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Biosynthesis and Transmission of Abnormal Prion Protein

Motohiro Horiuchi

Laboratory of Prion Diseases, Graduate School of Veterinary Medicine, Hokkaido University
Kita 18 Nishi 9, Kita-Ku, Sapporo 060-0818, Japan

Transmissible spongiform encephalopathies (TSEs), also called prion diseases, are fatal neurodegenerative dis-
eases including scrapie in sheep and goats, bovine spongiform encephalopathy, and Creutzfeldt-Jakob disease (CJD)
in humans. The causative agent of prion diseases, often called as prion, is composed mainly of pathogenic conform-
ers (PrPS) of a host protein called cellular prion protein (PrP€). The direct interaction of two PrP isoforms includ-
ing PrPSc.dependent conversion of PrPC is thought be a central event in pathogenesis of prion disease. Although the
molecular mechanism of conversion is not yet fully understood, studies using neuronal cells persistently infected
with prion have been disclosed many important aspects of the biosynthesis of PrPSc. For instance, the mature PrP¢
expressed on the cell surface acts as a substrate for PrP5¢ formation, and a process that involves a conformational
transformation takes place in subcellular compartments associated with the degradation pathway of PrPC, including a
sphingolipid-rich membrane microdomain, called a lipid raft and acidic compartments such as endosomes. Studies
using in vitro conversion reactions have suggested that the conversion process is akin to autocatalytic polymerization
and provided evidences on the binding domain being involved in the PrPC-PrPSc interaction. Furthermore, in vitro
conversion reaction using membrane-associated PrPC and PrP*¢ revealed that insertion of PrPS¢ into the host mem-
brane would be prerequisite to the induction of PrPC conversion. More recently, it was reported that exosomes
would involved in the transmission of prion to recipient cells. These recent lucid findings provide a new insight into
the biosynthesis and transmission of prion. However, there are still many things remains to be elucidated for com-
plete understanding of the biosynthesis of PrPS¢ and the full identity of prion itself.

Key words : prion protein / conversion / lipid raft ~ multivesicular bodies
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Inherited & sporadic prion disease
{Spontaneous formation of PrPs seed}

- Fig. 1 Model for prion propagation.

Invasion of exogenous PrP%¢ oligomer (infection)
causes infectious prion disease. Incoming exoge-
nous PrPSe binds PrP¢ (or its unfolded intermedi-
ate, PrPV) and then PrP€ is converted into new
PrP%¢. Incoming PrPSe acts as a seed for the conver-
sion process. On the other hand, spontaneous for-
mation of PrP% seed from PrPC or PrPU initiates
inherited and sporadic prion diseases. Once stable
PrPSc seed is generated, the following conversion
process is the same as that in the infectious prion
disease.

7F FEIET CICERMBECRIT TS, 0k ANk
DY VEIIEBREEN L. ERTCEIEOD 22-
237 IJERDOBEFEE GPIT v h —fHh0, 5FPISSiE
EDORRK, By /) — ABMEHOMNMAERE 5. —
HDOPrPC, BELLELLH Y /2 F et o/
PrPCIZER% @B TETICERFFHEL Y X5 s
TV —LARTHMENDEY, INIEBERLBET
BEEHEHEA L ABH S BB PrPCIE GPL T > 7 — B
BEOE L CHREREICEET 5. PrPCidme s
BRENB AR S vy (Table 3). ML E125%
BLUIHRARPPCII T Y FY A4 M~ 212 % b ke
I AENE, 7520 VB/RNEE AT 58
BEIET TR VBB ENT HREND D L&
ZbN TS24 MHIIRIZEL Y A F 7 PrPCIE N
KD M) I 7Py, MMFBEOT I Bl
THIlr &, PrPCRgEl0%EE % 61418 kDa D+
DRTFIHBELEY, ZOYEEA 71 v TfE &
AVATU—NVIECHBERNASIY (57 35
WA T) TRIDY, gtk ursar Ty
—EPEETELEDOFELHB67, ZOSBREE
Wy FF—VLEEZONLHET Y /$— F 2
YETHBENGST0, MEPIZELD 3A F L7 PrPC
D—ETETHRBEICIY A 2 083 ns 9,

PrPCIZ R PrPSe D e Ak & SR IEFEE IZ B W
(Table 3). PIPLCHLEE|Z X ) MA@ 5T 5
PrPC &2 frkd 5L, 74 VEERAMBIZBIT S

