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Fig. 9 shows the linear regression test result between aqueous-phase and airborne concentrations of
TTHM in bathroom. These findings confirm that of a previous study (Wallace, 1997), where
aqueous-phase THMs concentration in tap water were found to be associated with airborne THMs

concentration in indoor air.
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Median airborne concentration in bathroom was 44.76pg/m*
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The THMs exposure estimates from water ingestion, inhalation of indoor air, and dermal exposure
while bathing are presented in Table 3. '
The result is comparable to that in the previous studies (Jo ef al, 2005), and it was found that the
TTHMSs inhalation exposure from indoor air when not in the shower was estimated to contribute
around or even less than 5% to the total exposure. Accordingly, the exposure of TTHM during
bathing activity alone in the present study is derived of 21.41ug/day, which is also roughly 1.5 times
higher than that of oral ingestion. In addition, the ingestion exposure is approximately 38% to the

total exposure.

Table 3 Estimated THM exposure (pg/day) in residences using municipal tap water (medians values)

THMs Ingestion Inhalation® Dermal Total exposure
TCM 5.96 8.57 0.67 16.32
BDCM 4.54 7.13 0.34 12.50
DBCM 2.35 3.59 0.18 6.09
TBM 1 0.8 0.07 5.73
TTHM 13.03 22.54 1.17

a: It represents the inhalation exposure to indoor air including bathing.

Allocation to Drinking Water

34.16

As shown in Fig. 10, the allocation to oral ingestion among the total exposure ranges from 18.3% to
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55.4%. This indicates that the allocation to oral
ingestion is affected by other exposure scenarios.
The median value of total THMs ingestion
allocation was 32.5%, which is almost 1.6 times
higher than the currently applied value of 20% in
setting up the drinking water quality standard.
However previous studies showed that there is a
considerable  seasonal  variation in  both
aqueous-phase and airborne concentrations (Jo et
al., 2005). Also, in the present study, no dietary
intake exposure was included in the evaluation.
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Fig. 10. Ingestion allocation to overall exposure
Median allocation of TTHM to overall exposure was 32.47%
: ’ CONCLUSIONS

The present study estimated multi-route THMs exposure in common residences using municipal tap
water. TCM was the main contaminant of the four THMs in water. The indoor. aitborne THMs
concentration trend was also consistent with that of aqueous-phase concentration, supporting that tap
water THMs levels are associated with indoor air levels of THMs. In the entire indoor environment
measured, bathroom has the highest THMs concentration, followed by kitchen. The exposure analysis
estimated that in common indoor life activities in Japan, inhalation exposure is 1.5 to 2.0 times larger

than ingestion exposure as drinking water.
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Abstract Haloacetic acid (HAA) yields from 44 model organic compounds of dissolved
organic matter (DOM) substructures were determined as screening process of the chemical
structures responsible for HAA formation during drinking water chlorination. [t was found that
monohydroxybenzenes (phenols) tended to produce more HAA than dihydroxybenzenes.
Also, a clear relationship was found between HAA and CHClIs formation for aliphatic
compounds. Trihaloacetic acid concentrations were much higher than di- and mono-
haloacetic acids for the chiorination of aromatic compounds tested while dihaloacetic acids
were major products from aliphatic compounds. Moreover, in the presence of bromide ion
(Br), the HAA yields increased by a factor of 1.5 on average than that in Br free condition for
aromatic compounds while no significant effect was observed for aliphatic compounds.

Keywords bromide ion; chemical structures; disinfection by-products (DBPs); haloacetic
acids; trihalomethanes.

