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Abstract  Pravastatin 'is mainly taken up from the
circulation into the liver via organic anion-transporting
polypeptide 1B1 (SLCOIBI gene product). We
examined the contribution of genetic variants in the
SLCOIB] gene and other candidate genes to the var-
iability of pravastatin efficacy in 33 hypercholesterol-
emic patients. In the initial phase of pravastatin
treatment (8 weeks), heterozygous carriers of the
SLCOIBI*15 allele had poor low-density lipoprotein
cholesterol (LDL-C) reduction relative to non-carriers
(percent reduction: ~14.1 vs ~28.9%); however, the
genotype-dependent difference in the cholesterol-low-
ering effect disappeared after 1 year of treatment.
Cholesterol 7o-hydroxylase (CYP7AI) and apolipo-
protein E (APOE) are known to contribute to lipid
metabolism. Homozygous carriers of the CYP741 -
204C allele or heterozygotes for both CYP7A1 -204C
and APOE ¢4 alleles showed significantly poorer
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LDL-C reduction compared to that in other genotypic
groups after 1 year of treatment (-24.3 vs -33.1%).
These results suggest that the SLCO1BI*15 allele is
associated with a slow response to pravastatin therapy,
and the combined genotyping of CYP7AI and APOE
genes is a useful index of the lipid-lowering effect of
pravastatin.

Keywords SLCOIBI - CYP7Al - APOE -
Pravastatin - Cholesterol

Introduction

Coronary heart disease is the leading cause of death

. worldwide. Several risk factors for cardiovascular dis-

ease are well known, especially increased low-density
lipoprotein cholesterol (LDL-C) and decreased high-
density lipoprotein cholesterol (HDL-C). Statins are
inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A
(HMG-CoA) reductase, a rate-limiting enzyme in
cholesterol biosynthesis. Lipid-lowering therapy by
statins has the potential to improve outcomes in pa-
tients at risk for cardiovascular disease. Despite these
large effects, interindividual variability in the response
to statins has been observed in clinical situations
(Pazzucconi et al. 1995). Previous studies have dem-
onstrated that the mechanisms responsible for vari-
ability in the statin response are due, at least in part, to
genetic factors. Most studies have focused on the
association between variants (€2, €3 and €4) in apoli-
poprotein E (APOE) gene, which is a primary ligand
for the LDL receptor found on the liver, and the re-
sponse to statins (Ojala et al. 1991; Ordovas et al.
1995). In addition, recent studies have demonstrated
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that variants in cholesterol = 7alpha-hydroxylase
(CYP7A1) (Pullinger et al. 2002), ABCG8 (Kajinami
et al. 2004) and HMG-CoA reductase (HMGCR)
(Chasman et al. 2004) are important determinants of
the lipid response to statin therapy. s

Pravastatin, a hydrophilic HMG-CoA reductase
inhibitor, is taken up efficiently from the circulation
into the liver by an active transport carrier system, but
is not metabolized by CYP enzymes. Human organic
anion-transporting polypeptide 1B1 (OATP1B1),
transporter of pravastatin, is expressed on the baso-
lateral membrane in the hepatocytes responsible for
the hepatocellular uptake of pravastatin (Hsiang et al.
_ 1999). The major site of cholesterol synthesis, the liver,
is the main target organ of statins. Recently, Niemi
et al. (2005) have shown that the SLCOIBI*17 allele
(containing -11187G>A, 388A>G and 521T>C) is
associated with the decreased acute effect of pravast-
atin on cholesterol synthesis; however, the impact of
SLCO1BI genotypes on the lipid-lowering response to
pravastatin during long-term treatment has not been
well investigated.

The aim of this study was to descnbe the influence
of SLCO1B1 genotypes on the lipid-lowering response
to pravastatin in Japanese hypercholesterolemic pa-
tients. Furthermore, we evaluated the contribution of
genetic variants in other candidate genes (APOE,
CYP7Al, ABCG8 and HMGCR) to the variability in
pravastatin efficacy.

Materials and methods
Study design

We studied 33 patients (14 males and 19 females; mean
age 62.3 years; age range 34-83 years) with hypercho-
lesterolemia treated in Tottori University Hospital. All
subjects were initially prescribed pravastatin (mean
dose range 9.4 mg/day) between January 1997 and
October 2004. We used the electronic medical data-
base available in the hospital to obtain precise infor-
mation on patients’ backgrounds, laboratory tests,
prescribed drugs and adverse events. We collected
these data retrospectively for each patient for at least
1 year from the day pravastatin was administered.
Patients' with serious or uncontrolled renal or liver
disease, no drug compliance, other hypolipidemic
treatment or uncontrolled diabetes were excluded.
The average body mass index (BMI), total cholesterol
(TC) and LDL-C values in this study patients
were 23.9 kg/m? (range 17.3-30.9 kg/m?), 259.6 mg/dl

__@_ Springer

(range 225.8-3150 mg/dl) and 167 4 mg/dl (range
112.0-240.7 mg/d1), respectively. This study was
approved by the Tottori University Ethics Committee,
and informed consent was obtained from all individuals.

Genotypirig

All subjects were genotyped for variants in the candi-
date genes involved in the pharmacokinetics and
pharmacodynamics of pravastatin. Details of the
genotyping and haplotyping of SLCOIBI*1b
(388A>G), *5 (521T>C) and *15 (388A>G and
521T>C) were described previously (Nishizato et al.
2003). The promoter variant (-11187G>A) in the
SLCOIBI gene was determined with PCR-SSCP
analysis. The SLCO1BI1 -11187G>A variant was ob-
served as heterozygosity (0.212) in this patient group
suggesting it was tightly linked to the SLCOIBI*15
allele. The genotypes in CYP7A1 (-204A>C) (Hub-
acek et al. 2003), APOE (€2, €3 and e4) (Hixon and
Vernier 1990) and ABCG8 (55G>C) (Kajinami et al.
2004) were examined by previously described methods
using PCR restriction fragment length polymorphism
analysis. Genetic variants (SNP12 and 29) in the
HMGCR gene were found as functional variants for
variable response to statin therapy in the previous
study (Chasman et al. 2004) as determined with PCR—
SSCP analysis.

Statistical analysis

Comparisons between two groups were performed
using a- Student r-test and between more than two
groups using ANOVA (with Tukey-Kramer multiple
comparison test). A 5% level of probability was con-
sidered to be significant.

