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Abstract To predict rice-farming pesticide concentrations in river water with imprecise mode! inputs for
screening-level analysis, a basin-scale runoff model was developed. The Monte Carlo method was applied
to create estimates of input data regarding agricultural work schedules and parameters for pesticide
decomposition and sorption in solids and water. The prediction accuracy of the model was evaluated when
used with non-optimised pesticide parameters; the model was calibrated using hydrological data alone
without reference to observed pesticide concentration data. Overall, predictions for the pesticide
concentrations were successful within order-of-magnitude accuracy. The pesticide rankings according

to the predicted concentration roughly agreed with those observed. The success of screening-level analysis
indicates that the model prediction can help in selection of pesticides to be monitored and in determining
the monitoring schedule for the river basin.
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Nomenclature

awy infiltration rate coefficients of the rice paddy field (m/s).
aw inm Ow,ow irmigation and drainage rate coefficients of the rice paddy field,
respectively (s

ay vertical flow rate coefficient (s—l)
ay lateral flow rate coefficient (m/s)
A area of the compartment (m?)
B length on a side of a square grid (m)
Cyand C;  concentration in each compartment (kg/m3)
D diffusion coefficient (m%/s)
L distance between compartments (m)
Lg river length in a compartment
h water level of the compartment (m)
hy depth of the compartment (m)
hw water depth of the rice paddy field (m)
hwo objective water depth of the rice paddy field (m)
I slope (dimensionless)
Mg Manning coefficient (m?3 s/m*)
o solute diffusion rate between compartments (kg/s)
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qw flow rate of spill-over imigation divided by the paddy area (rate of
continuous irrigation in order to keep a certain water depth and to pre-
vent hot water damage: extra amount of irrigated water spill over
from the outlet of the paddy, m/s)

Ov vertical flow rate (m>/s)

Or river flow rate (m>/s)

On lateral flow rate (m3/s)

Owin irrigation rate (flow rate of water to the paddy field, m3/s)
Ow.out drainage rate (flow rate of water from the paddy field, m®/s)

Introduction
A wide range of possible sources of diffuse pollution, including pesticides, have been
found to originate on farms. In Japan, the fate of rice-farming pesticides and their con-
centrations in river water are particularly important issues for management of drinking-
water supplies, because (1) more stringent regulations have been promulgated for pesti-
cide concentrations in drinking water and (2) rice-farming pesticides run off to river
water at higher rates than do other pesticides used in upland fields, Rice-farming pesti-
cides are dusted directly over the ponding water of paddy fields, and thus are more likely
to contaminate river water by spill-over following rainfall or by water-ponding depth con-
trol, etc. Although the annual pesticide consumption for upland fields in Japan is no less
than that for rice paddy fields, most of the pesticides detected in river water are those
used in rice farming (Matsui ez al., 2002). The prediction of pesticide concentrations in
river water is of practical importance when used as a screening-level analysis, providing
order-of-magnitude accuracy with minimal investment in time and resources in water-
quality monitoring (Dabrowski et al., 2002). Screening-level analysis is important for
selecting pesticides to be monitored and determining the monitoring schedule for river
basins where different pesticides are applied from year to year.

‘While many models and their applications have been reported, few have been applied
to rice-farming pesticides in runoff from rice-paddy fields (Inao and Kitamura, 1999; Li
and Migita, 1992). Moreover, no attempt has been made to predict rice-farming pesticide
concentrations in river water in a large catchment area that constitutes the local primary
source of drinking water, probably owing to the difficultly of acquiring input data. Such
data include the name of each pesticide product dusted, the guantity used, the dates of
pesticide dusting, the varieties of rice planted, the dates of transplantation of rice seed-
lings, the time-variation patterns of water depth of rice-paddy ponding, parameter values
of pesticide decomposition, and parameter values of pesticide sorption. Accordingly, the
objective of this research is to predict rice-farming pesticide concentrations in river water
with imprecise model inputs and no parameter optimization for a screening-level
analysis.

Model description

Compartment model

A compartment model was used to describe the movement of pesticides in a river basin
and to create pesticide pollutographs. In the model, a river basin was divided into a grid
of Tkm X 1km grid cells. Each grid cell was subdivided into 12 compartments, includ-
ing a river-water (R) compartment, a river-bed (S) compartment, and paddy-field-soil
(X and Y) compartments (Figure 1). Water and pesticides from all compartments except
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Figure 1 Compartment model in a grid cell and flow directions

the C compartment move laterally to the R compartment of one of the immediately sur-
rounding eight grid cells, specifically, to the cell along the steepest downhill slope from
the source cell. Lateral movement from the C compartment goes to the R compartment of
the next grid cell via the S compartment of that grid cell. The irrigation water in the W
compartment comes from the R compartment of the same grid cell. Vertical flows from
all compartments except the R and S compartiments are downward.

A set of differential mass-balance equations describing the dynamics of a solute (pesti-
cide) and water in each compartment was formulated, based on the law of conservation
of mass for the pesticide and the water. In the hydrology (water flow) part of the model,
the rates of lateral water flow into and out of the W compartment (Qw in and Ow ou
respectively) are described as functions of the water level (hw) in the compartment:

Ow,in = Aaw i, max (0, hwp =~ hw) + Aqw (1
Qw,oul = AaW,out max (O’ hwy — hW.O) (2)

The water depth in the paddy field (hvw) is artificially controlled at various levels accord-
ing to weather conditions and the growth stage of the rice. The desired water level in the
rice paddy field (hw) and the spill-over irrigation flow rate (gw) are input variables,
which are determined by the rice farming schedules.

Vertical flow from the W compartment (Qw ) is described as a function of water
level in the rice paddy field; this water goes into the X compartment beneath the W com-
partment in the same grid cell:

i A
Owyv = awvA (z;w(;) 3

The rates of lateral flow (Qg) from the M, F, and U compartments are described by the
Maming equation: ’

1
p23gi @)

nMm

A
Oy = Eh

The rates of lateral interflow from the X, Y, N, G, B, and C compartments are described
as a function of the water level in the compartment and the slope of the compartment:

A
Op = aH[(‘E>h o (5)

Vertical flows from the X, Y, M, N, F, G, B, and C compartments are described as a
function of percentages of each water content, which is equivalent to the water level
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relative to the compartment height:

h .
Qv = avA <h—*> ’ (6)
0
The Manning equation is also used to describe the flow rate in the R compartment:
A 1 o
QR — _h_h2/3[1/2 (7)
LR Ny

For solute movement between compartments, advection and diffusion are considered.
Solute advection is given as the product of the concentration and water flow rate calcu-
lated from Egs. 1-7. However, the maximum real concentration for each solute is limited
by its solubility in water, so any amount of pesticide over the solubility limit must exist °
in the solid phase and is not subject to movement. The rate of solute movement by diffu-
sion between compartments is given by the linear driving force model:

D
g =A+(Cr =) : ®)

Within a compartment, both the solute concentration and the water level are assumed to
be uniform, each represented by a single variable. For exémple, rainfall is assumed to
mix completely and uniformly with pesticides in the paddy-field-water (W) compartment.
If a compartment consists of multiple subelements (soil-solid and soil-water), a .
dynamic equilibrium exists between the dissolved and sorbed fractions at all times; sorp-
tion processes are considered to be instantaneous and are described by a single constant
(the solid—water partition coefficient) in the linear equilibrium relationship. Therefore,
once the concentration in one phase is known, the concentration in the other phase can be
calculated. Degradation of pesticides in each compartment follows first-order kinetics.
The processes of pesticide uptake by plants and pesticide evaporation into the atmosphere
were not considered in this model. The flow rate coefficient in each type of compartment
(e.g. W, X) is assumed to be a single value (for each compartment) throughout the entire
set of grid cells in the basin. These assumptions were made to reduce the total number of
hydrologic parameters, even though the target river basin was divided into numerous grid
cells, which prevented excessive uncertainty in determining the model parameter values.