Introduction

More than 200 compounds have been identified as disinfection by-products (DBPs) in actual
tap water, and approximately 600 compounds are known as possible DBPs (Woo et al,
2002). Among these compounds, haloacetic acids (HAAs) are one of the major groups of
the DBPs, and their detection frequency and concentration in finished drinking water are next
to trihalomethanes (THMs) (Zhang et al., 2000). Also, all of nine HAAs containing
chlorine and bromine atoms are known to be toxic and some of them are suspected
carcinogens (Plewa et al., 2002). Furthermore, brominated HAAs are more toxic than their
chlorinated counterparts. Thus, it is important to understand the formation mechanism of
HAAs in the presence of bromide ion to better control HAAs in drinking water treatment
processes. _ '

However, despite the toxicological importance of HAAs, the formation mechanism of
HAAs is not fully understood. This is mainly because of the complexity of dissolved
organic matter (DOM), the precursor of HAAs. DOM is a very complex mixture of organic
compounds, and its structure is not clear, even today. To overcome this difficulty, the
present study employs model compounds of DOM substructures. Similar approaches have
been used for the studies on THM formation (e.g., Rook, 1977; Ichihashi et al.,,1999), and
successfully found the importance of m-dihydroxy structure for THM formation. However,
no attempt has been made for HAA formation mechanism.

The main objective of this study is to investigate the relationship between simple
substructures of DOM and HAA formation in chlorination, and to identify chemical
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structures in DOM related to HAA formation. In addition, the effect of Br" on the HAA
formation from these model compounds was evaluated by chlorination in presence of Br'.

Experimental

Target compounds

Model compounds of DOM substructures (Table 1) used in this study were purchased from
Wako Pure Chemical unless otherwise noted. Their purity was more than 95% except lactic
acid (85-92%) and used without further purification. Many of the model compounds were
with carboxylic acids because carboxy group is one of the most common functional groups
in DOM (Thurman, 1985). Also, aromatic compounds with different number of phenolic
hydroxy groups were selected, as the number of phenolic hydroxy groups is an important
factor of the susceptibility of aromatic rings to electrophilic substitution reaction.  For
aliphatic compounds, most of the selected compounds were carbohydrates, carboxylic acids,
and carbonyl compounds. They were chosen based on the abundance in DOM structures
(Thurman, 1985; Leenheer, 2004) and the susceptibility to the haloform reaction (Larson and
Weber, 1994).

Table 1. Model compounds of DOM substructures used in this study.

Aromatic compounds Aliphatic compounds
pheno! benzoic acid crotonic acid lactic acid
resorcinol phthalic acid maleic acid acetylacetone
catecol gallic acid succinic acid propionic acid
hydoquinone 5-hydroxyisophthalic acid  fumaric acid 1-propanol
salicylic Acid 2,3-dihydroxybenzoic acid  citric acid ethylene giycol
m-hydroxybenzoic acid  2,4-dihydroxybenzoic acid  3-ketoglutaric acid* D-glucose
p-hydroxybenzoic heid  2,5-dihydroxybenzoic acid  glyoxylic acid sucrose
phioroglucinol 2 6-dihydroxybenzoic acid  formic acid maltose
o-methoxy phenol 3,4-dihydroxybenzoic acid ~ pyruvic acid lactose
o-cresol 3,5-dihydroxybenzoic acid  acetaldehyde ally! alcohl
vanillic acid acetic acid glucosaming*

acetone

*purchased from Tokyo Kasei Kougyo

Chlorination

Chlorination was initiated by adding a stock NaOCl solution to a model compound solution.
Before chlorination, the pH of the solution was adjusted to 7.0 with a phosphate buffer (final
concentration was 13 mM). Other reaction conditions were as follows: model compound
concentration, 3 mg-TOC/L; Cl, dose, 30 mg/L; pH, 7; reaction time, 24 hr. The chlorine
dose in this experiment was higher than in actual drinking water disinfection practice for
analytical reason, but the ratio of model compound-to-chlorine was roughly in the same
range as actual treatment. When investigating the effect of Br-, Br- solution was added to
the mixture before adding NaOCl.  The initial Br” concentration was set to 4 mg/L.

HAA analysis

HAA concentrations were analyzed following USEPA method 552.3 (2003). Briefly, this
method consists of liquid-liquid extraction, derivartization to methyl haloacetates with acidic
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methanol, and GC-MS analysis (GC, Agilent 6890 with DB-5 column [J&W Scientific]; MS,
JEOL JMS-AX505H).