MaturePrp®

Lipid raft
Pse
O (>
Proteolysis o =)

PrPCN.terminal
o4
o

Nucleus

Fig.2 Biosynthesis of prion protein in the cells.
PrPC matures during the secretory pathway and
expressed on the cell surface as GPl-anchoring pro-
tein. In the lipid raft and/or acidic compartments
such as endosome, N-terminal part of PrPC was par-
tially proteolysed, and then degradated. Initial inter-
action between PrPC and PrPSc is believed to take
place in lipid raft, and the conversion of PrPC to
PrPS occurs along a degradation pathway, possibly
in lipid raft and/or acidic compartments. PrPSc is
accumulated in the secondary lysosome.
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PFig. 3 Conversion of membrane associated PrP¢ (an epito-
me of Baron et al., 2002%).
A. No conversion occurred when PrP¢ (in DRMs)
and PrPS (in microsome) were inserted into the
separate membranes. B. PrP¢ could be converted if
PrPC was released from DRMs by PIPCL treatment.
C. Conversion took place if PrP¢ and PrPSc were
inserted into the same membrane surface by PEG-
induced fusion between DRMs and microsome.

#3520, ZORGH (in vitro conversion) THEAE
S N7z [3S]PrPres [ BENICHFIET A PrPSe & F 0
AALFWIRZRTA, BEEPFRIL 2w &h b,
PrPSe L gt IC X B3 % BBE T PrPres & 37 5.
PrPres ~O#x#iid seed & 72 5 PrPSCIKFE L THE Y,
seed & % 5 PrPSe O I VERIRTE M IZ T = ¢
B0, TV MREOEDELFBHTE S L 2w,
MR 2 PrPSe o A bR O B TE L I L Y
6 W, HAHFEEin vivo THE & T 5 PrP¢ — Prpse
DEREN e BB L2RBERTH L. ZOREH
T, PrP5c & PrPC oA DR Y: - BIRMEIZEH T
722 bhn, PrPC L PrPSc 4By 2 #5447 PrP°
5 PrPe~ OB EIRB~DE—BERTH LT &,
PrPC B PrPSed Lt 7% —IZH YD 9 5 2 & ASREE S
-,

in vitro conversion (& T & D PrP¢ & iE# PrPSc %
FRALTWDEH, MLV D VIT MRS Z

T, PrPCRED LB S5 LRGSR D o /2.
SOITHEBRBENZ LT, BICATHE L 72 PrPC & Prpse
#RML, FVZFL 7)) a—VTDRMs & 37
Oy — LB E &5, PrPC A PrPres [CERfft
L7: (Fig. 3). PrPCO CREM TR INE FA 4
YIIPP L DIEE IS T A EOTRIC L AEE
HEREBELSRENTWEY, MBEECESL
PrPC o CRmANIMPBIZ L 2 VRBEED 2012,
BAEBHBELEICH L PP L EETE R WIS D
A, L LE—JEEIZPrPC & PrPSe S5 E$ 5 = &
T, PrPC & PrPSen & &M gL 2 b, #FDH PrP°©
A PrPres ~EMEEBRT 2000 Lk, T 0K
B3, in vivo TIZEHMIZ PrPC & PrPSe s B Ay 1245
ETAHIEDPRBRICOE—BER TR, METAH
TEHERBLORMENE—BERTHALILETET S
EEHIT, BB TOPPSOEE %2 5 FTEE
TR TH D,

5. U7 OB OEE

T F Y OERBAD O RSN OEELT E 2
PBE, TV EA R L D KE, MY Sk
NBLLEEHL, FORAZ LA E—DEES, HK
RETEEON— P CRRESEKILT A, OV—}
THRORATNAT Y F L, /84 TIVEME EOH
ALEMRGE Y v 33 E (GALT) »5ERICEALT
GALT D M RaMF KA THE5E U 7298, RAEMHRES 59
T & B CERERICHET 2R, BLUXRH
> b R EME T ETERBICEET 2K T, &
TR RAEANBET 5 29, REEARED S PiRE
RHBANEAT IR, —EYF7AMBREBL
iR 5%, PPl &L H LTy 7 A
BIFE % @l L CROMBHMIEAELDOTH A H ?



