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Human immunodeficiency virus type 1 (HIV-1) utilizes the macro-
molecular machinery of the infected host cell to produce progeny
virus. The discovery of cellular factors that participate in HIV-1
replication pathways has provided further insight into the molec-
ular basis of virus-host cell interactions. Here, we report that the
suppressor of cytokine signaling 1 (SOCS1) is an inducible host
factor during HIV-1 infection and regulates the late stages of the
HIV-1 replication pathway. SOCS1 can directly bind to the matrix
and nucleocapsid regions of the HIV-1 p55 Gag polyprotein and
enhance its stability and trafficking, resulting in the efficient
production of HIV-1 particles via an IFN signaling-independent
mechanism. The depletion of SOCS1 by siRNA reduces both the
targeted trafficking and assembly of HIV-1 Gag, resulting in its
accumulation as perinuclear solid aggregates that are eventually
subjected to lysosomal degradation. These results together indi-
cate that SOCS1 is a crucial host factor that regulates the intracel-
lular dynamism of HIV-1 Gag and could therefore be a potential
new therapeutic target for AIDS and its related disorders.

AIDS | pathogenesis | drug target | lysozyme

H uman immunodeficiency virus type 1 (HIV-1) infection is a
multistep and multifactorial process mediated by a complex
series of virus—host cell interactions (1, 2). The molecular interac-
tions between host cell factors and HIV-1 are vital to our under-
standing of not only the nature of the resulting viral replication, but
also the subsequent cytopathogenesis that occurs in the infected
cells (3). The characterization of the genes in the host cells that are
up- or down-regulated upon HIV-1 infection could therefore
provide a further elucidation of virus-host cell interactions and
identif))/ putative molecular targets for the HIV-1 replication path-
way (4).

The HIV-1 p55 Gag protein consists of four domains that are
cleaved by the viral protease concomitantly with virus release. This
action generates the mature Gag protein comprising the matrix
(MA/p17), capsid (CA/p24), nucleocapsid (NC/p7), and p6 do-
mains, in addition to two small spacer peptides, SP1 and SP2 (5, 6).
The N-terminal portion of MA, which is myristoylated, facilitates
the targeting of Gag to the plasma membrane (PM), whereas CA
and NC promote Gag multimerization. p6 plays a central role in the
release of HIV-1 particles from PM by interacting with the vacuolar
sorting protein Tsgl0l and AIP1/ALIX (7-9). Several recent
studies have implicated the presence of host factors in the control
of the intracellular trafficking of Gag. AP-38 is a recently charac-
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terized endosomal adaptor protein that binds directly to the MA
region of Gag and enhances its targeting to the multivesicular body
(MVB) during the early stages of particle assembly (10). The
trans-Golgi network (TGN)-associated protein hPOSH plays an-
other role in Gag transport by facilitating the egress of Gag cargo
vesicles from the TGN, where it assembles with envelope protein
(Env) before transport to PM (11). Although the involvement of
these host proteins in the regulation of intracellular Gag trafficking
has been proposed, the detailed molecular mechanisms underlying
this process are still not yet well characterized.

In our current work, we demonstrate that the suppressor of
cytokine signaling 1 (SOCS1) directly binds HIV-1 Gag and
facilitates the intracellular trafficking and stability of this protein,
resulting in the efficient production of HIV-1 particles. These
results indicate that SOCS1 is a crucial host factor for efficient
HIV-1 production and could be an intriguing molecular target for
future treatment of AIDS and related diseases.

Results

SOCS1 Is Induced upon HIV-1 Infection and Facilitates HIV-1 Replica-
tion via Posttranscriptional Mechanisms. We and others have shown
that HIV-1 infection can alter cellular gene expression patterns,
resulting in the modification of viral replication and impaired
homeostasis in the host cells (4, 12). Hence, to elucidate further the
genes and cellular pathways that participate in HIV-1 replication
processes, we performed serial analysis of gene expression (SAGE)
using either a HIV-1 or mock-infected human T cell line, MOLT-4
(12). Further detailed analysis of relatively low-abundance SAGE
tags identified SOCS]I as a preferentially up-regulated gene after
HIV-1 infection. This finding was validated by both semiquantita-
tive RT-PCR and immunoblotting analysis with anti-SOCS1 anti-
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bodies (Fig. 14). In addition, SOCSI was found to be up-regulated
also in peripheral blood mononuclear cells (PBMC) from two
different individuals (following HIV infection, Fig. 1B).