Site description and model application

The Chikugo River basin (1882 km?; Figure 2) was selected to test the model and to pre-
dict rice-farming pesticide concentration. The Chikugo River basin includes rice-paddy
fields (261km?) cultivated by 22,860 farmers dusting with more than 100 kinds of pesti-
cides. The Chikugo River basin was divided into 1882 grid cells. The catchment area
comprised 22,584 compartments. A set of 45,168 equations was solved. to describe the
movements of water and a pesticide in the river basin. The model equations were solved
as a system of ordinary differential equations by Gear’s stiff method from the IMSL
MATH/LIBRARY.

Application of the compartment model to the river basin required geographic data.
The altitude of each compartment was determined from Geographic Information System
(GIS) data (Geographical Survey Institute, 1999), and water flow directions between com-
partments were determined based on the direction of the steepest gradient. The GIS data
(Geographical Survey Institute, 1990) were also used to calculate the areas of the com-
partments (e.g., paddy field, river, forest) in each grid. However, the GIS data available
were old and may not reflect current land utilization. The area of the paddy fields, which




Figure 2 Location of Chikugo River and the target river basin

is the most important geographical information used in this study, was corrected with
data published by the local governments (Census Statistics Office, 1997, 2002), which
include data on the percentage of rice-paddy area removed from cultivation due to com-
pulsory adjustments in production. The fallow paddy fields were regarded as upland field
compartments.

Model inputs

Thirteen pesticides (Table 1 and Figure 3) were selected for verifying the model predic-
tions, according to quantity consumed in the target river basin and detection in river
water at high concentrations and frequency. Each pesticide is included as an active sub-
stance in several commercial pesticide products on the market. Pesticide dusting, irriga-
tion, and drainage are the processes that most affect pesticide runoff among the numerous
factors regarding agricultural work. Mauy factors (e.g., aerobic/anaerobic conditions,
soil-sediment organic content) also affect pesticide decomposition and its partition
between soil and water. Although some information has been reported and is available
for these model inputs, the reported values for input parameters are subject to different
kinds of uncertainties (Dubus et al., 2003). Therefore, a single reported value would not
be appropriate to represent an input parameter in a whole area. It is more reasonable
to assume that all rate parameter uncertainties are random. Model input data sets of

Table 1 Properties of each pesticide (British Crop Protection Council, 1984, 2003; U.S. Environmental
Protection Agency, 2004)

Pesticide Water solubility, Soil sorption Half-lite in
mg/L coefficients, Koc (mL/g) sails (days)
Daimuron 1.2 at 20°C 959, 6855 50
Mefenacet 4 at 20°C 30863 23-223
Thiobencarb 30 at 20°C 3170 14-21, 180~240
Bromobutide 3.54 at 25°C 652, 10430 31-64
Pyrazolate © 0.056 at 25°C 7855, 29830 8-10,10-20
Esprocarb 4.9 at 20°C 581, 7952 30-70
Pretilachior 50 at 20°C 254, 1159 30
Pyributicarb 0.32 at 20°C 1885 13~18
Bensulfuron- 67 at 25°C 370 88.5, 28~140
Methy!
Cafenstrole 2.5 at 20°C 738, 13850 7
Cyhalofop-butyl 0.44 at 20°C 1371, 9280 0.083~0.42
Pyrazosulfuron-ethyl 9.76 at 20°C 10, 455 28
Dimethametryn 50 at 20°C 254, 1357 140
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Figure 3 Molecular structures of pesticides

pesticide application dates, places (grid cells), quantities of pesticide applied, irrigation
and drainage schedules, degradation rate, and solid—water sorption coefficients in each
compartment were created by the Monte Carlo method using available and published
data by a procedure described elsewhere (Matsui et al., 2005). A total of 2000 data sets
for a pesticide, thiobencarb, were created, and a set of 2000 Monte Carlo simulations
yielded a prediction of concentrations of the pesticide in river water (a prediction-of-pes-
ticide pollutograph). For the other pesticides, the number of simulations for each pesticide
was limited to 30 due to the time constraints imposed by the time that model calculation
requires.

Predicting pesticide concentrations

Comparison of time-series pesticide concentrations as observed and as predicted

After the hydrological system parameters were calibrated, the hydrological and solute
models were solved simultaneously by substituting the input data for the pesticide, giving
the predicted concentrations of the pesticide in river water for the rice-cultivation seasons
of 2000 and 2001. A total of 2000 data sets for thiobencarb were created, and a set of

© 2000 Monte Carlo simulations yielded a simulation predicting concentration of the pesti-

cide in river water. Figure 4 shows the time variations in the predicted and observed thio-
bencarb concentrations for the Chikugo River basin in 2000 and 2001. Of the observed
data points, 68% were in the range predicted with the 2000 data sets of the Monte Carlo
inputs, and more than 40% were within the 1-99% range of the prediction. Although the
pesticide-dusting dates and the quantity applied are influential factors for predictive accu-
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Figure 4 Predicted and observed thiobencarb concentrations in Chikugo River in 2000 and 2001




racy, our prediction was not based on precise data for the quantities used and dates of
pesticide dusting by individual farmers. Moreover, the model calculations were conducted
without optimizing the pesticide decomposition or sorption parameters. In the light of
these limitations, we consider the thicbencarb pollutograph to be reasonably successful

for a first estimate.

Comparison of June -July-averaged concentrations as observed and as predicted
Figure 5 shows a comparison of predicted and observed concentrations of 13 pesticides
for the June—July periods of 19992002, during which water sampling and pesticide con-
centration measurements were frequently conducted and pesticides were actually detected
with high concentrations over the detection limits. Bars for concentrations indicate the
arithmetic mean values of time-series concentrations predicted for June—July and of the
arithmetic mean values of concentrations observed in June—July (the absence of a bar
means the pesticide observation was not conducted for that year and for that pesticide).
Water samples for pesticide concentration analysis were collected at 9 a.m., and the maxi-
mum number of the sampling events during the Iuhc—]uly periods was 43 times for two
pesticides (mefenacet and bromobutide, both in June—July 2003). The concentration of
one pesticide (dimethametryn) was measured just four times during June-July 1999.
Some pesticides, such as pyrazolate, were not analysed at all. Therefore, the average
values of observed pesticide concentrations may not necessarily represent the concen-
trations of the pesticides in the June~July period. On the other hand, the model calcu-
‘lation provides continuous outputs of time-varying concentrations and the predicted
concentrations for the June—July periods are given as time-average values of the continu-
ous outputs. Therefore, it may not be inappropriate to simply compare the observed
values and the predicted values, in particular for pesticides for which the numbers of
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Figure 5 Comparison of June~-July-averaged concentrations as observed and as predicted by the model
(the numerical values in parentheses are the numbers of observations in June~July periods; the absence of

a bar indicates no observed data)
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Figure 6 Comparison of observed and predicted pesticide concentrations {except mefenacet in June—July
2000)

sampling and observation were few. Nonetheless, the predicted concentrations were in
fairly good agreement with the observed ones.

The figure also shows the quantity of each pesticide dusted in the target area in each
year, which was estimated by the data of the annual sales of pesticide products obtained
from the annual reports published by the Japan Plant Protection Association (2000, 2001,
2002, 2003). Pesticides that were dusted in large quantities did not necessarily lead to
high concentrations in river water, as empirically known, and this empirical knowledge is
validated by the model’s prediction. Pesticide rankings by concentration, which could not
be predicted solely by the quantity of pesticide dusted, are well predicted by the model.