82 HEW I BEMT YA VEAEOEARLIRE

Initiation of
b, CONversion

invasination

Fig.4 Possible mechanisms of transmission of PrPs¢ from
infected cell to uninfected cell (an epitome of Baron
et al., 200229 ; Fevrier ef al., 20043, 2005%). Prpse
transits to endocytic compartments and invasination
of endosome membrane forms IVLs bearing Prpse
(1) during MVBs formation (2). IVLs bearing
PrPS¢ are secreted into extracellular milieu as exo-
somes (3). The exosomes would be fused to the
membrane of recipient cells (4) and the fusion
would allow the interaction between PrP¢ and PrPSc
on the membrane of recipient cell (5).
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Human prion diseases, such as Creutzfeldt—Jakob disease (CJD), a lethal, neurodegenerative
condition, occur in sporadic, genetic and transmitted forms. CJD is associated with the
conversion of normal cellular prion protein (PrP®) into a protease-resistant isoform (PrP™s).

The mechanism of the conversion has not been studied in human cell cultures, due to the lack
of a model system. in this study, such a system has been developed by culturing cell lines.
Human glioblastoma cell line T98G had no coding-region mutations of the prion protein gene,
which was of the 129 M/V genotype, and expressed endogenous PrPC constitutively. T98G cells
produced a form of proteinase K (PK)-resistant prion protein fragment following long-term culture
and high passage number; its deglycosylated form was approximately 18 kDa. The PK-treated
PrP™* was detected by immunoblotting with the mAb 6H4, which recognizes residues 144-152,
and a polyclonal anti-C-terminal antibody, but not by the mAb 3F4, which recognizes residues
109-112, or the anti-N-terminal mAb HUC2-13. These results suggest that PrP was
converted into a proteinase-resistant form of PrP™® in T98G cells.

INTRODUCTION

Fatal human prion diseases, including sporadic Creutzfeldt—
Jakob disease (CJD), inherited prion diseases, iatrogenic
CJD, kuru and variant CJD, are transmissible spongiform
encephalopathies that are characterized by the formation
and accumulation of an abnormal isoform of prion protein
(PrP) in the brain (Prusiner, 2001). The PrP™ isoform is
an insoluble aggregate that is resistant to proteinase K (PK)
digestion. The conversion from cellular prion protein (PrP®)
into PrP™ could be a potential therapeutic target for prion
diseases, but the mechanism of the conversion is unclear.

Several animal cell lines, including mouse neuroblastoma
cells (Butler et al., 1988; Race et al, 1987), mouse hypo-
thalamic neuronal cells (Nishida et al., 2000; Schiitzl et al.,
1997), mouse Schwann cells (Follet et al., 2002) and rat
pheochromocytoma cells (Rubenstein et al, 1984), have
been infected successfully with scrapie agents, and a human
neuroblastoma cell line can also be infected with CJD agents
(Ladogana et al., 1995). These cells have been used to study
the conversion mechanisms (Lehmann & Harris, 1997) and
the subcellular localization (Naslavsky et al., 1997; Vey et al.,
1996) of PrP™ and to evaluate therapeutic agents (Caughey

& Raymond, 1993; Doh-Ura et al, 2000). However, the
efficiencies of infection and propagation of PrP™ are
relatively low. The mouse cell line SMB was established
from a scrapie-infected mouse brain (Clarke & Haig, 1970)
and has been used to study the properties of PrP (Birkett
et al, 2001). Recently, stable cell lines were established
from mouse peripheral neuroglial cells expressing ovine
PrP and simian virus 40 T antigen. These cells were readily
infectible by sheep PrP%, a scrapie isoform of PrP (Archer
et al., 2004). However, there are currently no human cell
lines that have been used to study the conversion
mechanism from PrP€ into PrP™.

PrP mRNA is expressed not only in neurons, but also in glia
(Moser et al., 1995) and PrP5¢ accumulates in the cytosol
and cell-surface membrane of glial cells (van Keulen et 4.,
1995). The role of glial cells in prion disease is not clear.
Human glioblastoma T98G cells, like normal cells, become
arrested in G; phase under stationary-phase conditions
(Stein, 1979). In a previous study, we showed that T98G
cells express PrP® mRNA constitutively and produce a high
level of endogenous PrP€ in G, phase (Kikuchi et al., 2002).
In the present study, we have investigated whether PrP® is
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converted into PrP™, a marker for prion diseases, in
cultured T98G cells under various conditions.