Our initial findings that SOCS1 is induced upon HIV-1 infection
prompted us to examine whether this gene product affects viral
replication. We first cotransfected 293T cells with a HIV-1 infec-
tious molecular clone, pNL4-3 (13), and also pcDNA-myc-SOCSI,
and then monitored the virus production levels in the resulting
supernatant. We then performed ELISA using an anti-p24 antibody
and found that wild-type SOCS]1 significantly increases the pro-
duction of HIV-1 in the cell supernatant in a dose-dependent
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— 96

8 10 12 14 natant p24 levels at the indicated time
days points were measured by ELISA.

manner (Fig. 1C Upper). In contrast, neither the SH2 domain-
defective mutant (R105E) nor the SOCS box deletion mutant (AS)
of SOCS1 could promote virus production to the same levels as wild
type, indicating that both domains are required for this enhance-
ment (Fig. 1D Upper). Furthermore, another SOCS box protein,
SQCSS3, failed to augment HIV-1 replication in a parallel experi-
ment (Fig. 1D Upper), indicating that the role of SOCS1 during
HIV-1 replication is specific.

We next performed immunoblotting analysis using cell lysates
and harvested virus particles in further parallel experiments (Fig. 1
C and D Lower). Consistent with our ELISA analysis, the expres-
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Fig. 2. SOCS1 interacts with HIV-1 Gag. (A) Ex- A
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lowed by immunoblotting with an antibody
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293T cells expressing various myc-tagged SOCS1
mutants (schematically depicted in D) were ana-
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ter transfection, cell lysates treated with 10 pg/mi
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clonal antibodies. (H) Functional interaction of
SOCS1 with MA but not NC. 2937 celis were trans-
fected with wild-type Gag, AMA-src, or ANC-LZ
(Zw-p6) and cotransfected with either control vec-
tor or SOCS1. Supernatant virus particles were then
collected after 24 h and subjected to immunoblot-
ting with anti-p24 antibody. Numerical values be-
low the blots indicate fold induction of superna-
tant p55 signal intensities derived by densitometry.
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() Colocalization of SOCS1 with Gag. Hela cells were transiently transfected with Gag-GFP. After 24 h, the cells were fixed, permeabilized, and immunostained
with anti-SOCS1 polyclonal antibody foliowed by fluorescently labeled secondary antibodies before confocal microscopy. (Scale bar: 10 um.)

sion of wild-type SOCS]1, but neither its SH2 nor SOCS box mutant
counterparts, resulted in a marked and dose-dependent increase in
the level of intracellular Gag protein, particularly in the case of CA
(p24) and intermediate cleavage products corresponding to
MA-CA (p41) and CA-NC (p39). This increase was found to be
accompanied by an enhanced level of HIV-1 particle production in
the supernatant (Fig. 1 C and D Lower). These results together
indicated that SOCS] facilitates HIV-1 particle production in
infected cells and that this role of SOCS1 requires the function of
both its SH2 and SOCS box domains. For further details about
SOCSI1 interaction with MA and NC and SOCS1-enhanced particle
production, see supporting information (SI) Text.