For some pesticides, however, discrepancies still arise between observed and predicted
concentrations, probably because the lack of available precise data leads to imprecise
model input for quantities and dates of pesticide dustihg, pesticide decomposition, and
pesticide sorption. For example, prediction of a pesticide (mefenacet) far exceeded obser-
vation for the year 2002, although the model predictions for the years 1999-2001 were
consistent with observations for those years. Further study is still needed to improve the

‘prediction ability of the model. Excluding the data point for mefenacet in June—July

2002, the coefficient of correlation between predicted and observed concentration was
R = 0.76 (see Figure 6).

A practical application of the model prediction is a screening-level analysis, in which
pesticides to be monitored are selected and the monitoring schedule is determined for a
catchment area where different pesticides are applied from year to year. The effectiveness
of the screening-level analysis by the model prediction was examined for two pesticides,
daimuron and cafenstrole. The predictions of 1999 and 2000 suggest daimuron concen-
trations to be 0.48 and 0.53 wg/L, respectively, which are the highest pesticide concen-
trations predicted by the model for those years (Figure 5). However, measurement of
daimuron concentrations did not start until 2001. Daimuron concentrations observed in
2001 and 2002 (0.3 and 0.7 pg/L, respectively) were similar to the predicted values (0.39
and 0.63 wg/L, respectively). For the other pesticide, cafenstrole, concentrations were not
measured until 2002, while the predicted concentrations for 1999, 2000, and 2001 were
0.07, 0.12, and 0.09 p.g/L, respectively. The observed cafenstrole value for 2002 was
0.12 pg/L, similar to the concentrations predicted for the previous years (the predicted
concentration for 2002 was 0.05 pg/L).




Conclusions

A basin-scale runoff model was developed to predict rice-farming pesticide concen-
trations in river water with imprecise model inputs for screening-level analysis, which
can be used for selecting pesticides to be monitored and determining the monitoring sche-
dule. Overall, the model successfully predicted pesticide concentrations within order-of-
magnitude accuracy. The model outputs predicted the rankings of pesticides with respect
to concentrations, which could be utilised to prioritise pesticides that require monitoring
among numerous pesticides applied in the river basin.
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INVESTIGATING RICE-FARMING PESTICIDE CONCENTRATIONS
IN RIVER WATER USING A BASIN-SCALE
RuNoFF MoDEL WITH UNCERTAIN INPUTS

Y. Matsui, K. Narita, T. Inoue, T. Matsushita

ABSTRACT. In predicting time-series concentrations of pesticides in river water using diffuse pollution hydrological models,
farming schedules (including pesticide application) and pesticide sorption/decomposition rates greatly affect prediction
accuracy. For large, basin-scale catchments, precise acquisition of these data is not possible and substantial estimation
uncertainty inevitably exists. This article presents the development of a basin-scale diffuse pollution hydrological model, a
Monte Carlo method for creating input data, and its effectiveness in predicting the concentrations of paddy-farming pesticides
in river water from a large catchment (1882 km?). The Monte Carlo method created input data for numerous compartments
of a paddy field in the basin model: the pesticide products, amounts and dates of pesticide application, rice varieties, rice
seedling transplanting dates, time variation of water depth in rice paddies, and parameter values for pesticide decomposition
and sorption. The model was calibrated with hydrological data only, without reference to observed pesticide concentration
data. Results showed that the uncertainty bounds estimated for model outputs with Monte Carlo inpuis encompassed observed
data and that the model predictions were better with Monte Carlo inputs than with deterministic input. The Monte Carlo
method provides a surrogate approach for obtaining precise data on individual farming schedules (including pesticide

application dates), degradation rates, and sorption coefficients in each soil.
Keywords. Agricultural chemicals, Herbicide, Pollutograph, Uncertainty, Water pollution. .

esticides used in agriculture have the potential to en-

ter hydrological catchment systems and contami-

nate river waters, which constitute the primary

source of drinking water for many regions. It is im-
portant to predict and know which pesticides readily become
entrained in runoff, the weather conditions that trigger pesti-
cide runoff, and on a local scale, the fields from which the
leached pesticides originate; from this information, it is pos-
sible to predict pesticide concentrations in river water. The
predictions are valuable when used in screening-level analy-
sis, providing order-of-magnitude accuracy with minimal in-
vestment of time and resources in water-quality monitoring
for water treatment plants that take river water (Dabrowski
et al,, 2002). In Asian countries, the fate of rice-farming pes-
ticides and their concentrations in river water are particularly
important issues, because the rice-farming pesticides enter
river water at higher rates than other pesticides used in upland
fields. The rice-farming pesticides are applied directly on the
ponding water of the paddy field and are more likely to con-
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taminate river water by spillover during or after rainfall or
drainage. Although annual pesticide consumption for upland
fields is no less than that for the rice-paddy fields, most pesti-
cides detected in the river water are those used in growing
rice (Matsui et al., 2002).

Models have been designed to simulate pesticide transport
in agricultural watersheds and changes in pesticide con-
centrations in river water. Mechanistic models, based on.
detailed physical and chemical descriptions of transport -
processes, have been used to simulate and predict the fate and
transport of pesticides in watersheds, while statistical
analyses are’ employed to interpret regional monitoring data
for pesticide transport and to explain transport patterns
observed at the watershed scale (Guo et al., 2004). To date,
many mechanistic models have been designed and devel-
oped; most of them are designed for field-scale applications.
For example, the field-scale Pesticide Root Zone Model
(PRZM) has been used for pesticide regulatory assessment
(Mullins et al., 1993). The validity of the field-scale models
has been established under small-scale and edge-of-field
conditions, where physical features, such as soil hydrological
properties and slope, are relatively homogeneous (Mullins et
al., 1993; Knisel, 1993). Therefore, extrapolation of the
model results to runoff from larger and more heterogeneous
watersheds and predictions of pesticide concentrations in
river-basin water have had limited success (Solomon et al,,
1996) because of spatial variabilities in land use, hydrologi-
cal processes, and pesticide transport and reaction processes.

Hydrological diffuse pollution models (Borah and Bera,
2003, 2004), such as the Hydrologic Simulation Program-
FORTRAN (HSPF; Johanson, 1983; Johanson et al., 1997)
and the Soil and Water Assessment Tool (SWAT; Amnold et
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al., 1998; Neitsch et al., 2002), were designed to simulate the
movement of water and pollutants in river basins and thereby
assess water quality. These are comprehensive models of
watershed hydrology and water quality that allow the
integrated simulation of runoff, sediments, nutrients, and
pesticide transport with instream hydraulic and sediment
interactions. Moore et al. (1988) applied HSPF to an 18-ha
watershed planted in corn. Afrazine in runoff over a
13-month period was overestimated by 45%. Laroche et al.
(1996) applied HSPF to a 78-ha watershed to simulate

atrazine concentration at the outlet of the watershed.

Simulated concentrations were in the same range as observed
values and peak concentrations occurred simultaneously.
Neitsch et al. (2002) applied the SWAT model to a 242 km?
watershed to predict the daily pesticide concentration in river
water, and demonstrated the ability of SWAT to realistically
predict pesticide concentrations. They also discussed the
reliability of the observed pesticide concentration data in the
model calibration and validation processes. Unlike stream-
flow, where the flow is measured hourly and 24 values are
averaged to obtain the daily flow value, pesticide concentra-
tions are measured at very low frequencies, such as one
measurement per week or month for an instantaneous
sample. Neitsch et al. (2002) stated that comparing an
instantaneous grab sample with the daily average concentra-
tion calculated by the model could be invalid because the data
are of two different kinds.

