depolarization, and
shrinkage of the cell body. Figure 2A shows a typical
fluorescent image of a dying cell. In this cell, cyt.c-CFP

was released at 161 min, and cell shrinkage began at
167 min after the addition of TNF-a. Changes in TMRM
fluorescence are plotted in Fig. 2B. TMRM fluorescence
started to decrease at 164 min, thus indicating that the
mitochondria started to depolarize at this point in time.
In a comparison of the starting points of these three
events, it was found that the release of cyt.c-CFP always
preceded mitochondrial depolarization and cellular
shrinkage. Mitochondrial depolarization was observed
earlier than cellular shrinkage in this particular cell, but
was observed later in other cells. The temporal order of
the timing of the initiation of mitochondrial depolariza-
tion and cellular shrinkage was not consistent. Mito-
chondrial depolarization preceded cellular shrinkage in 4
of the 10 cells, and cellular shrinkage preceded mito-
chondrial depolarization in 6 of the cells observed here.

Temporal relationships between mitochondrial changes,
caspase activation, and cellular shrinkage

We observed 10— 22 cells in each of these experi-
ments, the results of which are shown in Figs. 1 and 2.
We then determined the timing of cyt.c release, cellular
shrinkage, and mitochondrial depolarization, or caspase
activation in each cell. To clarify the temporal relation-
ships between these cellular events, relative timing was

(A)
———— r TNF-a addition -253.4 £ 92.5
L] cyt.c release 0
L caspase activation 1.9 £ 04
by cellular shrinkage 5.1 = 1.5
,;.H } mit. depolarization (24.2 * 34.2)
E

400 -300 -200 -100 0 . 100 200

time after cyt.c release (min)

(B)

L]
-
- A
600 o° . ° o
-10 0 10 20 30

time after cyt.c release (min)

Fig. 3. Temporal relationship between mitochondrial changes and caspase activation. A: Relative timing of TNF-a addition
(open square), cyt.c release (closed square), caspase activation (closed circle), cellular shrinkage (closed triangle), and mitochon-
drial depolarization (closed and open diamond) is shown with respect to time after cyt.c release. B: Shows a magnification of
panel A.
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determined as follows: the time point of cyt.c release
was considered as time 0 in each of the individual cells.
We calculated the relative timing of each of the observed
events for each cell, and the results are plotted in Fig. 3.
TNF-a treatment, cyt.c release, caspase activation, and
cellular shrinkage are indicated as the mean + S.D. Since
mitochondrial depolarization did not give a normal
distribution, all data for mitochondrial depolarization
were plotted. Each plot represents the results from a
single cell. Figure 3B shows magnification at around
time 0.

The relative timing of TNF-a treatment and mito-
chondrial depolarization was found to deviate sub-
stantially, whereas the relative timing of caspase acti-
vation and cellular shrinkage gave only a small devia-
tion. A substantial amount of time was required for the
initiation of cyt.c release, and the duration varied
between cells; however, after cyt.c release, the sub-
sequent reactions occurred rapidly. After cyt.c release,
cells are unable to stop or delay the cell death process.

Mitochondrial depolarization occurred before both
caspase activation and cellular shrinkage in some of the
cells (n=4), but mitochondrial depolarization occurred
after caspase activation and cellular shrinkage in other
" cells (n=6). This finding suggests that mitochondrial
depolarization is not necessary for either caspase acti-
vation or cellular shrinkage. Mitochondrial depolariza-
tion has been consistently reported as being associated
with cell death, but it is not thought to be a critical step
in the induction of apoptotic cell death.

Effects of the duration of TNF-a treatment

At the first step of TNF-a-induced cell death, TNF-a
binds with its receptor on the cell surface, and an extra-
cellular signal is transferred into the cell. After this step,
Bid transfers the signal to the mitochondria, and then
cyt.c is released from the mitochondria to the cytosol.
Our results shown in Fig. 3 indicate that these processes
took about 4 h. In order to analyze the timing of the onset
of the earliest steps, we attempted to determine the point
in time at which the first step started. To this end, we
changed the duration of TNF-a exposure and measured
the resulting cell survival rate. Cells were divided to two
groups, as shown in Fig. 4A, and the cells were exposed
to TNF-a for 0— 12 h. In group A, the survival rate was
measured immediately after TNF-a exposure. In
group B, TNF-a was washed off after the indicated
exposure time, and the cells were cultured in fresh
medium without TNF-a for an additional 6 —11 h, and
the survival rate was then measured. If the cell death
process proceeded after the removal of TNF-a, the
survival rate would be expected to be reduced due to the
additional culture period after the removal of TNF-a. In

other words, more cells would be expected to have died
in group B than in group A with the same amount of
TNF-a exposure time.