Results and discussion

The mean percent reductions from the baseline in TC
and LDL-C values at 8 weeks post-treatment with
pravastain were significantly smaller in heterozygous
carriers of the SLCO1BI1*15 allele than in homozygous
carriers of the *1a and *1b alleles (Fig. 1a, P<0.05).
Also, the mean percent reduction from the baseline in
TC values at 8 weeks post-treatment was significantly
smaller in SLCOIB1*15 carriers than in non-carriers
(9.8 vs —20.9%; P<0.05; Fig. 1b). A similar trend was
observed in the LDL-C level (-14.1 vs -28.9%, P<0.05;
Fig. 1b) even though the pravastatin daily dose
(mean+SD; non-carriers: 9.4+2.9 mg, carriers:
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Fig.1 a Influence of the SLCOIBI genotypes on percent
reduction from baseline in TC and LDL-C values at 8 weeks
after pravastatin treatment. *P<0.05 when compared between
the two groups using Tukey-Kramer multiple comparison test. b
Influence of the SLCOI1BI, CYP7Al and APOE genotypes on

9.3+2.0 mg, ) and BMI (non-carriers: 24.1+3.5 kg/m?,
carriers: 23.5+2.7 kg/m?) were not significantly differ-
ent between the two groups. In contrast, at 1 year post-
treatment, there were no significant differences in the
reduction of TC and LDL-C values between the two
groups (Fig. 1b; Table 1).

In an in vitro experiment, Iwai et al. (2004) dem-
onstrated that the transport activity of SLCO1BI*15
allele is significantly decreased compared with that of
the SLCOIBI*1a or *1b allele using cDNA-trans-
fected HEK293 cells. Previously, we found
SLCOI1BI*15 allele was associated with higher plasma
concentration of pravastatin, and the non-renal clear-
ance of pravastatin in subjects with SLCOI1BI*1b/*15
and *15/*15 was reduced to 55 and 14% of *1b/*1b
subjects, respectively (Nishizato et al. 2003). Thus, it is
suggested that the SLCO1BI1*15 allele leads to an in-
crease in plasma pravastatin concentrations but a
reduction in the hepatocellular uptake of pravastatin,
resulting in a decreased effect of pravastatin. However,
interestingly, the genotype-dependent difference in
this lowering effect disappeared after long-term

time course of percent reduction from baseline in TC and LDL-
C value after pravastatin treatment. *P<0.05 when compared
between the two genotypes was analyzed with Student’s r-test.
Each value is the mean+SD

treatment. Although its mechanism remains to be
elucidated, one possible reason is that all of our pa-
tients with the SLCOIBI*15 allele were heterozygotes
for functionally active *1a or *1b alleles (Iwai et al.
2004). Thus, the lipid-lowering profiles in homozygotes
for the *15 allele are of interest.

Multidrug resistance-associated protein 2 (MRP2/
ABCC2) on the bile canalicular membrane is mainly
involved in the biliary excretion of pravastatin
(Matsushima et al. 2005). With regard to liver con-
centration of pravastatin, genetic polymorphisms of
MRP2 might affect response to pravastatin. However,
MRP?2 variants have been observed at low frequency in’
Japanese (Itoda et al. 2002), and functional significance
of these variants is not established. Therefore, associ-
ation of MRP2 genotypes should be analyzed by fur-
ther studies.

We also examined the influence of the CYP7A]
promoter (-204A/C) and APOE (e2, €3 and €4) variants
on the clinical outcome of pravastatin therapy. As
shown in Fig. 1b and Table 1, the reduction from the
baseline in LDL-C value at 1 year post-treatment was
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Table 1 Association of SLCO1BI1, CYP7Al and APOE genotypes with lipid changes

Gene " .- Genotype Lipid concentrations (mg/dl)
' N Baseline N 8 weeks N 1 year
Total cholesterol . : . '
SLCOI1BI1*15 Non-carriers . 26 - 260.9+244 26 205.8+22.2 20 . . 201.9+18.5
Carriers : 7 254.8+10.6 7 227.9+19.6 6 204.0+16.5
; P value . . NS <0.05 NS
CYP7AI-APOE  A/A-é3/e3, A/A-3led, AIC-¢3/e3 19 261.9+23.9 19 210.3£27.9 14 198.9+12.7
C/C-e3/e3, A/IC-€3/c4 14 256.4+20.1 14 210.7+16.0 12 206.0+22.3
P value NS NS : NS
LDL cholesterol : .
SLCOIBI*15 : Non-carriers 22 .170.7£274 - 22 124.0+20.7 17 115.1+23.9
Carriers 7 157.0+29.3 7 132.0+32.7 6 110.5+10.9
P value _ NS NS NS
CYP7AI-APOE A/A-3/e3, A/A-€3/e4, AIC-€3/€3 19 168.6+34.4 19 124.0+29.9 12 106.3+20.6
C/C-€3/€e3, AIC-€3/c4 12 165.7£16.3 12 128.7+12.5 10 123.8+12.5
<0.05

P value

NS : + NS

Values are mean+SD

Statistical significance between the two genotypes was analyzed thh Student’s s-test °

NS No sxgmﬁcant dlfference

significantly decreased in carriers of A/A-E3/€3 A/A-

€3/e4 or A/C-€3/e3 in CYP7Al and APOE genes com-
pared with C/C-¢3/e3 or A/C-e3/e4 carriers. There was
no significant effect of genotypes (A/A-€3/e3, A/A-€3/
€4 or A/C-€3/e3 vs CIC-e3/€3 or A/C-e3/ed) in the
CYP7Al1 and APOE genes on pravastatin dose
(10.0£29 vs 88+29mg) and BMI (23.8+3.6 vs
24.5+3.0 kg/m?). Only one patient was a heterozygous
carrier of SNP12 in the HMGCR gene. However, no
remarkable difference in the lipid-lowering effects was
observed in this patient. Also, SNP29 in HMGCR and
55G>C in ABCG8 were not detected.