To examine the morphological aspects of HIV-1 particle pro-
duction, transmission electron microscopy (TEM) was performed.
293T cells that had been cotransfected with pNL4-3, and either a
control vector or a SOCS! expression construct, were subjected to
TEM analysis after fixation in glutaraldehyde. In SOCSI1-
transfected cells, a significantly increased number of mature virus
particles was observed on the surfaces of PM compared with the
control vector-transfected cells (Fig. 1E). There were also no
obvious malformations of the virus particles in SOCS1-expressing
cells, such as doublet formation or tethering to PM, which are
characteristic of particle budding arrest (14) (Fig. 1E). Consistent
with this observation, virions from SOCS1-transfected cells were
found to be infectious as control viruses in Jurkat cells when the

296 | www.pnas.org/cgi/doi/10.1073/pnas.0704831105

same amounts of virus were infected (Fig. 1F). These results
together indicate that SOCS1 enhances mature and infectious
HIV-1 particle formation.

To elucidate the specific step in HIV-1 production that is
enhanced by SOCS1, we next performed gene reporter assays using
either luciferase expression constructs under the control of wild-
type HIV-LTR (pLTR-luc), or a full-length provirus vector (pNL4-
3-luc) (15). Interestingly, SOCS1 overexpression was found not to
affect the transcription of these reporter constructs (data not
shown), indicating that SOCS1 enhances HIV-1 replication via
posttranscriptional mechanisms during virus production.

SOCS1 Interacts with the HIV-1 Gag Protein. The results of our initial
experiments indicated that SOCS1 enhances HIV-1 production
via a posttranscriptional mechanism. We therefore next tested
whether SOCS1 could bind directly to HIV-1 Gag. GST pull-
down analysis using C-terminal FLAG-tagged p55 Gag (codon-
optimized) and GST-fused SOCS1 revealed that p55 Gag un-
dergoes specific coprecipitation with GST-SOCS1 (Fig. 24).
Furthermore, both ectopically expressed myc-tagged SOCS1and
endogenous SOCS1 were found to undergo coimmunoprecipi-
tation with Gag-FLAG in 293T cells (Fig. 2 B and C). Addi-
tionally, GST pull-down analysis with various SOCS1 mutants, as
depicted in Fig. 2D, further demonstrated that a mutant lacking
the both N-terminal and SH2 domain (AN-SH2) could not bind

Ryo et al.



_Fig. 3. SOCS1 enhances both the
stability and trafficking of HIV-1
Gag. (A) Hela cells cotransfected
with pNL4-3 and either control
vector (EV) or SOCS1 were immu-
nostained with antibodies tar-
geting anti-p24 (CA). Confocal
microscopy with differential inter-
ference contrast (DIC) was then
performed. (Scale bars: 10 um.) (8)
293T cells were transfected with
either a control empty vector (EV)
(Left) or myc-SOCS1 (Right) and
cotransfected with pNL4-3. After
48 h, cells were pulse-labeled with
[35S]methionine or (35S]cysteine
for 15 min and chased for the du-
rations indicated. Cell lysates and
pelleted supernatant virions were
immunoprecipitated with anti-
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jected to confocal microscopy (C). (Scale bars: 10 um.) Celis with Gag protein on the plasma membrane were scored out of 200 transfected cells (D).

p55 Gag, whereas an N-terminal or a SOCS box deletion did not
affect the binding of SOCS1 to Gag in 293T cells (Fig. 2F). This
finding indicates that the SH2 domain is important for the
interaction of SOCS1 with HIV-1 Gag. Interestingly, the R105E
mutant of SOCS1, which disrupts the function of the SH2
domain, still binds Gag (Fig. 2E), indicating that the Gag-
SOCS1 association is independent of the tyrosine phosphoryla-
tion of Gag, as is the case for both HPV-E7 and Vav (16, 17).

To elucidate the SOCS1-binding region of the Gag protein, GST
pull-downs with various GST-fused Gag domain constructs were
performed. SOCS1 was detected in glutathione bead precipitates
with GST-wild-type Gag, GST-Ap6, GST-MA, and GST-NC, but
not with other domain constructs (Fig. 2F), indicating that SOCS1
interacts with Gag via its MA and NC domains. Consistent with
these results, the deletion of both the MA and NC domains of p55
Gag (AMAANC) completely abolishes its interaction with SOCS1
in coimmunoprecipitation experiments (Fig. 2G). Furthermore, in
vitro analysis with purified proteins also demonstrated that SOCS1
can indeed interact with both the MA and NC regions of HIV-1
Gag in the absence of nucleic acids or other proteins (SI Fig. 5).