The results showed that the survival rate decreased
with increasing TNF-a exposure time (Fig.4B).
However, the survival rate did not decrease after TNF-a
removal. This result suggests that the dead cells in
group B had died during the period of TNF-a exposure,
and that those cells that had survived during TNF-a
exposure did not die after the removal of TNF-a. Thus,
the cell death process is likely to proceed only when the
cells were exposed to TNF-a. The survival rate in
group B increased when cells were exposed TNF-a
for 6 h. The biological meaning of this increase was
unknown; however, this result did not disturb our
conclusion.
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0 1,2,3,6,0r12 12 (h)
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group B H— * '
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0 1 2 3 6 12
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Fig.4. Cell survival rate after TNF-a exposure. Panel A: Experi-
mental design of the TNF-a exposure analysis. Thick lines represent
the incubation in the presence of TNF-a, and thin line represents the
incubation in the absence of TNF-a. In group A, cells were exposed
to TNF-a for the indicated amount of time, and the cell survival rate
was measured immediately. In group B, cells were exposed in the
same manner as that used for group A. Then, the TNF-a was washed
out, and the cells were cultured in fresh media for 6 — 11 h. Then, the
cell survival rate was measured. The total duration of the culture
period after the onset of TNF-a exposure was 12h in group B.
Panel B: The cells in groups A and B were exposed to TNF-a for 1, 2,
3, 6, or 12 h, and the cell survival rates were determined. Each bar
represents a mean + S.D. (n=6). **P<0.01 vs time 0, according to
Dunnett's test. 'P<0.05 between groups A and B, according to
Student’s t-test.
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Discussion

This is the first report to reveal the precise temporal
relationships between four reactions (mitochondrial
depolarization, cyt.c release, caspase activation, and
cellular shrinkage) in TNF-a-induced cell death.
Because the onset of these reactions varied among
individual cells, real-time single-cell imaging is the
only currently available method to reveal temporal
relationships between these reactions. We described our
three-color real-time imaging technique in this report.
Rehmetal. has reported the simultaneous real-time
imaging of caspase activation and Smac release by using
CFP/YFP-FRET sensor and YFP-tagged protein (26).
They used the same color, YFP, for the observation
of both reactions. It is possible to identify two reactions
as they discussed, but it may be difficult to identify
small changes occurring in the cell by their method.
Previously, we revealed that DsRed was useful for
FRET analysis of caspase activation (24). In this report,
we observed caspase activation and cyt.c release with
YFP/DsRed-FRET sensor and CFP-tagged protein. By
using fluorescent probes in different colors, each
reaction could be easily and precisely identified in a
single cell.

We observed cell death at the single-cell level with a
resolution period o' 0.5 — 1 min, and we revealed that the
relative timing between cyt.c release, caspase activation,
and cellular shrinkage remained constant in all of the
dying cells observed; however, the timing of mito-
chondrial depolarization showed a large deviation
(Fig. 3). After cyt.c release, apoptosome formation,
caspase-9 activation, caspase-3 activation, and the
cleavage of various substrates that lead to apoptotic cell
death are initiated. Our results revealed that this series of
reactions takes place within 10 min and that the time
course of this process was identical among all of the
dying HeLa cells.