In contrast to SLCO1B1 gene, part of the interpa-
tient variability in the efficacy of pravastatin after long-
term treatment may be attributable to genetic varia-
tion, and combined genotyping of CYP7AI and APOE
genes is useful for describing the lowering effects. Since
the basal cholesterol synthesis rate is a key determi-
nant for statin response, loss of CYP7AL activity,
which is involved in bile acid synthesis from cholesterol
in the liver, may result in a poor response to statin
treatment (Pullinger et al. 2002). A previous study has
shown that the nucleotide sequence around position -
204 negatively regulates CYP7A1 promoter activity
(Cooper et al. 1997). Among the known variants, the
CYP7A1 -204A>C variant is expected to decrease
promoter activity (Kajinami et al. 2005). Apolipopro-
tein E is known as one of the major determinants in
lipoprotein metabolism. Previous studies (Ojala et al.
1991; Ordovas et al. 1995) demonstrated that the 4
allele in primary hypercholesterolemia is associated
with lower response to statin, when compared to €2 and
€3 alleles, because the binding activity of ¢4 allele to

@ Springer

receptor is relatively higher than that of other alleles.
These results suggest that decreased cholesterol 7al-
pha-hydroxylase activity and increased binding affinity
of apolipoprotein E to LDL receptor enhance the
intracellular cholesterol content in hepatocytes,
resulting in lower HMG-CoA reductase activity, which
may also lead to tolerance to statin treatment (Kaji-
nami et al. 2005). _
In conclusion, our results suggest that the
SLCOI1BI*15 allele is associated with a slow response
to pravastatin. Instead of SLCOIBI*15, combined
genotyping of CYP7A1 -204A>C and APOE ¢4 vari-
ants may be useful for describing the long-term clinical
outcomes of pravastatin. Further study is necessary to
confirm the influence of genetic variants in these can-
didate genes on the lipid-lowering efficacy of pravast-
atin as well as other statins in a large sample size.
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We have previously published a study on warfarin-treated
Japanese patients showing that CYP2C9*3 and variability
in some vitamin K-dependent protein genes contribute to
the large interpatient variability in the warfarin dose-effect
relationship. Warfarin sensitivity was independently as-
sociated with ~402G>A (factor VII gene), (CAA repeat),
[y-glutamyl carboxylase (GGC)], CYP2C9*3, and
g2.494C>T (factor II), which accounted for 50% of the
variance [1]. Recently, the vitamin K epoxide reductase
complex subunit 1 gene (VKORC1) was identified, and
polymorphisms in this gene have been shown to play a
significant role in the individual variability of warfarin
dose requirements [2—4]. To date, numerous single nu-
cleotide polymorphisms (SNPs) have been identified in the
VKORCI gene. Among these SNPs, VKORCI g.1173C>T
in intron 1 has been reported to be associated with warfarin
dose [2-6}]. In addition, patients carrying the apolipoprotein
E (ApoE) g-4 allele were reported to require a higher daily
dose of warfarin [7]. Apolipoprotein E serves as a ligand
for receptors that mediate the uptake of vitamin K into
cells. The major isoforms of ApoF alleles are £-2, £-3 and
g-4. Kohnke et al. [7] reported that Swedish patients
homozygous for e-4 require higher warfarin doses than
those carrying other alleles because individuals carrying
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the e-4 allele have more rapid uptake of vitamin Kl,
leading to the enhanced availability of reduced vitamin K
for the activation of clotting factors and proteins in the
liver. Here, we describe VKORCI g.1173C>T and ApoE
(e-2, e-3 and e-4) polymorphisms, and re-evaluate the
impact of these candidate variants on the pharmacody-
namic outcomes of warfarin therapy.

The investigation was approved by the Review Board of
Tottori University Hospital, and all subjects gave informed
consent to participate in this study. Details of patient
characteristics, gene screening, and data treatment have
been published previously [1]. We used the electronic
medical database available in the hospital to obtain precise
information on the.international normalized ratio (INR),
the warfarin daily dose, type of prescribed drugs, and
bleeding events. We collected these data prospectively for
each patient for at least 6 months from the day the sample
was collected. A single nonfasting blood sample was
obtained from each patient, just before the morning dose of
warfarin, and was used to measure trough concentrations of
warfarin enantiomers in plasma (Cp, pg/ml) [8], to
determine INR and to extract DNA for genotyping. We.
calculated the INR response per warfarin plasma concen-
tration, termed the warfarin sensitivity index (INR/Cp,
ml/ug). In this study, all samples were genotyped for
VKORC] g.1173C>T using Tagman primers and probes on
the Sequence Detection System (ABI PRISM 7000;
Applied Biosystems, Foster, CA). The following primers
and probes were used: forward primer, CCCGGTGCCAG
GAGATC,; reverse primer, CACCTGGGCTATCCTCTG
TTC; probe 1 C allele), VIC-CCTAGTCCAAGGGTC
GAT; probe 2 (t allele), FAM-CTAGTCCAAGAGTCGAT.
ApoE isoforms were diagnosed by the Hha I restriction
approach according to previously described methods [9].

Among 45 patients, 1 was homozygous and 6 were
heterozygous carriers of the VKORC! 1173C allele. The
genotype results of the ApoE gene were as follows: e-2/g-2

(i.e., homozygous carriers for the e-2 allele, n=1), e-2/¢-3

(n=8), e-3/e-3 (n=28), and e-3/e-4 (n=8). Allelic frequen-
cies of VKORCI and ApoE were well consistent with those
in previous reports [4, 10].
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In the VKORCI gene, the time course of change in the
mean INR value did not differ between the VKORCI
genotypes, but the daily dose of warfarin was higher in
patients carrying the 1173C allele than in patients homo-
zygous for the 1173T allele; mean (SD) warfarin daily
doses in C/C, C/T, and T/T patients were 7.5, 6.2 (1.9), and
3.3 (1.3) mg, respectively (Fig. 1). The mean INR/Cp
values in C/C, C/T, and T/T patients were 1.58, 1.85 (0.35),
and 3.42 (1.05), respectively. All patients were stabilized
on warfarin therapy before the observation period. In
contrast, there were no remarkable differences in the
warfarin daily dose and INR/Cp among the 4ApoE geno-
typic groups. The frequency of the ApoE e-4 allele is
reported to be different among racial populations; for
example, the frequency of this allele in Swedes is
approximately two times higher than in Japanese [7, 10].
Since no homozygosity for the e-4 allele was observed in
our small sample study, the net in vivo effect of the ApoE
polymorphism remains obscure.