We next wished to determine the functional interaction domain
in HIV-1 Gag through which SOCS]1 functions in terms of virus-like
particle production. To this end, we used a MA-deleted Gag mutant
with an N-terminal myristoyl tag derived from src (AMA-src) (18)
and also an NC-deleted Gag mutant with a GCN4 leucine zipper
in place of NC, which we herein denote as ANC-LZ but which has
been described as Zj-p6 (19). Both of these mutants have been
shown still to assemble and bud (18, 19). We found that SOCS1
overexpression can still augment the particle formation of both
wild-type Gag and ANC-LZ but not AM A-src (Fig. 2H), indicating
that the functional interaction between SOCS1 and HIV-1 Gag is
in fact mediated through MA.

To confirm further the direct interaction between SOCS1 and
Gag in cells, we examined the intracellular localization of these two
proteins. Confocal microscopy revealed that endogenous SOCS1
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forms dotted filamentous structures in the cytoplasm and that Gag
localizes in a very punctate pattern with SOCS1 from the perinu-
clear regions to the cell periphery (Fig. 2/). These data indicate that
SOCS1 interacts with HIV-1 Gag in the cytoplasm during HIV-1
particle production.

SOCS1 Promotes both the Stability of Gag and Its Targeting to the
Plasma Membrane. Because we had found from our initial data that
SOCS1 increases HIV-1 particle production as a result of its direct
interaction with intracellular Gag proteins, we next addressed
whether SOCS1 positively regulates Gag stability and subsequent
trafficking to PM. Our immunofluorescent analysis with the anti-
p24 (CA) antibody initially revealed that SOCS1 overexpression
increases the levels of Gag at PM when cotransfected with pNL4-3
at 48 h after transfection, although it was detected at PM in both
control and SOCS1-expressing cells (Fig. 34). Furthermore, the
levels of cytoplasmic Gag were found to be much lower in the
SOCS1-expressing cells compared with the control cells (Fig. 34).
These results indicate that SOCS1 enhances Gag trafficking to PM.

To examine next whether SOCS] affects the stability and traf-
ficking of newly synthesized Gag proteins, we performed pulse—
chase analysis. This experiment revealed that SOCS1 significantly
increases the stability of the intracellular p5S5 Gag polyprotein as
well as the levels of p24 in the supernatant (Fig. 3B). Importantly,
p24 was detectable at an earlier time point and reached maximum
levels in a shorter period in the cell supernatant of SOCS1-
transfected cells compared with control vector-transfected cells
(Fig. 3B). This finding again suggests that SOCS1 facilitates the
intracellular trafficking of newly synthesized Gag proteins to PM.

To confirm this hypothesis further, we performed cycloheximide
(CHX) analysis with HeLa cells transfected using either vector
control or SOCSI1. After 24 h, cells were again transfected with
Gag-GFP for 3 h and treated with CHX for 5 h to inhibit protein
synthesis. Cells were then cultured in fresh medium without CHX
for an additional 150 min and subjected to confocal microscopy. At
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cell lysates were subjected to immu-
noblotting analysis with the indi-
cated antibodies (A). Cell superna-
tants were then subjected to ELISA
analysis of p24 levels (B). (C) 293T
cells were transfected with pNL4-3
and cotransfected with control- D
siRNA, SOCS1-siRNAI alone, or
SOCS1-siRNAI plus siRNA-resistant
myc-SOCS1 (myc-SOCS1*). After
48 h, cell supernatants were col-
lected and subjected to p24 ELISA.
(Inset) Immunoblots of the cell
lysates. (D) Hela cells were trans-
fected with control or SOCS?1-
specific siRNA and cotransfected
with GFP-Gag. At 48 h after trans-
fection, the cells were subjected to
confocal microscopy. (E) Hela cells
were transfected with Gag-GFP and
SOCS1-siRNA constructs for 48 h.
Cells were then fixed and subjected
toimmunofluorescent analysis with
indicated antibodies followed by
DAPI staining. (Scale bars: 10 mm.)
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with lentivirus vectors encoding either control- or SOCS1-siRNAL. The cells were then infected with HIV-1n14.3 (multiplicity of infection, 0.1), and p24 antigen levels

in cell supernatant were measured by ELISA at the indicated time points.