Although many models and their applications have been
reported, few are designed to predict runoff of rice-farming
pesticides from rice-paddy fields (Inao and Kitamura, 1999;
Li and Migita, 1992). Moreover, very few studies have
attempted to develop a model applicable to basin-scale
catchments and able to predict rice-farming pesticide
concentrations in river water (Matsui et al., 2002), probably
due to the following reasons:

Since most agricultural land comprises upland fields in
countries where simulation models are routinely used for
environmental exposure assessment (i.e., in Europe and the
U.S.), there is little need in those countries for a model to
simulate transport and degradation of pesticides in rice-
paddy fields with ponding water.

In addition, modeling and prediction requires accurate
agricultural as well as hydrological, meteorological, and
geographical data as input. Hydrological, meteorological,
and geographical data are becoming obtainable and available
as modeling inputs. For large target catchment areas,
however, acquisition of precise data on farming schedules,
including pesticide application dates, is a daunting task. Data
acquisition becomes even more difficult when large numbers
of farmers cultivate very small plots, as in Japan: the average
farming scale in Japan is 1 ha (Census Statistics Office, 1997,
2002), much smaller than in other countries. Even though
some statistical data or typical data are used, substantial
uncertainty inevitably exists in the estimated data.

Moreover, many factors affect model input parameters
related to the processes of pesticide sorption and decomposi-
tion. Without information on the reaction environment in a
target river basin, it is impossible to quantify specific reaction

rates. Generally, the reported values of input parameters are.

subject to different kinds of uncertainties (Dubus et al.,

2003).
* Finally, the models invariably require calibration and
parameter estimation. For simulating pollutant transport, the
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hydrology of the system is calibrated and determined first,
followed by pollutant transport when measured data are
available. This calibration requirement precludes models
from being applied to new pesticides. The differences in
pesticide properties, regional pesticide usage, and other
factors that result in surface-water contamination precludes
the use of calibrated models for unmonitored river basins or
unmonitored and new pesticides. Models that can accurately
simulate new pesticides are needed, because new rice-farm-
ing pesticides are developed every few years (Japan Plant
Protection Association, 1999-2001).

OBJECTIVES

The objective of the present study was to investigate the
pesticide concentrations in river water that result from rice
farming within an uncertainty analysis framework. A
basin-scale runoff model was developed, the hydrologic
component of the model was calibrated with daily river flow
data, and 2000 different combinations of pesticide parame-
ters were used in Monte Carlo iterations to consider
uncertainties in the pesticide application practices,-agricul-
tural work schedules, and parameters for pesticide decom-
position and sorption. The prediction accuracy of the model
was evaluated using non-optimized pesticide parameters.
The model was calibrated using hydrological data alone,
without reference to observed pesticide concentration data.
The prototypes of the model and a very primitive Monte
Carlo approach were seen elsewhere (Matsui et al., 2002), but
in this research the model structure has been advanced, it has
been applied to a larger-size area, and the Monte Carlo
approach has been applied widely.

MODEL DESCRIPTION :

‘We developed a compartment model rather than using one
of the models proposed elsewhere (Borah and Bera, 2003,
2004; Nakano et al., 2004), since the latter models do not
account for the runoff from rice-paddy fields or were not
designed for a large-scale catchment area and Monte Carlo
inputs. In our model, a river basin is divided into a 1 km? grid
of cells, and each grid cell consists of 12 compartments, as
shown in figure 1:

» A river water compartment (R-compartment)

* A river bed compartment (S-compartment)

* A rice-paddy ponding compartment (W-compartment)

* Two rice-paddy soil compartments (X- and Y-compart-

ments)

° A mountain compartment and its soil compartment

(M- and N-compartments)
e A dry field compartment and its soil compartment
(F- and G-compartments)

* Two deeper soil compartments (B- and C-compart-

ments)

* An urban area compartment (U-compartment).

The area sizes of compartments are variable depending on
the land cover of the grid cell composed of the compartments,
by which heterogeneity of the watershed characteristics is
incorporated.

The lateral movements of water and pesticides from all
compartments except the C-compartment go into the R-
compartment of the adjacent grid cell with the steepest slope
among the eight surrounding grid cells, while the lateral
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Figure 1. Compartments in a 1 km? grid cell and flow directions.

movement from the C-compartment goes to the R-compart-
ment via the S-compartment of the next grid cell. The irriga-
tion water to the W-compartment is taken from the
R-compartment of the same grid cell or neighboring grid cell
when the flow rate in the R-compartment is insufficient to
supply water for irrigation. The vertical flows from all
compartments except the R-, §-, and C-compartments go to
each lower compartment. The vertical flow from the C-
compartment goes to the underground, which is assumed to
not return to the river water. No vertical flows (no groundwa-
ter occurrences) were assumed for the R- and S-compart-
ments. '

Within a compartment, the solute concentration and water
level were assumed to be uniform, and each is represented by
a single variable. For example, rainwater that had reached a
W-compartment was assumed to mix completely and
uniformly with the pesticides therein. If a compartment
consisted of multiple sub-elements (solids and water), a
dynamic equilibrium existed between the dissolved and
adsorbed fractions at the solid-water interface. The interfa-
cial dynamics are usually described by a film model of mass
transfer, and the incorporation of a film model makes the
overall model descriptive but makes the model calibration
too complex. Therefore, for a first estimate of the predictions
in the present study, the interfacial phases were assumed to
be in equilibrium at all times; sorption processes were
considered to be instantaneous and were described by a single
constant (a solid-water partition coefficient) in the linear
equilibrium relationship. Solute movement in the soil is slow
compared with the interfacial solute mass-transfer at the
solid-water interface, and the interfacial solute mass-transfer
may not be a rate-limiting step for overall solute movement.
The assumption of all interfacial phases being in equilibrium
could therefore be reasonable. Finally, once the concentra-
tion in one phase in a compartment was known, the

concentration in the other phase could be calculated. The

degradation of pesticides in water and soil are described by
first-order reaction kinetics (Klaine et al., 1988).

The processes of pesticide uptake by plants and volatiliza-
tion of pesticides into an atmospheric phase were not
considered in this model, since the fractions of pesticide
moved by these processes were assumed to be smaller than
the fractions moved by decomposition, sorption, and runoff.
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The loss due to the drift of pesticide was not accounted in the
relevant compartments, because the target pesticide (thio-
bencarb) is in the form of granules whose drift is insignificant
(Investigative Commission for Ecological Effect of Pesti-
cide, 2002). Pesticides in the suspended-solid phase of water
were not included in the model, because a study of the runoff
characteristics of particulate pesticides from a paddy field
revealed that the concentrations and the detection frequen-
cies of pesticides in suspended solid phases were much lower
than those in dissolved phases (Inoue et al., 2002).

A set of differential mass-balance equations describing
the dynamics of a solufe (pesticide) and water in each
compartment was defined, based on the law of conservation
(i.e., mass balance) for the solute and the water. For example,
the mass balance of water in a rice-paddy ponding compart-
ment (W-compartment) is given by:

dhy ;
W, i a1

Oinw,i ~ Qou,w,i “Ovw,i ~AwiEw,i 1

where Aw; is the area of the rice-paddy field (mz), hw; is
water depth (m), ¢ is time (d), Ojn,w; is the irrigation rate
(flow rate of water into the rice-paddy field, m3 dfl), Qout, Wi
is the drainage rate (flow rate of water out of the rice-paddy
field, m> d-1, Qvw; is the water loss due to percolation
(m3 a1, Evy; is the rate of evapotranspiration (m d~1), and
subscript i represents the grid number.