Results and Discussion

Characteristics of HAA formation from aromatic compounds

In Fig. 1, the HAA yields from aromatic compounds were summarized. The HAA yields
were considerably different among the aromatic compounds tested, and ranged from 0.01
pmol/mg-C (benzoic acid) to 16.44 pmol/mg-C (phloroglucinol).
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Fig. 1. Total HAA yields from aromatic compounds (without Br’).

Table 2. Distribution of HAAs (without Br').

. g mono-  di- tri- liphati d mono-  di- tri-
aromatic compounds HAA HAA Haa aliphatic compounds HAA HAA HAA
phenol ) 002 021 256 crotonic acid 0.01 0.00 0.00
salicylic acid 0.00 0.03 044 1-propanol 0.00 0.0t 0.01
2,3 -dihydroxybezoic acid 0.00 0.01 0.02 3-ketoglutaric acid 0.39 18.8 0.15
2,4-dihydroxybenzoicacid 0.00 0.02 0.22 acetic acid 0.00 0.01 0.00
2,5-dihydroxybenzoicacid 0.00 0.01 0.01 acetone 0.00 0.09 0.01
2,6-dihydroxybenzoicacid 0.06 0.02 0.32 acetylacetone 122 555 0.07
3,4-dihydroxybenzoicacid 0.00 0.02 0.08 alyl alcoht 0.00 001 0.01
3,5-dihydroxybenzoicacid 0.00 0.03 1.62 aqcetaldehyde 0.02 0.0t 0.01
S-hydroxyisophthalic acid 0.00 0.18 5.89 citric acid 0.02 164 0.02
benzoic acid 0.00 0.01 0.01 D-glucose 0.00 0.00 0.00
catecol 0.00 0.01 0.01 ethylene glycol 0.00 0.01 0.01
gallic acid 0.00 0.02 0.30 formic acid 0.00 0.01 0.00
hydoquinone 0.00 0.01 0.04 fumaric acid 0.00 0.00 0.00
m -hydroxybenzoic acid 0.03 0.14 1.81 glucosamine 0.00 001 0.00
o-cresol 0.07 0.08 0.04 glyoxylic acid 0.00 0.00 0.00
o-methoxy phenol 0.04 0.14 257 lactic acid 0.00 0.02 0.01
phloroglucinol 0.05 1.38 15.00 lactose 0.00 0.01 0.00
phthalic acid 0.00 0.01 0.02 maleic acid 0.01 0.01 0.00
p -hydroxybenzoic acid 0.02 011 1.90 maltose 0.00 0.01 0.01
resorcinol 0.00 0.03 045 propionic acid 0.00 0.01 0.00
vanillic acid 000 0.14 1.98 pyruvic acid 0.00 0.02 0.06
succinic acid 0.00 0.01 0.01
sucrose 0.00 0.01_0.00
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Turning to individual HAAs, chlorination of aromatic compounds tended to produce more
tri-haloacetic acids (tri-HA As) than mono- (mono-HAAs) and di-haloacetic acids (di-HAAs)
(Table 2). Mono-HAA formation was the smallest and below the detection limit for many
compounds.

Functional groups on aromatic ring are classified into two categories: electron-donating or
electron-withdrawing substituents. Among them, phenolic hydroxy group (-OH) is a very
strong electron-releasing functional groups. Also, phenolic compounds are able to
dissociate to phenolates (-O7), which are more electron-donating than their undissociated
form (Soper and Smith, 1926). Considering that HA A-yielding reactions are initiated with
electrophilic substitution reaction (see the next subsection), it is reasonable to assume that the
tendency of HAA formation is determined by the number and positional relationships of -OH
on aromatic rings to some extent. For this reason, in the following discussion on HAA
formation, aromatic compounds are divided into four groups based on the number of
hydroxy groups.

Aromatic compounds without phenolic hydroxy functional group

HAA yields of benzoic acid and phthalic acid were very low and less than 1/9 of phenol.
These yields were in the same range of those of unsaturated aliphatic compounds without
carbonyl functional groups.

Compounds with one phenolic hydroxy functional group

Phenol, o-methoxy phenol, o-cresol, vanillic acid, 5-hydroxyisophthalic acid, salicylic acid,
m- and p-hydoroxybenzoic acids are in this group. Higher HAA formation than compounds
without phenolic hydroxyl group was commonly observed or these compounds.