METHODS

Materials. A primer set for the human PrP coding sequence (CDS)
(GenBank accession no. AL133396) [5'-CGAGGCAGAGCAGTCA-
TT-3, starting 18 nt before the ORF, and 5'-AGATGGTGAAAAC-
GAGAAGAC-3', ending 6 nt after the ORF (expected product size,
806 bp)] and an internal primer set (5'-GGCAGTGACTATGAG-
GACCGTTAC-3’ and 5’-GTAACGGTCCTCATAGTCACTGCC-3,
corresponding to nt 424-447 relative to the start site of the ORF)
were synthesized chemically. Peptide N-glycosidase F (PNGase F)
and BsaAl were purchased from New England Biolabs and RPMI
1640 medium was purchased from Nissui Pharmaceutical. A BCA
protein assay kit and SuperSignal West Femto Maximum Sensitivity
substrate were from Pierce Biotechnology. Hybond-P PVDF mem-
branes were purchased from Amersham Biosciences. Anti-human
PrP mAb 3F4 was purchased from Signet Laboratories and 6H4
from Prionics AG. Fetal calf serum (FCS), horseradish peroxidase
(HRP)-conjugated goat anti-mouse IgG, HRP-conjugated goat anti-
rabbit IgG, HRP-conjugated rabbit anti-chicken IgG, aprotinin,
leupeptin, PMSF, 4-methylumbelliferyl-g-D-galactoside (4-MUG)
and mouse IgG were purchased from Sigma. PK was purchased
from Merck and 4-(2-aminoethyl)-benzenesulfonyl fluoride hydro-
chloride (AEBSF) from Roche Diagnostics. SuperScript II reverse
transcriptase and random primers were purchased from Invitrogen.
B-Galactosidase-conjugated goat anti-mouse IgG was purchased
from American Qualex, DNase I from Takara, KOD-Plus-DNA poly-
merase from Toyobo and 1,4-diazabicyclo[2.2.2]Joctane (DABCO)
from Nacalai Tesque.

Preparation of antibodies. The preparation of chicken mAb
HUC2-13 (IgG) against human PrP peptide residues 2549 was
reported previously (Matsuda et al, 1999). The preparation of
rabbit polyclonal antibody HPC2 (IgG) against human PrP peptide
residues 214230 was also reported previously (Kikuchi et al.,, 2002).

Cell culture. Human glioblastoma cell line T98G (JCRB9041) at
nominal passage level 433 was provided by the Japanese Cancer
Research Resources Bank (Tokyo, Japan). Human astrocytoma
U373MG cells were kindly provided by Dr T. Kasahara (Kyoritsu
College of Pharmacy, Tokyo, Japan). Cell cultures stored in liquid
nitrogen were thawed as passage 0 (P0) and cultured at 37°C in
monolayers on a T75 plastic tissue-culture flask in RPMI 1640
medium supplemented with 10% (v/v) heat-inactivated FCS, 60 ug
kanamycin ml™' and 10 mM HEPES/NaOH, pH 7:2. All cell lines
were subcultivated routinely at a 1:5 or 1:10 split ratio once a
week.

PCR direct sequencing and RFLP analysis. Extraction of total
RNA from the cells and RT-PCR analysis were performed according
to a published method (Kikuchi et al, 2002) with slight modifica-
tions. Briefly, 5 ug total RNA was treated with DNase I for 15 min
at room temperature. Random primers and SuperScript II reverse
transcriptase were added to 20 pl (2'5 ug total RNA) and the
mixture was incubated at 42°C for 60 min to synthesize ¢cDNA.
Subsequently, 10 pl cDNA solution was subjected to PCR in a total
volume of 50 ul, which included 0-2 mM dNTPs, 1 mM MgSO,,
1 U KOD-Plus-DNA polymerase and 50 pmol sense and antisense
primers. The amplification programme was as follows: denaturation
at 94 °C for 20 s, annealing at 60 °C for 30 s and elongation at 68 °C
for 60 s for 40 cycles. Final elongation was performed at 68 °C for
1 min. PCR was carried out in a GeneAmp PCR system 2400
(Applied Biosystems). PCR direct sequencing was performed with a

CEQ 2000XL DNA Analysis system (Beckman Coulter) using the
primer set for human PrP CDS and an internal primer. Codon 129
polymorphisms were detected by RFLP analysis; the PCR product
(200 ng DNA) was digested with 5 U BsaAl for 60 min at 37°C;
after incubation for 20 min at 80°C, restriction fragments were
separated by electrophoresis in 2% agarose gels and visualized
following ethidium bromide staining.