The solute balance is given as the product of concentration
and water flow rate:

g Wi = -c
Wi R,iGin,w,i ~ Cw,ilour, w,i
~Cw Qv w,; ~rw ihw iAw,i T Pp iAw,i @

where Mwy; is the mass of pesticide in rice-paddy water per
unit of rice-paddy area (mg m~2), Cy; is the concentration of
a pesticide in rice-paddy water (mg m™), Cgr; is the
concentration of a pesticide in river water (mg m'3), rw; is
the degradation rate of the pesticide in water (mg d™* m™3),
and Ppy; is the rate of pesticide application (mg d~1 m™2). The
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concentration in water phases such as Cw; and Cg); is given
as the mass of pesticide divided by the volume of water.
However, the concentration is given as the water solubility of
-the pesticide when the quantity of pesticide exceeds its water
solubility limit. In that situation, the portion of pesticide over
the solubility limit is considered to exist in the solid phase and
is mot subject to movement. For example, the pesticide
concentration in rice-paddy ponding is given by:

Cw, = min(MW’l ,Cs J ©)
’ by i
where Cs is the water solubility of a pesticide (mg m3).
Water solubility and sorption characteristics of a pesticide
may actually be altered by adjuvants, which are applied to
modify the physical characteristics of the actual pesticide
spray solutions. However, adjuvant effects are not considered
in the model because no adjuvant data are presently
available. .
The rates of irrigation to and drainage from the W-
compartment are described as functions of compartment
water levels:

Oinw,i = Aw jin w max(0, hg w ; ~ hyy ) G)

Ooutw,i = Aw i8ou,w max(0, by ; “how ) (5)

where hg w; is the desired water depth of rice-paddy ponding
(m), and ajn w and agy,w are the irrigation and drainage rate
coefficients of rice-paddy ponding (d-1), respectively.

The water depth of rice-paddy ponding is artificially
controlled at various levels according to the growth of rice.
In the model, rice-paddy irrigation from and drainage to the
river were adjusted so that the water depth of rice-paddy
ponding was equal to the desired water depth. The flow rates
of irrigation and drainage in the model were assumed to be
proportional to the difference between the present water
depth and the desired water depth. The desired water depth
of the rice-paddy field (fp,w;) is a time-series model input
that was determined according to published rice-farming
schedules, as described later.

The vertical flow from a W-compartment depends on
water depths in the W-compartment and the lower level
X-compartment:

Ovw,i ~aywiw,

when hW,i >0 and hX,i < hO,X

Ovw,;: =0
when hy ; 0 or hy; Thgx ©)

where ayw is the infiltration rate coefficient of the rice-
paddy field (m d71), hx; is the water depth in the
X-compartment (m), and hg x is the depth of the X-compart-
ment (m).

The rates of lateral surface flows from the M-, F-, and
U-compartments were described by the Manning equation;
for a U-compartment as an example:

Oru,; = ,‘2/3] M ¢!

¥
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where Qn,u; is the lateral flow rate of a U-compartment
(m3 d1), Ay is the area of a U-compartment (m?), B is the
side length of a grid cell (m), hy; is the water depth of a
U-compartment (m), np; is the Manning roughness coeffi-
cient (d m~73), and J; is the slope (dimensionless).

The rates of lateral interflow from the X-, Y-, N-, G-, B-,
and C-compartments were described as functions of the water
depth and the slope of the compartment; for a C-compartment
as an example:

- Aci ’
Onc, “ancl; 3 e ; 8)

where Q1 c; is the lateral flow rate of a C-compartment (m3
d-1), ay ¢ is the lateral flow rate coefficient of a C-compart-
ment (m d~1), Ac; is the area of a C-compartment (m?), and
hg; is the water depth in the C-compartment (m).

The rates of vertical interflows from the X-, Y-, M-, N-, F-,
G-, B-, and C-compartments were described as a ratio of the
relative water level to the compartment height, which is
equivalent to the percentage of water content in the
compartment; for a C-compartment as an example:

- he; .
Ovci=avcici T ®
c

>

where Qvyc; is the vertical flow rate of a C-compartment
(m3 a1, ayc is the vertical flow rate coefficient of a
C-compartment (m d~!), and hoc is the depth of the
C-compartment (m).

The Manning equation was also used to describe the flow
rate in-the R-compartment:

_ AR

b, ‘1—.111{,[2/31 i

Q .
R, LR g

(10)

]

where QRj; is the river flow rate (m3 d1), Ag; is the area of
the river (m?), Ly is the river length in a compartment (m),
hg; is the water depth of the R-compartment (m), and npy; is
the Manning roughness coefficient (d m~7/3).

The flow rate coefficient of each type of compartment
(e.g., avyy) is assumed to be a single value regardless of which
grid cell the compartment belongs to; a single value was thus
assigned to each type of compartment throughout the grid.
Therefore, the total number of the hydrologic parameters was
reduced even though the target river basin was divided into
numerous grid cells, simplifying the parameterization pro-
cess and helping to solve the problem of the uniqueness of the
parameters. The following problem is normally encountered
in this type of distributed-parameter model: the sensitivity of

the calculated river flow rate for a single parameter decreases

with an increasing number of parameters, and a unique set of
parameters cannot be found because the information that can
be obtained by the measurement of river flow rates is usually
not sufficiently differentiated to obtain a unique set of
parameters. The scheme in which the hydrologic parameters
are given, not to each compartment of each grid cell but to
each type of compartment, increases the uniqueness of the
hydrologic parameters. This scheme would enable the model
to evaluate changes in land covers (e.g., rice field area); such
condition can be simulated by changing the area of the
compartments in each grid cell. However, if the hydrologic
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condition of each type of compartment is changed, then the
model probably needs hydrological re-calibration.

The hydrologic (water flow) model involves 23 parame-
ters. The values of 13 parameters were given a priori or a
posteriori by observation. The remaining 10 parameters were
adjustable, and their values were searched for model
simulation so as to give the best fit to the observed flow rates
with the minimum error criterion of the Nash-Sutcliffe
coefficient, Ens (Nash and Sutcliffe, 1970):

? (Qobs, J - Qcal, j)2

Bys =145

) ﬁ(Qobs,j - Qavc)2
jT1

(1)

where Ens is the Nash-Sutcliffe coefficient, Qobsj and QOcayj
are the daily observed and calculated flow rates (m3 s1),
respectively, Oave is the average observed flow rate (m3 5‘1),
and N is the number of data points. A Nash-Sutcliffe
coefficient value can vary between —eo and 1, where a value
of 1.0 indicates a perfect fit. )

In addition to this best-fit criterion, the adjustable
parameters were determined so that the hydrologic simula-
tion did not yield any long-term water loss over years in the

o

C-compartment. The period for which the hydrological
model] was calibrated was the rice-cultivation season of the
previous year of model predictions, and then model predic-
tions of pesticide concentration as well as flow rate were
performed for the subsequent years, by which the predictive
capability of the model would be examined.

The equations are solved as a system of ordinary
differential equations by Gear’s stiff method (backward
differentiation formulas) from the IMSL MATH/LIBRARY
(Visual Fortran Versions 6.6, Compaq).

SITE DESCRIPTION

The model was applied to the upstream and midstream
river basin of the Chikugo River of Kyushu Island, Japan
(fig. 2). The upstream region of the river basin is mostly
forest with a few rice-paddy fields (fig. 3). The midstream
region consists mainly of agricultural land including rice-
paddy fields. The target river basin includes rice-paddy fields
(261 km?) cultivated by 22,860 farmers (Fukuoka Prefecture,
2000; Kumamoto Prefecture, 2000; Oita Prefecture, 2000).
Water samples were collected every weekday morning at
approximately 9:00 a.m. by the Southern Fukuoka Water
Supply Authority at the intake of a water purification plant,

D Rice paddy fields
D Other Agricultural land
Forest

Urban area

River or lake

Figure 3. Land-use map for the river basin.
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Table 1. Model parameters.