Mitochondrial depolarization was observed in all
dying cells, but we considered that mitochondrial
depolarization was not the cause of cyt.c release, caspase
activation, and cellular shrinkage. Mitochondrial depo-
larization was found to occur at any time after cyt.c
release. Mitochondrial depolarization was observed after
caspase activation and cellular shrinkage in 60% of the
observed cells. These results exclude the possibility that
mitochondrial depolarization is a cause of cyt.c release,
caspase activation, and/or cellular shrinkage. This is
consistent with previous findings that cell death
occurred without mitochondrial depolarization. Li et al.
have shown that caspases are activated independently of
mitochondrial depolarization in TNF-a-induced cell
death (27). Krohn et al. have shown that cyt.c release

and caspase activation occurred in the absence of
mitochondrial depolarization in cell death of hippo-
campal neurons (28). Several studies suggested that
mitochondrial depolarization is a critical step for cell
death (29), but our results support the idea that mito-
chondrial depolarization is not crucial to the cell death
process.

Cyt.c release may be a key step in two independent
series of events, that is, the cell death process and
mitochondrial depolarization. We speculate that cells
might try to maintain cellular homeostasis by keeping
membrane potential after cyt.c release. While maintain-
ing the membrane potential, the released cyt.c immedi-
ately initiated the cell death process in the cytosol, and
thus caspase activation and cellular shrinkage always
took place within a short period of time. The timing of
mitochondrial depolarization did not appear to be
relevant to this process.

A number of imaging analyses have demonstrated that
each cell death event is a rapid process. Initiator- and
effector-caspase activation both proceed rapidly (23, 24,
30 - 32). Cyt.c is also released rapidly in a single step
(33 - 35). Likewise, Smac/DIABLO is released rapidly,
although the duration of Smac/DIABLO release is
greater than that of cytc (26). Several multi-event
imaging studies have suggested that cell death events
occur almost simultaneously. Initiator caspase activa-
tion/effector caspase activation, effector caspase activa-
tion/mitochondrial depolarization, cyt.c/smac, and’
effector caspase activation/smac release had been
analyzed simultaneously at the single-cell level and were
found to occur almost simultaneously (24, 26). These
findings, taken together with our present results, suggest
that the cell death cascade proceeds rapidly after
mitochondrial changes take place.

Once cyt.c was released, the following reactions
proceed in a rapid manner. However, it did take
253.4 £ 92.5 min from TNF-a treatment to cyt.c release,
and this duration varied from cell to cell (Figs. 3 and 4).
We observed some cells that had died within 1h in
imaging analysis, indicating that cells have the ability to
induce cell death within 1 h, and suggesting that certain
factors may delay signal transduction and the timing of
cell death. The results shown in Fig. 4 indicate that these
factors were active only when the cells were exposed to
TNF-a. We considered two possible explanations for
these findings. 1: Each TNF-a molecule changed the cell
slightly, and the changes induced by one molecule were
not sufficient to induce the cell death cascade on their
own. However, many TNF-a molecules attacked the
cell, and intracellular changes thus accumulated. When
the accumulated changes exceeded the threshold level,
the cell death cascade would be expected to have
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proceeded rapidly. 2: TNF-a could induce intracellular
changes by chance. According to this explanation, TNF-
a molecules would bind with the TNF receptor, but only
some of them would be able to induce intracellular
change. If some TNF-a molecules successfully induce
intracellular changes, then the cell death cascade would
proceed rapidly. The more TNF-a molecules that are
present around the cell, and/or the longer these TNF-a
molecules attack the cell, the higher the probability of a
successful attack, and it can be expected that more cells
will die. According to both of these models, the cell
death process would not proceed in the absence of TNF-
a exposure; therefore, those cells that survived during
TNF-a exposure would not be expected to die after the
removal of TNF-a.

One of the Bcl-2 family proteins, Bid, was cleaved to
tBid due to the cell death signal, and the tBid transferred
the signal from the cytosol to the mitochondria (36).
Exogenous treatment with tBid is known to induce cell
death immediately (37), and thus reactions that delay
signal transduction may occur at an earlier step than
either Bid cleavage or mitochondrial changes.

As cell death reactions often occur in a rapid manner
~and because the timing of the onset of intracellular
reactions varies among cells, precise temporal relation-
ships between cellular events during cell death should
be further analyzed at the single-cell level with high
temporal resolution. Single-cell imaging analyses of
early stages (e.g., receptor oligomerization and the
recruitment of adaptor proteins) will help to elucidate
the mechanism of the entire cell death process.
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