Preparation of whole-cell lysates. All cell lines were plated at
50 10° cells per 9 cm dish (55 cm?) in 10 ml medium on day 0
(D0). The medium was changed every 4 days. At the indicated
times, cells were washed twice with ice-cold PBS and scraped into
lysis buffer [1-8 x 10* cells ul™%; 10 mM Tris/HCl (pH 7-5), 150 mM
NaCl, 1% sodium deoxycholate, 0-1% SDS, 1% NP-40, 10 mM
NaF, 1 mM EDTA, 0-5 mM Na;VO;, 10 mM tetrasodium pyrophos-
phate] with protease inhibitor cocktail [0-06 trypsin inhibitor units
(TIU) aprotinin ml™", 20 uM leupeptin and 1 mM PMSF]. After
sonication, insoluble material was pelleted by centrifugation at 500 g
for 15 min at 4 °C to yield whole-cell lysates. Protein concentration
was determined by the BCA protein assay.

Subcellular fractionation. At the indicated times, cells were
washed twice with ice-cold PBS and scraped into PBS/2:5 mM
EDTA with the protease inhibitor cocktail. After sonication, insoluble
material was pelleted by centrifugation at 500 g for 15 min at 4°C
to yield homogenates. The postnuclear fraction was centrifuged at
100000 g for 60 min at 4°C to obtain a cytosolic fraction and a
membrane fraction. The membrane fraction was dissolved in PBS/
2-5 mM EDTA with the protease inhibitor cocktail. Protein concen-
tration was determined by the BCA protein assay.

Detergent solubility test. A detergent solubility test was carried
out according to a described method (Capellari et al, 2000) with
slight modifications. Cells were washed twice with ice-cold PBS and
scraped into PBS/2-5 mM EDTA with the protease inhibitor cocktail.
After sonication, insoluble material was pelleted by centrifugation at
500 g for 15 min at 4 °C to yield homogenates. The postnuclear frac-
tion was dissolved in 9 vols 0-5% NP-40/0-5% deoxycholate/PBS
with the protease inhibitor cocktail and centrifuged at 100000 g for
60 min at 4°C to obtain a detergent-insoluble pellet fraction and a
soluble supernatant fraction. The supernatant fraction was precipi-
tated with 4 vols methanol for 16 h at —~20 °C. Both fractions were
resuspended in the same volume of lysis buffer.

Protease-resistant PrP assay. To generate material for the
protease-resistant PrP assay, aliquots of the sample (50 ug protein)
were precipitated with 4 vols methanol for 16 h at —20°C to
remove the protease inhibitor cocktail (Capellari et al., 2000), centri-
fuged at 14000 g for 15 min at 4 °C and the pellet was dissolved in
50 mM Tris/HCl (pH 7-2). Samples were treated with PK (at
10 pg ml™" unless stated otherwise) at 37 °C for 30 min, according
to a described method (Caughey et al, 1999). After incubation,
digestion was stopped by the addition of AEBSF to 4 mM. Samples
were prepared with the protease inhibitor cocktail at a concentration
that did not inhibit the activity of PK (Fig. 1a, lane 1).

Enzymic deglycosylation. For the removal of Asn-linked oligo-
saccharides, aliquots of whole-cell lysates were treated with PNGase
E as follows (Kikuchi et al, 2002): lysates (50 pg protein) were dena-
tured by boiling for 10 min in 0-5% SDS, 1% 2-mercaptoethanol.
After addition of NP-40 to 1%, the lysates were incubated at 37°C
for 2 h with 0-77 TUB mU PNGase F in 50 mM phosphate buffer
(pH 7-5).

Immunoblotting. Usually, 50 pg total protein (prepared from
approximately 1-7x 10° cells) was subjected to SDS gel electro-
phoresis. Briefly, aliquots of the samples were mixed with 2x elec-
trophoresis sample buffer. After boiling for 10 min, the samples
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Fig. 1. Formation of a protease-resistant form of PrP in T98G cells is increased in a long-term incubation after repeated
passages. T98G cells and U373MG cells were incubated under the following conditions with 10% FCS/RPMI 1640 and
whole-cell, methanol-precipitated lysates (50 pg protein) were treated with PK (10 ug mI™ unless stated otherwise) at for
30 min at 37 °C. (a) T98G cells were incubated for 38 days after 3 passages (P3D38); lysates were treated with PK (lane 1)
or left undigested (lane 2). (b) T98G cells were incubated for 39 days after 13 passages (P13D39); lysates were treated with
10, 20 or 30 pg PK mi™" (lanes 1-3) or left undigested (lane 4). (c) U373MG cells were incubated for 38 days after 11
passages (P11D38); lysates were treated with PK (lane 1) or left undigested (lane 2). (d) T98G cells were incubated for
160 days after 3 passages; lysates were treated with PK (lane 1) or left undigested (lane 2). PK-treated lysates were
subjected to immunoblot with the 6H4 antibody as described in Methods.