Forward stepwise linear multiple regression analysis
demonstrated that only the g.1173C>T SNP in the
VKORCI gene was independently and significantly
. (P<0.05) associated with warfarin sensitivity (i.e., INR/
Cp) among the studied polymorphisms, causing up to 50%
of the variance. In a multiple regression analysis including
the following five variants, the partial »* values were
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Fig. 1 Polymorphisms of the VKORC! gene (g.1173C>T) and
pharmacodynamic outcomes of warfarin. Time course of changes in
warfarin daily dose and international normalized ratio (INR) values
during the observation period (6 months) in patients with and
without VKORCI g.1173C>T polymorphism.- Individual mean
warfarin daily doses are also presented for the three VKORCI
genotype groups

follows: g.1173C>T in the VKORC1 gene (partial 7°=0.50,
P<0.05), ~402G>A in the factor VII gene (partial 7=0.11),
CYP2C9*3 (partial *=0.02), g.494C>T in the factor II
gene (¥=0.01), and (CAA repeat), in the GGC gene
(#*=0.01), all together accounted for approximately 65% of
variance (multiple 7=0.81). It seems that the significance of
the associations with factor VII, factor II and GGC
polymorphisms that were found in our previous study [1]
may have been overestimated.

Determination of the VKORCI g.1173 C>T polymor-
phism enhanced the predictive capability of inter-patient
variability in warfarin sensitivity, accounting for approxi-
mately 50% [1] to 65% in our series. Similar improvement
has been recognized in other studies [3, 5, 11]. Although
prospective clinical studies are essential for confirmation,
our results suggest that individual warfarin sensitivity can
be predicted when we consider polymorphisms in
VKORCI, CYP2C9, and vitamin K-dependent protein
genes, especially at the initiation of therapy. Among the
factors proposed, the VKORC! genotype explains 50% of
the variability, demonstrating the major role of this gene in
the anticoagulant response. Our observations are in good
agreement with those reported by Reider et al. [4] who
indicated that variations in the VKORCI gene have a larger
effect on warfarin dose than in the CYP2C9 gene. In the
present study, we treated the sum concentration of R- and
S-warfarin as “Cp” although S-warfarin is about 3-5 times
more active than R-warfarin, and CYP2C9 is involved in
the metabolism of S-warfarin but not of R-warfarin. Thus,
the contribution of CYP2C9*3 to the variability in warfarin
sensitivity was smaller than the contribution shown
previously by others, probably because of the different
phenotypic variable (INR/Cp ratio) used and the low
frequency of the *3 allele in the Japanese population.

Ethnicity appears to be an important factor in the deter-
mination of warfarin therapy. Reider et al. [4] identified five
major haplotypes (H1, H2, H7, H8 and H9) in Caucasian
and Asian populations; the H1 or H2 haplotypes (both carry
the VKORC1 1173T allele) predicted the low-warfarin-dose
phenotype and were relatively common. in the Asian
population. Takahashi et al. [12] also described that the
higher warfarin dose requirements in African-Americans
may possibly reflect the higher frequency of the VKORC!
1173C allele compared to Japanese and Caucasians, with
corresponding values of 91%, 11% and 58%, respectively.
Thus, collective evidence suggests that the VKORCI poly-
morphism is involved in both inter-individual and inter-
ethnic differences in warfarin therapy. VKORCI genotyping
is therefore essential at the beginning of warfarin therapy.
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Effects of organic anion transporting
polypeptide 1B1 haplotype on
pharmacokinetics of pravastatin, Valsartan
and temocapril

Objective: Recent reports have shown that genctic polymorphisms in organic anion transporting polypeptide
(OATDP) 1B1 have an effect on the pharmacokinetics of drugs. However, the impact of OATP1BI+1b alleles,
the frequency of which is high in all ethnicities, on the pharmacokinetics of substrate drugs is not known after
complete separation of subjects with OATPIBI+la and *1b. Furthermore, the correlation between the
clearances of OATP1B1 substrate drugs in individuals has not been characterized. We investigated the effect
of genetic polymorphism of OATP1B1, particularly the * 15 allele, on the pharmacokinetics of 3 anionic
drugs, pravastatin, valsartan, and temocapril, in Japanese subjects.

Methods: Twenty-three healthy Japanese volunteers were enrolled in a 3-period crossover study. In each
period, after a single oral administration of pravastatin, valsartan, or temocapril, plasma and urine were
collected for up to 24 hours.

Results: The area under the plasma concentration—time curve (AUC) of pravastatin in * 15/% 15 carriers (47.4 *
19.9 ng - h/mL) was 65% of that in *Ia/la carriers (73.2 + 23.5 ng « h/mL) (P = .049). Carriers of *15/+15
(38.2 = 159 ng - h/mL) exhibited a 45% lower AUC than *la/+ 15 cartiers (69.2 = 23.4 ng - h/mL) (P =
.024). In the case of valsartan we observed a similar trend as with pravastatin, although the difference was not
statistically significant (9.01 % 3.33 pg - h/mL for *1b/«1b carriers versus 12.3 * 4.6 pg - h/mL for *la/x1a
carriers [P=.171] and 6.31 * 3.64 pg - h/mL for =15/ 15 carriers versus 9.40 * 4.34 pg - h/ml for xlaf15
carriers [ P = .213]). The AUC of temocapril also showed a similar trend (12.4 = 4.1 ng - h/mL for =15/ 1b
catriers versus 18.5 *+ 7.7 ng - h/mL for *1a/x1a cacriers [P = .061] and 16.4 + 5.0 ng - h/mL for «x1b/+15
carriers versus 19.0 + 4.1 ng - h/mL for *la/+15 carriers [ P = .425]), whereas that of temocaprilat (active form
of temocapril) was not significantly affected by the haplotype of OATP1B1. Interestingly, the AUC of valsartan
and temocapril in each subject was significantly correlated with that of pravastatin (R = 0.630 and 0.602, P <
.01). The renal clearance remained unchanged for each haplotype for all drugs.