Symbol Parameter Value Origin of the Data
hox Depth of X-compartment 0.01m
hoy Depth of Y-compartment 0.09m
ho,G and kg N Depths of G- and N-compartments 0.1m N
’ ’ d t
hoB Depth of B-compartment 1.0m @ priort jucgmen
hgc Depth of C-compartment 50m
River length in a grid cell 2km
Porosity of soil 0.5 a priori judgment
Soil particle density 2600 kg m= (a typical value)
: . A function of slope that is assumed
0.25 =73
nm Manning roughness coefficient 014 x7%<sm from data in the literaturel®]
X . 1 a priori judgment
ayy Infiltration rate coefficient of urban area Omd (ittle permeability in urban area)
Tin W Irrigation rate coefficients of rice-paddy ponding 5.0d1 Observed irrigation rate and
out, W Drainage rate coefficients of rice-paddy ponding 204t paddy field structure
ayw Infiltration rate coefficient of rice-paddy field 0.01md-l Paddy field percolation rate
ayx Vertical flow rate coefficient of X-compartment 0.01md! (Ogata et al., 1978)
ayvy Vertical flow rate coefficient of Y-compartment 0.04 md?
ayrand ayg Vertical flow rate coefficient of F- and G-compartment 0.6md!
ayy and ayN Vertical flow rate coefficient of M- and N-compartment 013md!
ayp Vertical flow rate coefficient of B-compartment 0.035 m d-!
ayc Vertical flow rate coefficient of C-compartment 0.2m gt Searching to give the best fit
ayy Lateral flow rate coefficient of Y-compartment 70m d-1 to observed river flow rates
ay,G Lateral flow rate coefficient of G-compartment 840 m d-! '
ayN Lateral flow rate coefficient of N-compartment 2500 m d-!
ays Lateral flow rate coefficient of B-compartment 1400 m d-!
ag,c Lateral flow rate coefficient of C-compartment 155 m d~!

[2] Chow, 1959; Marui, 1966; Japan Society of Civil Engincers, 1985; Murota, 1986.

about 50 km upstream from the river mouth. The water sam-

ples were analyzed for pesticide concentrations. Therefore,
the target area of modeling and prediction was the catchment
area upsiream from the observation point of pesticide con-
centration (1882 km?), as shown in figure 2. The target catch-
ment area was divided into a 1 km? grid of 1882 grid cells.
The catchment area comprised 22,584 compartments. A set
of 22,584 equations was formulated to describe the move-
ments of water in the river basin, and a set of 22,584 equations
was formulated to describe the movements of a pesticide.

The model parameters are summarized in table 1. The
vertical flow rate coefficients of the W- and X-compartments
(av,w) were determined to be typical values of the percolation
rate of water in rice-paddy fields, 0.01 m d! (Ogata et al.,
1978). Irrigation and drainage rate coefficients of the n'ce-paddly
field (ain,w and agu,w) were determined to be 5and 2 d2,
respectively, based on the structure and dimension of outlets of
some rice-paddy fields and on our measurement data for
drainage flow rates from a rice-paddy field.

The altitudes of grid cells were determined from Geo-
graphic Information System (GIS) data (Geographical Sur-
vey Institute, 1999), and water flow directions among grid
cells were tentatively determined based on the directions of
the steepest gradients. The water flow directions were then
amended based on information about tributary streams
described in a 1:50,000 topographic map (Geographical
Survey Institute, 2000). The GIS land cover data file
(Geographical Survey Institute, 1990) was used to calculate
the areas of the compartments (rice-paddy field, river, forest,
upland field, and urban or town) in each grid cell. The file

contains percentages of areas classified as 15 types of land

cover as fractions of a 1 km? grid cell, and the 15 types of land

1728

cover were re-classified into 5 (rice-paddy field, river, forest,
upland field, and urban or town) in our model.

However, the available GIS data were obtained in 1990
and likely did not reflect the land utilization in the years
1999-2001 for the model prediction. Moreover, the GIS data
may not be precise because variability and uncertainty may
be introduced through the GIS data-acquisition process
(Dubus et al., 2003; Burrough and McDonnell, 1998). The
areas of rice-paddy fields, which are the most important land
use in this research, were corrected using data books
published by prefecture governments (Fukuoka Prefecture,
2000; Kumamoto Prefecture, 2000; Oita Prefecture, 2000).
Information used included the areas of presently active
rice-paddy fields and the curtailment percentages of rice-
paddy areas due to compulsory production adjustment.
Because the areas reduced by the compulsory production
adjustment were usually used as upland fields, they were
allocated as upland fields in the model input.

The time-series hydrological input for the model was
precipitation after subtracting evapotranspiration. Radar-
AMeDAS-analyzed precipitation datasets (Japan Meteoro-
logical Agency, 1999-2002a) were used for the input of
precipitation data in each grid cell. The other meteorological
data for each grid cell were estimated by interpolating the
observed data for eight observation points located in or near
the river basin (Japan Meteorological Agency, 1999-2002b),
three-dimensionally accounting for altitudinal and areal
variations (Japan Meteorological Agency, 2002; Seino,
1993). Then, the amount of evapotranspiration was estimated
based on air temperature, wind velocity, duration of sunshine,
and celestial declination in the meteorological data using the
method of Brutsaert and Stricker (1979).
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Five products having
thiobehcarb as an active
substance

1. Saturn-8 Granule

2, Kumi-lead SM Granule

3. Wolf-ace Granule-17

4, Kumi-shot 8M Granule-1K

E Anpiaaloal

oY)

5. Wolf-ace Granule-1K

w-Grid cells where Wolf-ace
Granule~1K is dusted.

=~The dates and amounts of
pesticide dusting on each grid cell.

w-frrigation schedules of grid cells.

£ I

Annual sales of
each product

lAmount of dusting per field area:

Values recommended by producers

The area of the rice-paddy field
where the pesticide is dusted

l Input data for one simulation T

The date of pesticide dust |. Irrigation
schedule

on each grid cell)
Dusting date recommended
by preducers (Fig. 6)

The date of transplanting
of rice seedlings

Published cultivation schedules
for each rice variety (Fig. 6)

Avariety of rice cultivated
on each grid cell

Percentages of varieties of rice
cultivated on the river basin

& | Divided among farmers.
2 | (Published cultivation scale data)
g (Fig. 4)

Cultivation scales of farmers
using the pesticide

Rice paddy area on each grid

ut}
5 cell (from GIS data et al.)
<]
3

Allocations of the farmers to the
grid cells (Fig. 5, the amount of

pesticide dusted on each grid cell) B

Figure 4. Flowchart for input data creation of agricultural work.

PESTICIDE APPLICATION DATA
MobEL INPUTS FOR PESTICIDE APPLICATION AND RICE
FARMING

A pesticide (active ingredient thiobencarb) was selected
for verifying the model predictions due to its detection in
river water at high concentrations and frequency. Thioben-
carb is included as an active substance in five commercial
pesticide products on the market. Annual sales of each
pesticide product were obtained from the anmual reports
published by the Japan Plant Protection Association, which
state the annual sales of each commercial pesticide product
sold in each prefecture in Japan (Japan Plant Protection
Association, 1999-2001).

Pesticide application, irrigation, and drainage are the
processes that most affect pesticide runoff among the
numerous factors regarding agricultural work. Datasets of
pesticide application dates, places (grid cells), amounts of
pesticide applied, and irrigation and drainage schedules were
created by the Monte Carlo method using available and
published data by the following procedure, which is illus-
trated in figure 4:

Step 1: Each pesticide product has a recommended
application rate per unit of field area (Japan Plant Protection
Association, 1994); for example, the pesticide product
Saturn-S Granule is applied once per year at a rate of 35 kg
ha™! (3.5 g m™2). Therefore, the area of rice-paddy field
where the pesticide product was applied could be estimated
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from these data. For example, based on the amount of Sat-
urn-S Granule sold in 2001 in Fukuoka Prefecture (2500 kg),
the area of the corresponding rice-paddy field where that pes-
ticide was applied was estimated as 71.4 ha.