HAA yeild of phenol was 2.79 pmol/mg-TOC, and o-methoxy phenol, vanillic acid, m-
and p-hydroxybenzoic acid showed similar HAA yields. For these compounds, the positive
effect by electron-donating substituents for electrophilic substitution reaction and the
negative effect of losing reaction sites (C-H bonds on aromatic ring) by substitutions are
considered to cancel out.

While 5-hydroxyisophthalic acid produced a large amount of HAA (6.08 pmol/mg-C), the
HAA yield from salicylic acid was lower than that of phenol. This is because salicylic acid
cannot dissociate into phenolate due to its hydrogen bond between -COO and -OH. Also,
o-cresol showed lower production of HAA than phenol. Since o-cresol is known to react
with HOCI rapidly (Soper and Smith, 1926), methyl group is likely to interfere HAA
formation, or an intermediate preferable for CHCl; formation is formed. This result
strongly suggests that small difference in DOM structure greatly changes (e. g, the presence
of —CHs;) the type of DBPs.

Compounds with two phenolic hydroxy functional groups

It is of note that the HAA yields of these compounds were lower than phenols (ie,
compounds with one phenolic hydroxy group) while some of them showed much higher
CHClI; formation than phenols (Yamada, 1987). For example, the order of HAA yields
among phenol, resorsinol, catecol, and hydroquinone was: phenol (2.79 pmol/mg-TOC)>
resorsinol (0.48 pmol/mg-TOC)> hydroquinone (0.06 pmol/mg-TOC) > catecol (0.02
pmol/mg-TOC). Resorcinol showed a certain level of HAA production ( more than 8§ times
higher than catecol (orth- positioned -OH) and hydroquinone (para-positioned -OH)). The
main reason for this is that resolcinol can form enolizable $-diketone, and has the very active




Yano ef al. . 5

carbon between two —OH (Rook, 1977). On the other hands, oxidation without the
incorporation of Cl atom is considered to be dominant for catecol and hydroquinone.

Out of six dihydroxybenzoic acids (DHBs), meta-positioned compounds showed higher
HAA yields than ortho- and para-positioned counterparts. Among meta-positioned DHBs,
3,5-DHB yielded higher HAA than 2,4- and 2,6-DHBs. For these compounds, at least one
of the reaction sites for halogenation have to undergo decarboxylation reaction before
halogenation. This additional reaction step may kinetically interfere the halogenation
reactions.

Compounds with three phenolic hydroxy functional groups

The HAA yield of phloroglucinol was the highest among aromatic compounds tested (16.44
umol/mg-TOC) . On the other hands, the HAA yield of gallic acid was very low (0.32
pumol/mg-TOC). In case of phloroglucinol, three OH are meta-positioned with each other.
That is, three B-diketone structures can be formed and has three very active carbons between
two -OH like resorcinol. Therefore, its HAA production was though to be striking.  Gallic
acid has a structure substituted by another -OH to the activated carbon between two -OH of
3,5-DHB. The assumption would be allowed that the loss of activated carbon atom in
3,5-DHB leads the lower HAA production of gallic acid.

Characteristics of HAA production from aliphatic compounds

In general, aliphatic compounds yielded lower concentration of HAAs than aromatic
compounds (Fig. 2).  Also, it is of note that di-HAA concentration was much higher than
mono-HAA and tri-HAA for aliphatic compounds (Table 2). This difference in the HAA
formation patters is useful information to identity the chemical structure (i.e., aromatic or
aliphatic) responsible for HAA formation in actual treatment.
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Fig. 2. Total HHA yields from aliphatic compounds (without Br).

Among aliphatic compounds, only acetylacetone, citric acid and 3-ketoglutaric acid showed
high HAA production. These three compounds can form {3-diketone structure and undergo
keto-enol tautomerization (citric acid can possess 3-diketone structure after decarboxylation

5



Y. Yano et al.

to 3-ketoglutaric acid) (Larson and Rockwell, 1979). Thus, they are capable of producing
large amount of HAA and CHCI; through the haloform reaction.