Conclusion: The major clearance mechanism of pravastatin, valsartan, and temocapril appears to be similar,
and OATPIBI+1bis one of the determinant factors governing the interindividual variability in the pharma-
cokinetics of pravastatin and, possibly, valsartan and temocapril. (Clin Pharmacol Ther 2006;79:427-39.)
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The administration of the same dose of a drug some-
times results in large interindividual differences in
pharmacokinetics and subsequent pharmacologic and
toxicologic effects. The pharmacokinetics of certain
drugs are dominated by absorption, disposition, metab-
olism, and elimination, and many molecules, such as
metabolic enzymes and transporters, have been re-
ported to be involved in each process. Recently, poly-
morphisms in each molecule have been identified, and
many in vitro and clinical studies have demonstrated
that some of them are associated with a change in the
expression and function of molecules and the pharma-
cokinetics of drugs. Although there is much informa-
tion regarding metabolic enzymes such as cytochrome
P450 (CYP) and phase T conjugation enzymes, the
clinical significance of the genetic polymorphisms in
transporters is not well understood. ' ,

Organic anion transporting polypeptide (OATP) 1B1
(formerly known as OATP-C or OATP2) is exclusively
expressed in the liver and located on the basolateral
membrane."* Some reports have indicated that
OATPI1B1 can transport a wide variety of compounds
including clinically important drugs such as 3-hydroxy-
3-methylglutaryl-coenzyme A reductase inhibitors,’*
which suggests that OATP1B1 may be responsible for
the hepatic uptake of various kinds of anionic drugs,
which efficiently accumulate in liver. Hepatic clearance
consists of intrinsic clearances of hepatic uptake, sinu-
soidal efflux, metabolism, and biliary excretion. From
the viewpoint of pharmacokinetics, a change in the
uptake process will directly affect the overall hepatic
clearance, regardless of the absolute values of each
intrinsic clearance.® Therefore genetic polymorphisms
in OATP1B1 may have an effect on the hepatic clear-
ance of OATP1B1 substrates.

Several genetic polymorphisms in OATP1B1 have
been reported, and in vitro studies have shown that
some of them reduce the transport capability of several
substrates in OATPIB1 variant—expressing cells.””
Among these, previous studies have focused on 2 mu-
tations, Asn130Asp and Vall74Ala, because they are
frequently observed in all ethnic groups investigated
previously and their allele frequencies show some eth-
nic differences,”'® which may cause an ethnic differ-
ence in the pharmacokinetics of OATP1B1 substrates.
Interestingly, Nishizato et al'® demonstrated that
Vall74Ala was tightly linked with Asn130Asp and
formed a haplotype referred to as OATPIBI*15 in
Japanese subjects. In addition, after oral administration
of pravastatin, healthy Japanese volunteers with the */5
allele showed an ificreas€ in the area under the plasma
concentration~time curve (AUC) of p'réVastatip. This

{
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result was supported by in vitro analysis showing that
the intrinsic maximum velocity normalized by the ex-
pression level for OATP1B1*15 variant was drastically
reduced compared with OATPIBI*la™ Subse-
quently, 2 clinical studies showed that the Val174Ala -
mutation also increased the AUC of pravastatin in
white subjects.'"*? Very recently, Niemi et al'>'¥ re-
ported that the pharmacokinetics of fexofenadine and

. repaglinide was also affected by the Vall74Ala muta-

tion. These results suggest that the Vall74Ala mutation
in OATP1B1 reduces the transport function. On the
other hand, Mwinyi et al'?> showed that the AUC of
pravastatin in subjects with *Ja/]b (Asn130Asp) or
*]b/x1b alleles tended to be lower than that in */a
homozygotes. However, they did not completely sepa-
rate the subjects with the *1b allele from those with the
*]a allele, and so we cannot directly compare the effect
of the *1b allele with that of the */a allele. The allele.
frequency of OATP1B1+1b was reported to be high and
showed some ethnic differences (eg, 0.30 in white
Americans [n = 49],° 0.74 in black Americans n=
441,° and 0.63 in Japanese subjects [n = 120]'%), im-
plying that this might cause the ethnic differences in the
pharmacokinetics. of drugs. Therefore we were partic-
ularly interested in the effect of the Asn130Asp variant
of OATP1B1 on the pharmacokinetics of 3 drugs, prav-
astatin, valsartan, and temocapril, and we classified the
subjects into 4 groups, *Ia/*1a, *1b/*1b, *1a/*15, and
*]b/x15 carriers, to directly investigate the difference
in the pharmacokinetics of the subjects with the *7a
and *1b alleles (*la/*1a versus *1b/x1b and *la/*15
versus *1b/*15).

Valsartan is a novel angiotensin II receptor antago-
nist, and temocapril is an angiotensin-converting en-
zyme inhibitor. Drugs in these categories are widely
used for the treatment of hypertension. Valsartan is
mainly eliminated via the liver. Valsartan itself is phar-
macologically active and is thought to be excreted into
the bile in unchanged form without extensive metabo-
lism."® Because of its hydrophilicity and carboxyl moi-
ety, some organic anion transporters may be involved
in the hepatic clearance of valsartan. Temocapril is an
esterified prodrug and is rapidly converted to the active
metabolite temocaprilat by carboxyl esterase.'® Temo-
caprilat is mainly excreted into the bile, whereas the
active metabolites of other angiotensin-converting en-
zyme inhibitors such as enalaprilat are mainly excreted
into the urine because temocaprilat, but not enalaprilat,
can interact with multidrug resistance associated pro-
tein 2 (MRP2), which is an efflux transporter located on
the apical membrane.'” Sasaki et al'® demonstrated that
transcellular vectorial transport of temocaprilat was
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observed in OATP1B I/MRP2 double-transfected cells,
suggesting that temocaprilat is a substrate' ~of
OATPIBI.

Therefore the purpose of this study was to clanfy the
importance of the OATP1BI haplotype, especially the
«]b allele, in the pharmacokinetics of the OATPIB1
substrates pravastatin, valsartan, and temocaprilat, as
well as to determine whether the clearances of
OATPIB1 substrate drugs in each subject are well
correlated with one another in healthy Japanese volun-
teers.

METHODS

Subjects. Twenty-three healthy male Japanese vol-
unteers participated in this clinical study. They were
recruited from a population of 100 male Japanesc vol-
unteers whose OATPIB1 haplotype was prescreened
after written informed consent was obtained. The geno-
typing method of OATP1B1 has been described previ-
ously.'” The haplotypes of OATP1BI in the 23 partic-
ipants were *la/*la (n = 5), *la/*15 (n = 6), *1b/*1b
(n = 7), and *Ib/*15 (n = 5). The participants were
aged between 20 and 35 years. Each participant had a
body weight of between 50 and 80 kg and a body mass
index of between 17.6 and 26.4 kg/m?. Within 1 month
before this clinical study was started, a medical history
was obtained from the participants, who then under-
went a physical examination, electrocardiography, rou-
tine blood testing, and urinalysis. They were also
screened for narcotic drugs and psychotropic sub-
stances. This allowed us to confirm that all of the
subjects were able to participate in this study.