were electrophoresed on 12-5% acrylamide gel and the proteins
were transferred onto PVDF membranes. The membranes were
blocked with 0-5% casein in PBS (casein/PBS) and incubated with
anti-prion antibodies in casein/PBS. Immunoreactive bands were
visualized with HRP-conjugated anti-IgG and SuperSignal West
Femto Maximum Sensitivity substrate, according to the manufac-
turer’s instructions (Pierce Biotechnology).

Indirect immunofluorescence staining. T98G cell monolayers
grown on a 15 mm glass coverslip (Matsunami) in a 9 cm dish
(55 cm?) were maintained in 10 ml medium. At the indicated times,
cells were washed twice with ice-cold PBS and then fixed with 3-7 %
formaldehyde in PBS for 30 min at 4 °C. The fixed cells were washed
twice with PBS and then treated with 0-2 % Triton X-100 in PBS for
15 min at room temperature. The cells were blocked with 10%
normal goat serum in PBS (NGS/PBS) for 60 min and incubated
with antibody (100 ng ml™") for 16 h at 4 °C. After extensive wash-
ing with 0-05% Tween 20/PBS, cells were treated with Alexa 594
goat anti-mouse IgG (H+L) conjugate (5 ugml™?) (Molecular
Probes) in NGS/PBS for 1 h at 4°C, washed with 0-05% Tween
20/PBS and mounted with 2-5% DABCO/90% glycerin/PBS. The
stained cells were observed and photographed with the aid of a
fluorescence microscope (Olympus)..

Competitive ELISA. ELISA was carried out according to a method
described previously (Kikuchi et al, 1991). For a dilution buffer,
casein/PBS was used throughout the present study. Briefly, the wells
were coated with 100 ng recombinant bovine PrP (rBoPrP) (Takekida
et al., 2002) in PBS and left at 4 °C overnight. Appropriately diluted
standard rBoPrP solutions or samples were added to the antigen-
coated wells and incubated at room temperature for 60 min, in a
total volume of 50 pl, with 6H4 antibody (460 pg). The wells were
washed, incubated with f-galactosidase-conjugated goat anti-mouse
IgG for 60 min, washed again and then incubated with 4-MUG as a
substrate at 37 °C for 60 min. Enzyme activity was determined by
fluorescence intensity measurements.

RESULTS

Production of protease-resistant isoform of PrP
in T98G cells

We analysed whole-cell lysates of long-term cultured T98G
cells by immunoblotting with anti-PrP antibodies. When
we cultured the cells for 38 days after 3 passages [passage 3,
day 38 (P3D38)], the lysates revealed two bands (35 and
31 kDa) that reacted with mouse anti-human PrP. mAb
6H4 (Fig. 1a, lane 2) and were destroyed completely after
digestion with PK (Fig. 1a, lane 1). When lysates from cells
that were cultured for 39 days after 13 passages [passage
13, day 39 (P13D39)] were digested with PK (10, 20 or
30 pg ml™Y), the 35 kDa band, but not the 31 kDa band,
was diminished (Fig. 1b), indicating the presence of PrP™,
We then attempted to detect PrP™ formation in long-
term cultures of another human glial cell line, U373MG, an
astrocytoma line that expresses consistently high levels of
PrP¢ mRNA (Satoh et al., 1998). The lysates from P11D38
U373MG cells exhibited the 31 kDa band that reacted with
the 6H4 antibody and disappeared after digestion with PX
(Fig. 1c). Lysates from P3D150 T98G cells showed a faint
31 kDa band after PK treatment (Fig. 1d). In contrast,
P13D39 T98G cells had produced highly PK-resistant PrP.
These data indicated that PrP™ propagation in T98G cells
required not only long-term culture, but also a high passage
number.