Among other aliphatic compounds, pyruvic acid, acetaldehyde and acetone showed
slightly higher HAA production than other compounds. Presumably, it is because they can
partially undergo keto-enol tautomerization. Other carboxylic acids, sugars, alcohols and
double-bonded compounds produced no HAA.

Comparison between HAA and CHCI; production

As shown in Fig. 3, a clear linear relationship between HHA and THM yields for aliphatic
compounds was found (closed squares). On the other hands, the plots for aromatic
compounds (open circles) scattered while HAA yields were generally higher for those with
higher THM yields. 1t is implied that for aromatic compounds the ratio of HAA yields to
CHCl; yields largely depends on their chemical structures and cannot be explained solely by
their reactivity to HOCI.
oo
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Fig. 3. Comparison between HAA and CHClz yields. CHCI; yields are literature values
(Yamada, 1987).

Effect of Br’

HAA yields from aromatic compounds increased approximately by a factor of 1.5 times with
Br" (Fig. 4). This result is reasonable as hypobromous acid (HOBr) is a stronger
halogenating reagent than HOCI, and bromination by HOBr is kinetically favourable in a
typical drinking water treatment condition over the chlorination by HOCI (Echigo, 2002).

Turning to individual model compounds, it is of note that HAA yields of 2,4- and 2,6-
DHBs increased by factors of six and four, respectively. The presence of HOBr may
influence the decarboxylation of these compounds. Once again, small differences in DOM
structure have strong impact on the composition of reaction products.
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On the other hand, no significant increase in HAA was observed for aliphatic compounds.
Only HAA yield of citric acid increased approximately by a factor of four. The reason for
this difference between aromatic compounds and aliphatic compounds is not clear at this
point, but presumably other factors (e.g., hydrolysis of intermediates) control on the
composition of the reaction products.
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Fig. 4. Comparison of HAA productions between in Br- free and coexistent conditions.

Conclusions

In this study, HAA yields from 44 model compounds of DOM substructures were
determined as a screening process of the chemical structures related to HAA formation.
The major findings from this study are listed below:

(1) Aromatic compounds with one phenolic hydroxy group have higher HAA yields than
those with two phenolic hydroxy groups.

(2) Model compounds with high HAA yields generally produce high concentration
THM when chlorinated. Especially, a good correlation between THM and HAA
vields were found for aliphatic compounds.

(3) Trihaloacetic acid concentrations were much higher than di- and mono-haloacetic
acids for the chlorination of aromatic compounds while dihaloacetic acids were
major products from aliphatic compounds.

(4) In the presence of Br’, the HAA yields increased by a factor of 1.5 on average than
that in Br free condition for aromatic compounds while no significant effect was
observed for aliphatic compounds.
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Selective bromide removal by ion-exchange processes

Kyoto Univ.  Shinya BCHIGO, Sadahiko ITOH
Akihiko NIWA, Wataru SASAYAMA
OSAKA GAS Co.LTD Masahiro KUWAHARA

WHEMER AV VABIC L > TER TS RER NS ERMOBRF
HHELT, BRELBA T VSBEEEETANA RO ALY 4 M
EEmzERAVTRIEMA AV ORECHET BRHEET o/, ZORKE
2EEONA PR ZVY A FRIEEUD RIS £ A V2B IRNICRRE
THEILEDHDID, FOBENEROKEEKCHLTLENTSS
CeRBELE,

FoT—RBEHAZLY, N RO BV A MR, A4 VR,
VEFERIERT '

Key Words:bromide, hydrotalcite-like compounds, ion-exchange,
disinfection by-products

1. & C&ic

BIE, BAKAEYOE A BT 3 NBMEL UCTERLERS YV VLERMTbh TV SH, &
WA Z Y (Br) BEETEIREKIEHELTINEOMIEEITS LEEREC 4 (Br0,) KKEBEThBZE
ZRWBRMERYMNER L., ZORERESHERAETATVSE Y, LHL, ChbOWELHET
BENEFEBRIBIENATVRVOVRRTS S, AHFETIE., BEARAA Y SBEBELETS
TETHBENTVS 2N REZ VY7 MEEEW (HTCs) ZAVTHIBEAETS 3 Br 2BRET 3T
LIE Y REREBRHERMOEREZDHMT BT L2ENE LTV S,