Study design. This study protocol was approved by

" the Ethics Review Boards at both the Graduate School
of Pharmaceutical Sciences, The University of Tokyo,
Tokyo, and Kannondai Clinic, Tsukuba, Japan. All
participants provided written informed consent. All
subjects took part in the 3-period crossover trial and
received pravastatin, valsartan, and temocapril in a
random sequence. There was a washout period of 1
week between each administration. In each period sub-
jects came to the clinic on the day before drug admin-
istration. After an overnight fast, each subject received
10 mg pravastatin sodium (Mevalotin tablet; Sankyo,
Tokyo, Japan), 2 mg temocapril hydrochloride (Acecol
tablet; Sankyo), or 40 mg valsartan (Diovan tablet;
'NOvartls, Basel, Switzerland). Venous blood samples
'(7 mL each) were collected in tubes containing hepann

} ‘ téd for 24 hours. Plasma was separated by cen-
fflﬁfé tion; Plasma and urine samples were stored at
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. =80°C. hnnl anaiysm & Alcohbl,r grapefruit. juice,.. St

John’s wort;-and other drugs:wére not permitted from 2
days before admission to the clinic until.the end of the
study periods;-and’ smokmg ‘was; prohibited during the
study periods. During the study periods;:standardized
meals were served to all subjects at scheduled times.

For the safety of subjects, after the end of each period,
all subjects underwent a physical examination and rou-
tine blood testing and urinalysis were.carried out.:::

- Quantification of concentrations of pravastatin and
its metabolite, RMS-416, in plasma and urine. Con-
centrations of pravastatin and RMS-416 in plasma and
urine: were measured by : liquid - chromatography—

.tandem mass spectrometry as described in. an -earlier

report.'® One milliliter of plasma was mixed with 100
L internal standard (R-122798, 800 ng/mL; prepared
by Sankyo), 1 mL 10% methanol, and:300 pL:0.5-
mol/L. phosphate buffer (pH 4.0). Ini addition; 0.5. mL
urine was mixed with 50 pL internal standard- (R-
122798), 0.5 mL 10% methanol, and 300 pL 0.5-mol/L.
phosphate buffer (pH 4.0). The mixture was applied to
a Bond Elut C8 cartridge (200 mg/3 mL) (Varian, Palo
Alto, Calif), washed twice with 3 mL 5% methanol
(plasma) or distilled water (urine), and eluted with 2
mL acetonitrile. The eluate was evaporated under ni-
trogen gas at 40°C, mixed with 120 pL. acetonitrile, and
ultrasonicated for 3 minutes. Then, 180 pL 10-mmol/L
ammonium acetate was added, and aliquots (20 pL for
plasma and 10 pL for urine) were injected into the
liquid chromatography~tandem mass spectrometry sys-
tem. Separation by HPLC was conducted with an Agi-
lent 1100 Series system (Agilent Technologies, Palo
Alto, Calif) with an Inertsil ODS-3 column (4.6 X 150
mm, 5 pwm; GL Sciences, Tokyo, Japan). The compo-
sition of the mobile phase was acetonitrile/water/am-
monium acetate/formic acid/triethylamine (400:600:

0.77:0.2:0.6 [vol/vol/wt/vol/vol]). The flow rate was 1

mL/min. Mass spectra were determined with an API
4000 tandem mass spectrometer (MDS Sciex, Concord,
Ontario, Canada) in the negative ion—detecting mode
at the atmospheric pressure—chemical ionization interface.
The turbo gas temperature was 600°C. The samples were
ionized by reacting with solvent-reactant ions produced by
the corona discharge (—5.0 pA) in the chemical ioniza-
tion mode. The precursor ions of pravastatin at mass-to-
charge ratio (m/z) 423.2, RMS-416 at m/z 423.2, and
R-122798 at m/z 409.2 were admitted to the first quadru-
pole (Q1). After the collision-induced fragmentation in the
second quadrupole (Q2), the product ions of pravastatin at
m/z 321.1, RMS-416 at m/z 321.3, and R-122798 at m/z
321.4 were monitored in the third quadrupole (Q3). The
peak area ratio of each compound to the corresponding
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internal standard was calculated with Analyst Software
(version 1.3.1; Applied Biosystems, Foster City, Calif).
The calibration curves were linear over the standard con-
centration range of 0.1 ng/mL to 100 ng/mL for pravasta-
tin and RMS-416 in plasma, 20 ng/mL to 2000 ng/mL for
pravastatin in urine, and 5 ng/mL to 500 ng/mL for
RMS-416 in urine.

Quantification of valsartan concentration in
plasma and urine. One hundred microliters of plasma
or urine was mixed with 100 pL internal standard
([*Hy]-valsartan in 50% methanol, 500 ng/mL; pre-
pared by Novartis Pharma, Basel, Switzerland) and 300
pl. 2% trifluoroacetic acid (TFA) aqueous solution.
The mixture was applied to a 96-well Empore Disk
Plate C18 SD (Sumitomo 3M, Tokyo, Japan); washed 3
times with 200 wL 1% TFA aqueous solution, 1% TFA
in 5% methanol, and 1% TFA in 20% methanol; and
eluted twice with 100 pL methanol. The eluate was
evaporated under nitrogen gas at 40°C, mixed with 100
nL (for plasma) or 400 pL (for urine) methanol/aceto-
nitrile/0.1% TFA (35:20:45 [vol/vol/vol]), and ultra-
sonicated for 3 minutes. Then, 5-pL aliquots were
injected into the liquid chromatography—tandem mass
spectromelry system. Separation by HPLC was con-
ducted with an Agilent 1100 Series system (Agilent
Technologies) with a Symmetry C18 column (2.1 X 30
mm, 3.5 um; Waters, Milford, Mass). The composition
of the mobile phase was methanol/acetonitrile/0.1%
TFA (35:20:45 {vol/vol/vol]). The flow rate was 0.2
mL/min. Mass spcctra were determined with an APL
4000 tandem mass spectrometer (Applied Biosystems)
in the positive ion—detecting mode at the electrospray
ionization interface. The turbo gas temperature was
500°C, and the spray voltage was 5500 V. The precur-
sor ions of valsartan at m/z 436.1 and [2H9]-valsartan at
m/z 445.1 were admitted to the first quadrupole (Q1).
After the collision-induced fragmentation in the second
quadrupole (Q2), the product ions of valsartan at m/z
291.1 and [ZH(,]—valsartan at m/z 300.1 were monitored
in the third quadrupole (Q3). The peak area ratio of
each compound (o the corresponding internal standard
was calculated with Analyst Software (version 1.3.1;
Applied Biosystems). The calibration curves were lin-
ear over the standard concentration range of 2 ng/mL to
5000 ng/mL for plasma and 20 ng/mL to 5000 ng/mL
for urine.