Step 2: It is common practice, according to personal
communication with an official in the local prefecture, that
each farmer purchases and applies no more than one pesticide
product on each rice-paddy field. Figure 5 shows the
percentages of farmers in the cultivation area at each
cultivation scale (Fukuoka Prefecture, 2000). Farmers who
used a pesticide product and their cultivation scales were

40

(4]
Q
T

cultivation area (%)
— n
o Q
Y T

Percentage in total rice

el w0 s} 0 © «© w L(s] ™ o ™ o
2w 2 © = m o g5 © @ 2 45
o o (=] (o] - — o w ~ — b
Farming scale: Acreage under rice
cultivation by a farmer (ha)
Figure 5. Farming scales in the river basin.
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Table 2. An example of randomly selected farmers using pesticides that include thiobencarb as an active ingredient.

Number of Farmers Using:

Scale of Farming Saturn-S Kumi-lead Wolf-ace Kumi-shot SM Wolf-ace
(ha/individual) Granule SM Granule Granule-17 Granule-1K Granule-1K
0.045 1 0 136 0 153
0.18 1 2 213 2 343
0.36 5 0’ 130 0 304
0.67 7 1 161 0 359
1.125 o2 0 63 0 105
1.576 1 0 18 0 37
2251 0 0 10 0 32
3.602 0 0 4 0 6
5.627 0 [¢] 2 0 4
7.878 0 .0 0 0 1
11.255 0 0 0 0 1
15.757 0 0 0 0 1

selected randomly using the data in figure 5 to define the
selection probability (table 2). i

Step 3: Allocations to the grid cells of the selected farmers
using each pesticide product were also conducted randomly;
the probability in selecting a grid cell for each farmer was the
‘percentage rice-paddy field area of the grid cell to the total
rice-paddy field area in the prefecture. When the rice-paddy
field area in the grid cell selected for a farmer was larger than
the area of rice-paddy field area possessed by the farmer, the
remaining rice-paddy field area in the grid cell could be used
for subsequent random selections for other farmers. When
the area of rice-paddy field area possessed by a farmer was
larger than the selected rice-paddy field area in a grid cell,
such large-scale farming occupied adjacent grid cells.
Figure 6 is an example allocation pattern of farmers using
Wolf-ace Granule-1K, a pesticide having thicbencarb as an
active ingredient. :

Step 4: The dates of pesticide application are determined
by each farmer, but application dates are recommended for
each pesticide product by the pesticide manufacturers (Japan
Plant Protection Association, 1994) based on the date of the
transplantation of rice seedlings. For example, the manufac-
turer of Saturn-S Granule recommends its application to
rice-paddy fields once between 15 and 26 days after the rice
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Figure 6. An example allocation pattern of paddy field area using Wolf-
ace Granule-1K, a pesticide having thiobencarb as a active ingredient.
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seedlings are transplanted. The date for rice seedling trans-
plantation depends on the variety of rice planted. The per-
centage of the total area planted with each rice variety was
obtained from published data (Fukuoka Prefecture, 2000).
Therefore, the rice variety planted in the rice-paddy fields of
each grid cell was randomly selected based on this percent-
age as a selection probability. The date of rice seedling trans-
plantation for each grid cell was then selected randomly from
the rice-transplantation dates described for the selected rice -
variety in cultivation schedules (Mii Agricultural Co-opera-
tive, 2002; Niji Agricultural Co-operative, 2002; Chikuzen
Asakura Agricultural Co-operative, 2002). We assumed that
the selection probabilities of the dates for rice transplantation
and pesticide application could be modeled by a triangular
distribution, such as that shown in figure 7, and the dates were
randomly selected after the variety of rice planted had been
determined.

Step 5: Among the numerous tasks of rice farming,
irrigation and drainage may most strongly affect pesticide
runoff after application. The water depth in rice-paddy
ponding is artificially controlled by irrigation and drainage
according to the rice growth stage. In order to keep the water
depth at a certain level during each stage of rice growth, the
consumed water is supplemented or water is drained. Water
consumed per day is the water requirement for a given depth,
which reflects losses due to percolation and evapotranspira-
tion. The irrigation and drainage tasks can be scheduled
based on the seedling transplantation date because rice
growth in the paddy field starts at transplantation. Figure 8

Figure 7. Probability distribution of occurrences of farm activities.
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Figure 8. Time variation of ponding depth in a rice-paddy field (pattern of irrigation) for rice variety ‘Hinohikari.’

shows a pattern of desired water depth variation recom-
mended for rice variety ‘Hinohikari’ by local governments
(Mii Agricultural Co-operative, 2002; Niji Agricultural Co-
operative, 2002; Chikuzen Asakura Agricultural Co-opera-
tive, 2002). Patterns of recommended desired water depth
variation were obtained for each rice variety, and these were
used to determine the input data for desired water depth.
Therefore, the input data for desired water depth were deter-
mined after the variety of rice planted in the grid cell and the
date of rice-seedling transplantation had been determined by
the abovementioned procedure.

One dataset was created by executing steps 1 through 5 for
the five pesticide products, and that dataset was used for one
model simulation. A total of 2000 datasets for thiobencarb
were created, and a set of 2000 Monte Carlo simulations
yielded a prediction of concentrations of the pesticide in river
water (a prediction of pesticide pollutograph).

For comparison with the model predictions based on
Monte Carlo data creation, we also performed a model
prediction with deterministic input, for which a single
farming schedule for rice transplantation and pesticide
application was used throughout the entire river basin. For
example, the date of the highest bar in the histogram in
figure 7 was used for the date of rice transplantation and
pesticide application. The pesticides were assumed to be
applied evenly throughout all rice-paddy fields in the river
basin. ‘

DEGRADATION RATE AND SOIL SORPTION COEFFICIENT OF
PESTICIDES

Pesticides in soil and water phases are decomposed by
chemical and biological reactions. Aerobic and anaerobic
conditions, soil-sediment organic content, sufficient nutri-
ents, and acclimation of the soil and aquatic microorganisms
are factors that affect the decomposition process. However,
due to the lack of information regarding the decomposition
rate and the reaction environment, it is impossible to quantify
specific decomposition rates in each place (each grid cell of
the model). Although model parameters related to pesticide
decomposition greatly influence predictions (Dubus and
Brown, 2002), decomposition rates are subject to different
kinds of uncertainties. Although some texts contain magni-
tudes of the microbiological decay and decomposition rates
(or half-lives), the reported ranges in the rates are wide. This
diversity of the reported rates is partly due to the variability
of the reaction conditions (Dubus et al., 2003). Therefore, a
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single reported value would not be appropriate to represent
the decomposition rates in a whole area. Instead, all rate
parameter uncertainties were assumed to be random and
distributed within the range of reported values when several
values were reported for each pesticide.

In our research, the first-order decay reaction was used as
the model of the overall degradation of the pesticide (Klaine
et al., 1988), and the degradation rate coefficients for the
pesticide in a river water compartment (R-compartment) and
a rice-paddy ponding compartment (W-compartment) in
each grid-cell were randomly selected from values of
uniform distribution in the log-scale (Soutter and Pannatier,
1996; ‘Wolt et al., 2001; Warren-Hicks et al., 2002) that
covered the value reported for degradation in water. The
degradation coefficients for a rice-paddy soil compartment
(X-compartment), mountain compartment (M-compart-
ment), dry field compartment (F-compartment), and urban
area compartment (U-compartment) in each grid-cell were
selected in the same way using reported values for aerobic
degradation in soil, whereas those of the remaining compart-
ments, including rice-paddy soil compartments (Y-compart-
ment) and deeper soil compartments (B- and
C-compartments), were selected by using reported values for
anaerobic conditions. The organic carbon content and the soil
sorption coefficient of the pesticide were treated in the same
way as the pesticide degradation rate.