2.EBAEE o

2-1. HTCs o R4+ + U BrERE
HTCs BEBHROBVWIC L > TEEAR I VREFERERIT T EAIONTV S, FTT. 5

BHEOHTCs ZKBAEMBEC LI DARLZO Br RERBERPEMT 5L 2 8ic, H 4 8

B T3 % DIAION SA10A, DIAION SA20A( LB ICEZ(LE) OB R Tz, RERTI Br &

BBETBHALT U UTHEBEA A (S0,5) 2RV, Thid. AKEEKF O SO,2 IBE MR HIEEE W

TEIMA, BMiAZTYTHBLDBA T VRBEILBEEBEENRTVEEZbREEDTH S,

N2y FF A b :
BEEAFELCOVWTERFTHIEDIKUTO 2EEORE THRERMERT> 1,

(1) Br £SO 2ZNFN2 meq/LTDELIKABM] 10 mL KK HTCs BLUFEA i
ZEWESHS g/L(ERE 1) 23 X3 N2 6 REAEBL.020 yum 74 VX —T3BL =,
W aT NI TTREATVRERME L 2,

(2) Br £ S0 2Fh 7N 0.2 meq/L ©OFIKER 40 mL & HTCs BEUAEA 4 v ik
ZBESNL g/LXEN2.5 g/LERED LR ESICMA 6 BEHEEL. 020 yum 74V X —
THABLIEREEREI O NS T TERATVEEZNE L, ,
EEDLDBELRBA A Y (COY) PERBA 4~ (HCOy) DFEEH S H, REREDOHIC

BHREBEHRATNANT IV Uk,

2) e A A UKBER L B F VIC T 5RO E L




24 BigEETSNR $20%8E 35 (2006)

& HTCs DA 4 /3B AECImeq/g] Z (KX D IC&KOEE LR, TTITEIRALT IR
REREBREIOHELEMTHD., MERX LR B T 2R EEEZLDTHS,
' AEC= T (Ap-A,)/HTC[g/L] (£.1)
TTT. Aphe BENENRERIFN,. BEBREROZRBA T VBE meq/L] T 5, £z, &
HTCs @ Br e g a8t a® (£ .2) DX S WWEEB L,
@ =([Br T are/ [BT lagu) / (1SO 42 Ture/ [SO & Lagus) (X.2)
2T T [Alure B HTCHh DBIE A 4 2818 [meq/gl. [Aluqus RIKIBHE T OFEA AR [meq/L]
L35,
2-2. BKESBKEHN-RER
2-1 TWBr EEAaTAYE L LT SO BHVED, HEOMRIKICKE CO,Z2ELHELT
Br DHICBEBLPEZ A BYWESEENTVS, i, AAROARMEERIE- I Br- BERIK
S, FDOLES BEKIEHLTHICS BENTHADNEI DI 2-1 B TRERTER V. TTT,
BTV VIR TF o TOABIKEOY VI IVK (ST I3 21B%A Y VRSO MR
Tiio ) ZHOTEA A VERERBETV., BEWA 4 ORERNEZFEML 2,
(1) 15 LE% , ’
B1RFRTEIBRITLVATLEHOT, 2EERY
Mg:Al:Fe=780:103:108 @ HTC( L4 F. (Mgorsshlo osFe
oaos)-HTC L HET B, MO HTCs KD W T b HE, )
35 & U DIAION SA10A KDWY IRERBRET-
Teo B/AKD Br 8L KBr KB AWT 200 pg/L IC@l
LU, WAGEE X 0.5 mL/min T 10 448 10 K@Y |
L UTY Y ERT, HHAD pH B RBELRE., TO%, K '
Hy e b 55T CREA TV IIER W LRSS _— ) o
ﬁm Lf:e Sample » Fraction collector
(2) DA 15 e AL B - 1. A5 LYAT LR
CNFETOMIET, HTCs & COx2 R HCO, KN A MPENIEFICHL ., ThEDBENEV
EBr OREENMETTET LoD oT VDB, TTTHUMELUTEEAATATY VIETH
CHEDALFTYERLELEE, (1) CABORREPT o, TORLEIIC L D IRKETOMRIERK O R