Quantification of temocapril and temocaprilat con-
centrations in plasma and urine. Two hundred micro-
liters of plasma was mixed with 200 pL internal stan-
dard ([ZHS]-temocaprﬂat, 10 ng/mL; preparcd by
Sankyo), 2 mL 0.1% formic acid, and 200 pL metha-
nol. Then, 500 pL urine was mixed with 200 pL
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intermal standard ([*Hs]-temocaprilat), 500 pL 0.5%
formic acid, and 500 pL. methanol. The mixture was
applied to a Sep-Pak Vac PS-2 cartridge (200 mg/3 mL)
(Waters), washed with twice with 3 mL distilled water,
and eluted twice with 3 mL methanol. The eluate was
evaporated under nitrogen gas at 45°C, mixed with 280
L methanol, and ultrasonicated for 3 minutes. Then,
120 pL 02% acetic acid was added, and 10-pL ali-
quots were injected into the liquid chromatography—
tandem mass spectrometry system. Separation by
HPLC was conducted with an Agilent 1100 Series
system (Agilent Technologies) with a Symmetry C18
column (2.1 X 150 mm, 5 pum; Waters). The compo-
sition of the 'mobile phase was methanol/water/acetic
acid (700:300:2 [vol/vol/vol]). The flow rate was 0.2
mL/min. Mass spectra were determined with an API
4000 tandem mass spectrometer (Applied Biosystems)
in the positive ion—detecting mode at the electrospray
ionization interface. The turbo gas temperature was
600°C, and the spray voltage was 5500 V. The precur-
sor ions of temocapril at m/z 477.0, temocaprilat at m/z
448.9, and [*H]-temocaprilat at m/z 454.0 were admit-

ted to the first quadrupole (Q1). After the collision-

induced fragmentation in the second quadrupole (Q2),
the product ions of temocapril at m/z 270.0, temocap-
rilat at m/z 269.8, and [*Hs]-temocaprilat at n/z 269.9
were monitored in the third quadrupole (Q3). The peak
area ratio of each compound to the corresponding in-
ternal standard was calculated with Analyst Software
(version 1.3.1; Applicd Biosystems). The calibration
curves were linear over the standard concentration
range of 0.5 ng/mL to 200 ng/mL. for temocapril and
temocaprilat in plasma, 1 ng/mL to 80 ng/mL for te-
mocapril in urine, and 5 ng/mL to 400 ng/mL for
temocaprilat in urine.

Uptake study by use of OATPIBI expression system.
The OATPI1B1l-expressing human embryonic kidney -
(HEK) 293 cells and vector-transfected control cells have
been established previously, and the transport study was
carried out as described previously.” Tritium-labeled val-
sartan and unlabeled valsartan were kindly donated by
Novartis Pharma, and carbon 14-labeled temocaprilat and
unlabeled temocaprilat were donated by Sankyo. Uptake
was initiated by the addition of Krebs-Henseleit buffer
containing radiolabeled and unlabeled substrates after
cells had been washed twice and preincubated with
Krebs-Henseleit buffer at 37°C for 15 minutes. The
Krebs-Henseleit buffer consisted of 118-mmol/L so-
dium chloride, 23.8-mmol/L: sodium bicarbonate, 4.8-
mmol/L potassium chloride, 1.0-mmol/L. potassium
phosphate [monobasic], 1.2-mmol/L. magnesium sul-
fate, 12.5-mmolL. N-[2-hydroxyethyl]piperazine-N'-
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[2-ethanesulfonic acid] (HEPES), 5.0-mmol/L glucose,
and 1.5-mmol/L calcium chloride adjusted to pH 7.4.
The uptake was terminated at a designated time by the
addition of ice-cold Krebs-Henseleit buffer after re-
moval of the incubation buffer. Cells were then washed
twice with | mL of ice-cold Krebs-Henseleit buffer,
solubilized in 500 pL of 0.2N sodium hydroxide, and
kept overnight at 4°C. Aliquots (500 pl) were trans-
- ferred to scintillation vials after the addition of 250 pL
of 0.4N hydrochloric acid. The radioactivity associated
. with the cells and incubation buffer was measured in a
liquid scintillation counter (LS6000SE: Beckman
Coulter, Fullerton, Calif) after the addition of 2 mL of
scintillation fluid (Clear-sol I: Nacalai Tesque, Kyoto,
Japan) to the scintillation vials. The remaining 50 pL of
cell lysate was used to determine the protein concen-
. tration by the method of Lowry et al'®* with bovine
serum albuminas a standard.

Transcellular transport study by use of double-
transfected cells. The transcellular transport study was
performed as reported previously by Sasaki et al.'® In
brief, Madin-Darby canine kidney II (MDCKII) cells
were grown on Transwell membrane inserts (6.5-mm
diameter, 0.4-pm pore size; Coming Coster, Boden-
heim, Germany) at confluence for 3 days, and the
expression level of transporters was induced with
5-mmol/L sodium butyrate for 2 days before the trans-
port study. Cells were first washed with Krebs-
Henseleit buffer at 37°C. Subsequently, substrates were
added in Krebs-Henseleit buffer either to the apical
compartments (250 wL) or to the basolateral compart-
ments (1 mL). After a designated period, the aliquot of
the incubation buffer in the opposite compartments
(100 pL from apical compartment or 250 pL from
basal compartment) was collected. The amount of
tritium-labeled estradiol-17B-glucuronide in the sam-
ples was determined by a liquid scintillation counter
(L.S6000SE; Beckman Coulter), and the amount of te-
mocapril and RMS-416 in the samples was determined
by liquid chromatography—mass spectrometry as de-
scribed later.