this time point, Gag-GFP was found to localize predominantly in a
perinuclear region in the control cells (Fig. 3C), whereas almost half
of the SOCS1-transfected cells exhibited Gag-GFP localization on
PM (Fig. 3D). These results again indicate that SOCSI efficiently
enhances the trafficking of newly synthesized Gag protein to PM.

The Targeted Disruption of SOCS1 Inhibits Gag Trafficking and HIV-1
Particle Production. To delineate further the role of SOCS1 in the
trafficking of Gag and in subsequent HIV-1 particle production, we
depleted cellular SOCS1 by siRNA. The significant depletion of
SOCS1 expression by two different SOCS1-specific siRNA con-
structs was confirmed by immunoblotting analysis (Fig. 4 4 and B).
Significantly, in cells cotransfected with pNL4-3 and SOCSI1-
specific siRNAs, both HIV-1 particle release and the’ levels of
intracellular Gag protein are significantly decreased compared with
the control cells (Fig. 4 A and B). Furthermore, the effects of
SOCS1-siRNA on the inhibition of HIV-1 particle production was
diminished by reexpression with a codon-optimized SOCS1 con-
struct that is resistant to these siRNAs (Fig. 4C), indicating that the
SOCS1 siRNA suppression of HIV-1 particle production depends
on the availability of endogenous SOCS]1.
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Consistent with these observations, immunofluorescent analysis
further revealed that the expression of SOCS1-siRNA dramatically
inhibits Gag trafficking such that Gag proteins accumulate in the
perinuclear regions as large solid aggregates, as has been reported
(20) (Fig. 4D). This finding indicates that SOCS]1 plays an essential
role in the Gag trafficking from perinuclear clusters to PM.
Interestingly, these discrete perinuclear clusters of Gag were found
to colocalize with lysosome markers, lysozyme, and partly with
AP-3, but neither with the late endosome MVB marker CD63 nor
the trans-Golgi marker TGN46, indicating that Gag is targeted for
degradation by lysosomes when the function of SOCS1 is inhibited
(Fig. 4E). In support of this notion, the levels of intracellular Gag
were found to be significantly increased by treatment with a
lysosome inhibitor NH,Cl but not by a proteasome inhibitor
MG132 in SOCS1-siRNA cells (Fig. 4F), further indicating that the
perinuclear clusters of Gag will undergo lysosomal degradation
rather than proteasomal degradation when optimal Gag transport
to PM is suppressed by the inhibition of SOCS1.

We next addressed whether targeted SOCSI inhibition would
affect HIV-1 particle production in human T cells. The effect of
SOCS1 depletion was clearly evident in both HI V-1 4.3-infected
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Jurkat cells and human primary CD4* T cells, which demonstrated
pronounced decreases in virus particle production in SOCSI1-
siRNA-expressed cells compared with the controls (Fig. 4 G and
H). These results together indicate that the specific inhibition of
SOCSI1 suppresses the optimal trafficking of Gag to PM, resulting
in the degradation of Gag in lysosomes, which in turn leads to the
efficient and reproducible inhibition of HI'V-1 particle production
in various types of human cells.

Discussion

In this work, we report that SOCS1 is an inducible host factor during
HIV-1 infection and plays a key role in the late stages of the viral
replication pathway via an IFN-independent mechanism (SI Fig. 6).
These results represent evidence that SOCS1 is a potent host factor
that facilitates HI'V-1 particle production via posttranscriptional
mechanisms.