Filter

RI|EF 9.3 mgC/LH 5 2.8 mgC/L KL TR,  *
3 ERERSLUEER B 1 A RBEORIBATIRESE
31, HTCs DA A VIREFE e (romp  TOBE EBREE A

N FFArDOERDPERDEFZBA T VIREDR el ¢ [gt] oo/l
WA 95 HTCs O Br BRERERE 1ICRT o HTCS "y, Fer y So8 VTR
DOEBHEKR L BHOA Z VS Br & 50,7 Ok -HTC 04 402 030 087
PR ke hBEEEITVBRT L 75\‘5'3\7?3‘ = (Mes155Alor0s 4 508 050 256

LS EHARL E5EE OHICS D & & T I3, _FeuwH0 OlA 401 031 1.05
(Mgo.7s0Alo 0sF€ g10s)-HTC & (Mgo.7s7F€0210)-HTC (Mgf::m) 044 Z'zz g'zg ;22
D20OFBriefLTRVERERZR L, ThbD TR ; 4:93 0:51 0:35
HTCs & B4 VRBARTINTROERAA VE o 04 396 030 012
BELH>TVBEDODOBRETERENTE D FK  GCopfeon 4 508 053 087
O SO, IRENRE VK S REED Br OFREIELT -HTC 04 . 405 030 063
WBEEFA D, ’ DIAION 4 498 191 031

R4 A VEEcHdT sBRREOZLZRZ L. B s:\:g:; 0: A zzz z;z gfz
ik N BV -k 22 LE-I.’ ~ )= L . 3
WO A VHRERRES A ERLLMAAINTS SAsA 04 251 02 ots

IR L LT Wi, BIDAF VMENRRE




Environ. Sanit. Eng. Res. Vol. 20, No. 3 (2006) 25

BTERESTEMALT Y (TTTE SO DEBBENNELLZVEHEDI L HTCs tBEIT 51 4
VENEADTERD, [0/ (ZTTEBY) KHT3BRED LV -T2 DTHBLELLN
B

3-2. KB BKRERVRRER
(M@mﬁhmﬁhmgHﬂlDMWNSMOA%%Wtﬁ7Ad%®F$%%h%h@2lTSk\

RTALEL 2 1T > T2 BB D (MgorseAlo0sFe 0100) -HTC ZAVE A S LEBROFEREZH 4 IR (T T T,
RADCEEPEORHKPRE. CoREVWEOHHRELT ),

oo BT —FA— IC
—8—Noy —@— Toc
—P—s502 meetlie
3 -8
2 b
O,
X
~47
g
. B
i o " o] AN | l 1 6
0 50 100 150 200 250 300 0 .50 100, 150 .200 250 300

KR (mL) : i%*ﬁi (mL)
E2 FHKBOEAAS KU ICTOC HE & pH DL

S+ MBamgAlgyosF 2a,o0-HTC, 0.1006 ; G, 20, mg/L_ BY, 202 ug/L;
NO,", 5.5 mg/L: SO,*, 19 mg/L; IC, 8.3 mgC/L and TOC; 14 mgG/L)

(Mgo.720Al0.105F€ 0.108)-HTC D& (BKE)=50 mL E TIEHH AP D Br BB 10 pg/L XY
TeMaisbh, GBKE)=T8 mLETEBREEN 0% EHBA TV, BKBENS SBEREALS L
- S0,%. Br. WA 4 (NOy) DMEICFRHAKFOMEEIZBR L ICHEIML 100~200 mL OWETE— >
BPWMAZ B, EEREAKOVTRE—ZHEbhol, IEMLRBRMEIZ, HCO '(COS )>>NO;>Br
DIETH % LHRENS, COLEBERELRTV—AT, AU 2 HORA XY THS S0,