Quantification of temocapril concentration in
Krebs-Henseleit buffer. A 50-pL sample was mixed
vigorously with 250 pL of ethyl acetate. Two hundred
microliters of supernatant was collected, dried up by a
centrifugal concentrator (TOMY, Tokyo, Japan), and
dissolved in 40 pL dimethylsulfoxide. Thirty-
microliter aliquots were injected into the liquid chro-
matography—tandem mass spectrometry system. Sepa-
ration by HPLC was conducted with a Waters Alliance
2695 Separations Module with an L-column octadecyl-
silane (2.1 X 150 mm, 5 pwm; Chemicals Evaluation
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and Research Institute, Tokyo, Japan). The composition
of the mobile phase was acetonitrile/0.05% formic acid
(40:60 [vol/vol]). The flow rate was 0.3 mL/min. Mass
spectra were determined with a Micromass ZQ2000
mass spectrometer (Waters) in the positive ion—
detecting mode at the electrospray ionization interface.
The source temperature and desolvation temperature
were 100°C and 350°C, respectively. The capillary,
cone, and extractor voltages were 3200 V, 30 V, and 5
V, respectively. The cone gas flow and desolvation gas
flow were 65 L/h and 375 L/h, respectively. The mass
spectrometer was operated in the selected ion monitor-
ing mode by use of a positive ion, m/z 477.30 for
temocapril. The retention time of temocapril was ap-
proximately 3.7 minutes. Standard curves were linear
over the range of 3 to 300 nmol/L.

Quantification of RMS-416 concentration in Krebs-
Henseleit buffer. A 60-puL sample was mixed vigor-
ously with 60 L of methanol including internal stan-
dard (0.5 wg/mL R-122798; kindly donated by Sankyo)
and deproteinized by centrifugation for 10 minutes at
15,000 rpm at 4°C. Then, 50 pL of supernatant was
injected into the liquid chromatography-tandem mass
spectrometry system. Separation by HPLC was con-
ducted with a Waters Alliance 2695 Separations Mod-
ule with an Inertsil ODS-3 column (4.6 X 150 mm, 5
pm; GL Sciences). The composition of the mobile
phase was acetonitrile/ammonium acetate, 10 mmol/L
(pH 4) (40:60 [vol/vol]). The flow rate was 0.3 mL/min.
Mass spectra were determined with a Micromass
7Q2000 mass spectrometer (Waters) in the negative
ion~detecting mode at the electrospray ionization in-
terface. The source temperature and desolvation tem-
perature were 100°C and 350°C, respectively. The cap-
illary, cone, and extractor voltages were 3200 V, 20 V
and 5 V, respectively. The cone gas flow and desolva-
tion gas flow were 65 L/h and 375 L/h, respectively.
The mass spectrometer was operated in the selected ion
monitoring mode by use of respective positive ions, m/z
423.30 for RMS-416 and m/z 409.30 for R-122798
(internal standard). The retention time of RMS-416 and
R-122798 was approximately 3.6 minutes and 2.6 min-
utes, respectively. Standard curves were linear over the
range of 5 to 1000 nmol/L.

Pharmacokinetic and statistical analyses. The AUC
from time 0 to 24 hours (AUC,,,) was calculated by
the linear trapezoidal rule. Renal clearance (CL,) was
calculated by division of the cumulative amount of drug
in urine collected for 24 hours by AUC, ,,. All phar-
macokinetic data are given as mean * SD. Statistical
differences between the data for each haplotype group
were determined by ANOVA, followed by the Fisher
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Fig 1. Effect of organic anion transporting polypeptide (OATP) 1B1 haplotype on pharmacoki-
netics of pravastatin. Plasma concentration (conc)-time profiles of pravastatin after oral adminis-
tration of 10 mg pravastatin in OATPIBIxla/+]a subjects (squures, n = 5) and */b/*Ib subjects
(inverted triangles, n = 7) (A) and in *Ja/*15 subjects (triangles, n = 6) and *I1b/*15 subjects
(diamonds. n = 5) (B). Each point represents mean *+ SD. C, Box-whisker plot of area under plasma
concentration-time curve (AUC) of pravastatin in each haplotype group. The horizonral line within
each bnx represents the median. The box edges represent the lower (25th) and upper (75th) quartiles.
The whiskers extend from the lower and upper quartiles to the furthest data points still within a
distance of 1.5 interquartile ranges from the lower and upper quartiles. Individual data points were
overlaid on the box-whisker plot. Asterisk, Statistically significant difference shown by ANOVA
with Fisher least significant difference test (P < .05).

least significant difference test. P < .05 was considered
to be statistically significant. :

RESULTS

Effect of OATP1BI haplotype on pharmacokinetics
of pravastatin and its metabolite, RMS-416. After
oral administration of pravastatin, the plasma con-
centration of pravastatin in OATP/BI*Ib/+Ib sub-
jects was lower than that in */a/*la subjects (Fig 1,
A). Similarly, the plasma concentration in *Ib/*15
subjects was lower than that in *la/*15 subjects (Fig
1, B). The mean AUC,,, of pravastatin in */b/*]b
subjects was significantly lower than that in */a/*]a
subjects (65% of *la/*1a), and the AUC,,, in *1b/
*]5 subjects was significantly lower than that in
*la/x15 subjects (55% of *la/*15) (Fig 1, C, and
Table I). In addition, CL, was not significantly dif-
ferent among the haplotype groups (Table I). Prava-
statin was converted to RMS-416 by chemical
epimerization. We also calculated the concentration
of the sum of pravastatin and RMS-416 in plasma

and urine. The AUC,_,, value of the sum of prava-
statin and RMS-416 in *1b carriers tended to be
lower than that in *1q carriers, whereas this value in
*]5 carriers tended to be higher than that in non-*15
carriers (Table I). The CL, calculated from the sum
of pravastatin and RMS-416 was not markedly dif-
ferent between each haplotype group.

Effect of OATP1B1 haplotype on pharmacokinetics
of valsartan. After oral administration of valsartan, the
plasma concentration of valsartan in OATPIBI*1b/x1b
subjects was lower than that in *Ia/*la subjects (Fig 2,
A) and the plasma concentration in */b/*15 subjects
was lower than that in *Ja/*/]5 subjects (Fig 2, B).
Although the difference did not reach statistical signif-
icance, the mean AUC,,, of valsartan in *Ib/*1b sub-
jects tended to be lower than that in *la/*la subjects
(73% of *1a/*1a), and the AUC, ,4 in *1b/*15 subjects
was significantly lower than that in *Ja/*15 subjects
(67% of *la/x15) (Fig 2, C, and Table I), exhibiting a
trend similar to pravastatin. The CL, was almost the
same in each haplotype group (Table I).