The reported values for degradation rate and soil sorption
coefficient are summarized in table 3 (Kanazawa, 1989;
Cessna and Muir, 1991; British Crop Protection Council,
1994; Weber, 1994; Japan Plant Protection Association,
1994; Verschueren, 1996). Various values for organic carbon
content in rice-paddy soils have been reported (Japan Plant
Protection Association, 1993), and values were randomly
selected from the range of 1.21% to 2.83% for each grid cell
in a simulation. Then, the solid-water partition coefficient
was given by (Lyman et al., 1990):

_ 100K
Koc™

12
foc a2
where K is the solid-water partition coefficient (m3 kg™1),
Koc is the soil sorption coefficient (m3 kg™1), and foc is the
percentage of organic carbon content in the soil (dimension-
less).
For comparison with this Monte Carlo approach, the
model prediction with deterministic input was conducted
using the average of reported values.
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Table 3. Reported values for model inputs (Japan Plant Protection Association, 1994; British Crop
Protection Council, 1994; Kanazawa, 1989; Weber, 1994; Cessna and Muir, 1991; Verschueren, 1996).

Half-life in Soils (days)

Water Soil Sorption Caefficients, Koc Half-life Organic C
Solubility,  (ug adsorbed g~! organic carbon) Under Aerobic Under Anaerobic in Water Content
Cs (mg L™1) / (g mL~! solution) Conditions Conditions (days) (%)
Literature value 30 at 20°C 308, 900, 1043, 3170 12-21, 21, 40, 50, 80 180-240, 200 30 1.21 t0 2.83
Monte Carlo input 30 309-3170 12-80 180-200 30 1.21 t0 2.83
Deterministic input 30 ' 990 31 190 30 1.9

REsuLTS
HYDROLOGIC PARAMETER CALIBRATION

The hydrologic parameters of the model were successfully
calibrated, fitting the data of observed river flow rates at six
observation points taken by the Chikugo River Office with a
Nash-Sutcliffe coefficient of 0.83, which indicates fairly
good agreement. In addition to the Nash-Sutcliffe coeffi-
cient, the coefficient determination (R?) was also calculated
(R? = 0.91). The calibrated daily river flow for 1998 is
graphed with measured river flow in figure 9. The Nash-Sut-
cliffe coefficients of the prediction years (1999, 2000, and
2001) were 0.63, 0.52, and 0.78, respectively, and the
coefficient determinations were 0.82, 0.69, and 0.80, respec-
tively. These values suggest that the predictions of flow rates
for the years 1999, 2000, and 2001 were fairly good and the
use of the hydrologic parameter values calibrated by the 1998
data was appropriate.

PESTICIDE CONCENTRATION PREDICTIONS

After the hydrological system parameters were calibrated,
the hydrological and solute models were solved simulta-
neously by substituting the input data for the pesticide, and
* giving the predicted concentrations of the pesticide in river
water for the rice-cultivation season of 1999-2001. In this
way, the accuracy of the model was evaluated without
optimizing the parameters for the pesticide. Although the
model equations can give a time-series output with any time
interval, they were programmed to give daily-average values
since the model inputs are provided as daily amounts.
Model-based predictions with the Monte Carlo inputs were
obtained from model calculations with the 2000 datasets, and
the prediction obtained with deterministic input was used for
comparison.

Figure 10 shows the time course of variations in the
predicted and observed thiobencarb concentrations (poiluto-
graph). Of the observed data points, 68% were in the range
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Figure 9, Observed flow rate and its best fit.
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predicted with the 2000 data set of the Monte Carlo inputs,
and more than 40% were within the 1% to 99% range of the
prediction. Although the pesticide application dates and the
amounts applied are influential factors for predictive accura-
cy, our prediction was not based on precise data for the
amounts and dates of pesticide application by individual
farmers. Moreover, the model calculations were conducted
without optimizing the pesticide decomposition or sorption
parameters. Water samples for the pesticide concentration
measurements were collected at approximately 9:00 a.m.,
and consequently the observed data do not necessarily repre-
sent pesticide concentration of each observational day. In
light of these limitations, we consider the model prediction
for thiobencarb pollutograph to be reasonably successful, and
for a first estimate of predictions, the approach seems to have
merit. )

In the range where the predicted concentrations were low,
the model yielded a wider range of concentrations. Pesticide
runoff at low concentrations probably occurs through soil and
groundwater percolation, and therefore the concentrations
depend on the values of pesticide decomposition and sorption
parameters, which were randomly selected in each input
dataset. On the other hand, high concentrations probably
occurred by direct spillover from rice-paddy fields during or
following rainfall or drainage. The concentrations of pesti-
cides in direct runoff from paddy fields may not be affected
by decomposition and sorption as much as those that result
from percolation. through soil. Therefore, high concentra-
tions were predicted with narrower ranges of concentration
distribution. Further study including sensitivity analysis of
the model is planned for elucidating pesticide runoff
phenomena in the model.

‘The Monte Carlo inputs yield a distribution of predicted
concentrations for each date, and the ranges of distributions
are presented in figure 10 as a function of date. The 50th
percentile values of the concentration distributions predicted
with the Monte Carlo inputs, as representative vales of
prediction with the Monte Carlo inputs, are compared with
the prediction obtained with the deterministic input in
figure 11. The prediction obtained with the deterministic
input yielded a rather discrete concentration variation with
incorrect concentration peaks, which did not always sccur
simultaneously with the observed peaks. The 50th percentile
values of concentration ranges predicted with the Monte
Carlo inputs were more successful in predicting the dates of
concentration peaks and their heights. While the coefficient
of determination between the observed concentrations and
the concentrations predicted with the deterministic input wras
0.21, the coefficient between the observed concentrations
and the 50th percentile values predicted with the Monte Cazlo
inputs was 0.45. The Nash-Sutcliffe coefficient with the
deterministic input was —1.36, while it was 0.2 with the
Monte Carlo inputs. Therefore, the prediction using Morate
Carlo inputs was better than that obtained with determinis#ic
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Figure 10. Comparison of concentrations observed and predicted by the model with Monte Carlo inputs.

Figure 11. Comparison of concentrations predicted by the model with Monte Carlo inputs and deterministic inputs.

Vol. 49(6): 1723-1735

Concentration (ug L-1) Concentration (ug L-1)

Concentration (ug L-")

Concentration (ug L-1)

Concentration (ug L-1)

Concentration (ug L-1)

3 Predicted range
B Predicted range with 1% to 99%
© Observed

Year 1999

OO A (8 £
ay ept.

Year 2000 I E3 Predicted range
B Predicted range with 1% to 9%

0.7
0.6} Year2001 Predicted range
0.5} E Predicted range with 1% to 99%
0.4l 0 Observed
0.3t
0.2
0.1}
0,04
May 1Aug. 1 Sept.

1.0 4
08 Year 1999 ~= 50% values In prediction with Monte-Carlo
T “ Prediction with deterministic inputs
06 k O Observed
0.4 ¢
02 r
00200 60.00.HNTK (RO e Rt
1-May-99 1-Jun-99 1-Jul-89 1-Aug-99 1-Sep-99
1.0
0.8 k Year 2000 - 50% values in prediction with Monte-Carlo
: == Prediction with deterministic inputs
06 L O Observed
02 3 2 i
. 2 s {\’&MW
0.0 el SO (@A
1-May-00 1~Jun-00 1~Jul-00 1-Aug-00 1-Sep-00
0.7
0.6 Year 2001 — 50% values in prediction with Monte-Carlo
65 L ™ Prediction with deterministic inputs
' O Obssrved
0.4
0.3
0.2 r ﬁ
oy b\(\_
N
0.0 L@ . Py ool -l
1-May-01 1-Jun-01 1-Jul-01 1-Aug-01 1-Sep-01

1733