>S0,%
ERELIE SV EWS T LB (MgorssAloiosFeoios)-HTC Z B0 725 & @%fzﬁﬁﬁ&ﬁﬁ%f% 5, &b
) ___.'.__Br' — A IC
~——g——NOy [ TOC
""‘_ﬁ—_'SOf' —"{}-’-""‘ pH

2 -

Hd

I BT o
0 100 200 300 400 500 0 100 200 300 400 500

SEIKE (L) EIKE (mL)
B3 FRHAFOBAFURTICTOCKRE &pH OEL
Z{4 : DIAION SATOA 0.1015 g CF, 21 mg/L; Br", 204 pg/L; NO;", 5.6 mg/L;
50,7, 20 mg/L: IC, 9.2 mgC/L and TOC 1.7 mgC/L)




26 REMETFME %2055 35 (2006)

BEREDE WV HCOL (COL%) ZHME S ABEREL TV REEE, BrifE#Hs 60 % 23550 iE
KEMN 108 mL FTHMUTHD., BrfREsEom EAREN:, .
~-77, DIAION SA10A T, (GHAKFE)=116 mL ETHERD 60 ¥ 2HA TV 2D, %@F'ﬂ@
Brijimid¥ic 70 ug/L-L/{ LeligME» -z, Fi. Bl ﬁlkq:‘@éﬂ&})’la‘ﬂ’i Sl b HER X
BEEPPERE SO,45NO,>Br>HCO,(C05%) DIETH - T, '
YUEDHERZELDIZEDRE 2ITRT,

R — —ff— iC
—p—NO; i TOG
—A—— 507 —<r— pH
- 8
S
S 17%
¢ L 1 i | i 6
0 50 100 150 200 250 300 0 50 100 150 200. 250 300

BKEL (mL) JokE (mL)

B4 FHAPOEAARUICTOC BE & pH OFEL
B4 (MazasPlni0aF 0 0)-HTC, 01008 g GI, 36 mg/L: Br, 220 pg/L;.

NO:. 5.3 mg/L SO,,2 19 mg/L (e} 2 8 mgC/L and TOG 1 3 mgG/L)

=2 ﬁ?KLE?kEFﬁL\T’#J?A/ZTA'Cd) BriR&EgeE -

AFT]RE (Mgs 7068l 309F p108~HTC _ DIAION SAT0A
Wi e BELe/] 202 S0 ' 204
DRSS R EEmeC/T 93 28 9.2
60% Sr'%fﬂﬁﬁiémi[mugj 776 1071 1151
ER HCO, D>NO, >Br >SS0, SOF>NO,>Br>HCO,”
%mﬁt (85:;?13 L;%L) Br>70 ug/L

4. FEER »

AY 3"7‘X I "CUD ERDD HTCs L& B Br OBECRIBEREELRD B T &, (Mg07ggA10]03Fe
0.108)-HTC KT (MgorsrFepz:)-HTC A Briic X L TH# Jb‘ﬂﬂ\'[ﬂ BRL. SO BESEVWEAD Br
REKBEBLTVWAR I ER2ERLE, £k, HKE "7L/7JI//J<7E:‘FU!«*7’LX£75‘6 Br ﬂf‘“‘?b‘{[(bvlu.
BUKICH U TS HICs K K 2R Br RENMGTE R T L, BB e LU TREBLRS
52T HTCs DBr MEHSENR LTI RO o, UEDE, KEERPWO Br OBEII Li
CHTCs ZHVR VAT LAERETREED 5 BT B R Lk,

&F X .

1) Kurosawa,Y., Maekawa,A., Takahashi,M., and Hayashi,Y.; Toxicity and carcinogenisity of potassium bromate
a new renal carcinogen, Environ.Health.Perspect., Vol.87, pp.309-335, 1990

2) Tezuka,8., Chitraker,R.,, Sonoda,A., Ooi,K., Tomida,T.: Studies on selective adsorbents for oxo-anions.
Nitrate ion-exchange properties of layered double hydroxides with different metal atoms, Green Chem,,
Vol.B, pp.104-10¢, 2004




1-C-9-2

A F 2 RHIRIT LB RALY A 72> Ol

ERRZFRFHRETFEFAR OREEL. BERER FBEEE
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