Examination of phenotypic variants of PrP™*

We first asked whether an inherited or a sporadic CJD-like
form of PrP™° was propagated in T98G cells. Inherited prion
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diseases are determined by mutations in the 762 bp CDS
of the prion protein gene (PRNP) (Kovacs et al, 2002).
We performed PCR direct sequencing of the PRNP
mRNA that was expressed in short- and long-term cultured
T98G cells and found no mutations other than the pres-
ence of both adenine and guanine at the first position
of codon 129 (the basis of the common M129V poly-
morphism) (data not shown). When digested by BsaAl, the
806 bp PCR product from the M129V haplotype (Fig. 2a,
lane 1) yielded products of 402 and 404 bp and also
undigested wild-type product (Fig. 2a, lane 2), which we
confirmed by RFLP analysis. These results indicated that
T98G cells were heterozygotes, having both methionine
and valine at codon 129 of PRNP with no coding-region
mutation.

Next, to estimate the size of the deglycosylated PrP™, we
treated the lysates from P40D40 T98G cells with PK and/or
PNGase F. PNGase F yields a full-length (25 kDa) and an
N-terminally truncated (18 kDa) form of PrPC (Kikuchi
et al., 2002). As shown in Fig. 2b, PNGase F treatment
reduced the glycosylated 35 and 31 kDa bands (lane 4) to
25 and 18 kDa (lane 3), representing the deglycosylated
full-length and N-terminally truncated forms. An addi-
tional PNGase F treatment changed fully glycosylated
(31 kDa) and partially glycosylated (23 kDa) forms of
PrP™, detectable after digestion with PK (lane 2), to an
unglycosylated form of 18 kDa (lane 1). These results
established that the size of the deglycosylated PK-resistant
fragment in T98G cells was approximately 18 kDa.

Confirming heterogeneity of PrP™* by
immunoblotting with sets of anti-PrP antibodies

To further investigate the heterogeneity of PrP™ from
long-term cultured T98G cells, we determined the anti-
genicity of PrP™. By immunoblotting with sets of anti-
bodies to PrP (Kikuchi et al., 2002), we detected a full-length
PrP (35 kDa) in lysates from P40D40 T98G cells that
reacted with the anti-N terminus PrP antibody HUC2-13
(Fig. 3a, lane 2), as well as with the 6H4 antibody (Fig. 3c,
lane 2). Following PK treatment of the lysates, the 31 kDa
band was still detected by 6H4 antibody (Fig. 3¢, lane 1),
but not by HUC2-13 antibody (Fig. 3a, lane 1), indicating
that PK treatment had cleaved the N terminus of PrP™.
The 31 kDa band was also detected by the anti-C terminus
PrP antibody HPC2 (Fig. 3d, lane 1). HPC2 antibody, which
reacts strongly with the deglycosylated form of PrPS, but
weakly with the glycosylated form (Kikuchi et al., 2002),
also recognized the N-terminally truncated form of PrP™.
Surprisingly, the 3F4 antibody, which recognizes residues
109-112, failed to detect the N-terminally truncated form
of PrP™ (Fig. 3b), such as is seen with the HUC2-13
antibody (Fig. 3a). These experiments showed that the N-
terminally truncated form of PrP™ in T98G cells lacks the
epitope that is recognized by the 3F4 antibody.

Subcellular localization and detergent solubility
of PrP™® in T98G celis

To determine the subcellular localization of PrP™, we
studied the distribution of PrP in P40D40 T98G cells

(a) (b)

1
PK + + - =
PNGaseF + - + -
- +
BsaAl

Fig. 2. Molecular analysis of PrP™® in T98G cells. (a) Detection of polymorphism at codon 128 on PrP mRNA in T88G cells.
T98G cells were incubated with 10% FCS/RPMI 1640 for 5 days after 43 passages (P43D5) and total RNA was prepared,
reverse-transcribed and PCR-amplified as described in Methods and digested with BsaAl (lane 2) or left undigested (lane 1).
A DNA size marker (100 bp ladder) is shown on the left. (b) Analysis of deglycosylated forms of PrP in T98G cells. T98G cells
were incubated with 10% FCS/RPMI 16840 for 40 days after 40 passages (P40D40); whole-cell, methanol-precipitated
lysates were treated with PK (lanes 1 and 2) or left undigested (lanes 3 and 4). All lysates were incubated with (lanes 1 and 3)
or without (lanes 2 and 4) PNGase F for 120 min. PK-treated lysates were subjected to immunoblot with the 6H4 antibody as

described in Methods.
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Fig. 3. Immunoblot analysis using anti-PrP antibodies for the protease-resistant form of PrP in T98G cells. T98G cells were
incubated with 10% FCS/RPMI 1640 for 40 days after 40 passages (P40D40); whole-cell, methanol-precipitated lysates
were treated with PK (lane 1) or left undigested (lane 2). PK-treated lysates were subjected to immunoblot with the HUC2-13
(a), 3F4 (b), 6H4 (c) or HPC2 (d) antibodies as described in Methods. Epitope recognition sites located within PrP are shown

as amino acid numbers.