SOCS]1 has been shown to be a suppressor of several cytokine
signaling pathways, and like all SOCS family members it has a
central SH2 domain and a conserved C-terminal domain known as
the SOCS box (21, 22). Structure—function analyses have further
demonstrated that the SOCS1 SH2 domain is required for the
efficient binding of its substrates (23, 24). Indeed, our current
analyses have also revealed that the SH2 domain of SOCS1 is
required for its interaction with the HIV-1 Gag protein. We have
shown from our present data that the SOCS box is also required for
SOCST1 to function during HIV-1 particle production.

The SOCS box-mediated function of SOCS1 is chiefly exerted
via its ubiquitin ligase activity (21, 25). Biochemical binding
studies have shown that the SOCS box of SOCSI interacts with
the elongin BC complex, a component of the ubiquitin/
proteasome pathway that forms an E3 ligase with Cul2 (or Cul5)
and Rbx-1 (21, 26, 27). We show from our current experiments
that the SOCS box is required for HIV-1 particle production,
indicating the involvement of the ubiquitin/proteasome pathway.
However, it is still unknown whether SOCS1 promotes the
ubiquitination of Gag and, if so, whether the mono- or poly-
ubiquitination of Gag would affect its trafficking and protein
stability. Further studies will be necessary to clarify the biological
significance of Gag ubiquitination.

Periman and Resh (20) recently reported that newly synthesized
Gag first appears to be diffusely distributed in the cytoplasm,
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accumulates in perinuclear clusters, passes transiently through a
MVB-like compartment, and then traffics to PM. Consistent with
these observations, our current work also shows that Gag is
accumulated at perinuclear clusters as solid aggregates when its
targeting to PM is impaired because of the SOCS] inhibition.

Another aspect of SOCS1 function during HI'V-1 infection was
proposed recently. Song et al. (28) reported that SOCS1-silenced
dendritic cells broadly induce the enhancement of HIV-1 Env-
specific CD8* cytotoxic T lymphocytes and CD4"* T helper cells as
well as an antibody response. The induction of the SOCS1 gene in
HIV-1 infected cells might therefore disrupt a specific intracellular
immune response to HIV-1 in infected host cells.

Based on the strong evidence that we present in our current
work that SOCS1 positively regulates the late stages of HIV
replication, we conclude that SOCS1 is likely to be a valuable
therapeutic target not only for future treatments of AIDS and
related diseases, but also for a postexposure prophylaxis against
disease in HIV-1-infected individuals.

Materials and Methods

Antibodies and Fluorescent Reagents. Antibodies and fluorescent reagents
were obtained from the following sources. Anti-CD63, anti-AP-3, anti-myc
(A-14), and anti-SOCS1 (H-93) were from Santa Cruz Biotechnology. Anti-
SOCS1 was from Zymed Laboratories. Anti-FLAG (M2) and anti-HA (12CAS5)
were from Sigma and Roche Diagnostics, respectively. Anti-HIV-p24 (Dako;
Cytomation), anti-STAT1, and anti-phospho-STAT1 (Y701) were from BD
Transduction Laboratories. Sheep polycltonal anti-TGN46 was from GeneTex.

Plasmid Constructs. Expression constructs for SOCS1 have been described in
ref. 29. GST fusion constructs with specific regions derived from the codon-
optimized gag were generated (MA, CA, NC, p6, Ap6, full-length Gag) by
cloning into pGEX-2T (GE Healthcare Bio-Sciences) as described in ref. 30. For
retrovirus-mediated siRNA expression, pSUPER.retro.puro vector was di-
gested, as described in ref. 31, with the following sequences: SOCS1-siRNAI,
TCGAGCTGCTGGAGCACTA; SOCS1-siRNAIl, GGCCAGAACCTTCCTCCTCTT;
control siRNA, TCGTATGTTGTGTGGAATT.

Electron Microscopy. Transfected 293T cells were fixed with 2.5% glutaralde-
hyde and subjected to TEM, as described (14, 32).
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