by indirect immunofluorescence staining. Immunoreactive
PrP with 6H4 antibody was observed on the cell surface as
a bright fluorescent signal (Fig. 4a), whereas little signal
was observed with mouse IgG, a control antibody purified
from normal mouse serum (data not shown). We next
prepared membrane and cytosolic fractions from homo-
genates of P40D40 T98G cells and measured the amount
of PrP by competitive ELISA using the 6H4 antibody. PrP
was recovered predominantly in the membrane fraction
(Table 1). As shown in Fig. 4b, the distribution of PrP*™ in
P40D40 T98G cells (left panel) was similar to that of PrP©

in P3D36 T98G cells (right panel); PrP™ was detected in
the membrane fraction (left panel, lane 3), as well as in
homogenates (left panel, lane 1), but no PrP was detected
in the cytosolic fraction (left panel, lanes 5 and 6). These
data indicated that most PrP™ was in the membrane
fraction, probably on the plasma membrane. To test the
detergent solubility of PrP, the homogenates of P40D40
T98G cells were centrifuged in non-ionic detergents. A
large proportion of immunoreactive PrP was found in
the supernatant fraction (Fig. 4¢, lane 3), but no PrP
was detected in the pellet fraction (Fig. 4c, lane 2). These

@) (b)

PK + - + - + =
Fraction homo mem cyto
Cells P40D40

(©
1234 5 6 K2 123 Q°
- o | e 3
- ® - & 8o
s o5
-144
—14-4 )
+ = o+ = 4 - Fracton H P S
homo mem cyio
P3D36

Fig. 4. Subcellular localization and detergent solubility of PrP™* in long-term cultured T98G cells. T98G cells were incubated
with 10% FCS/RPMI 1640 in the long-term incubation after repeated passages. (a) T98G cells for 40 days after 40
passages (P40D40) on a 15 mm glass coversfip were subjected to indirect immunofluorescence staining with the 6H4
antibody as described in Methods. Bar, 10 um. (b) T98G cells for 40 days after 40 passages {(P40D40, left panel) and for
36 days after 3 passages (P3D36, right panel) were scraped into PBS/2:5 mM EDTA and sonicated. Homogenates (homo)
were separated into a membrane fraction (mem) and a cytosolic fraction (cyto). Methanol-precipitated lysates were treated
with PK (lanes 1, 3 and 5) or left undigested (lanes 2, 4 and 6). PK-treated samples were subjected to immunoblotting with
the 6H4 antibody as described in Methods. (c) T98G cells for 40 days after 40 passages (P40D40) were scraped into PBS/
2-5 mM EDTA and sonicated. Homogenates (H) of 50 pg protein were centrifuged as described in Methods to obtain a non-
ionic detergent-insoluble pellet (P) and a soluble supernatant fraction (S). Homogenates, pellet and supernatant fractions
(50 pg protein each) were subjected to immunoblot with the 6H4 antibody as described in Methods.
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Table 1. Subcellular localization of PrP in long-term cul-
tured T98G cells

The amount of PrP is expressed as recombinant bovine PrP
equivalents per 107 cells. Values are means-+SEM (n=4).

Sample PrP content

pmol %
Homogenate 26344209 100-0
Membrane fraction 228-9+17-5 86-9
Cytosolic fraction 9:94-0-5 3-8

experiments indicated that PrP™ in T98G cells was non-
ionic detergent-soluble.

DISCUSSION

The mechanism of the conversion of PrP has not been
studied in human cell cultures, due to the lack of a model
system. In the present study, we developed such a system
by culturing human glioblastoma T98G cells, which express
endogenous PrPC constitutively. After reaching a high
passage number, long-term cultured T98G cells converted
PrPC into PrP™.

Direct sequencing of amplified PRNP mRNA and RFLP
analysis indicated that the T98G cells were heterozygotes
at codon 129 (129M/V) and that no new coding mutations
were present in cells that had been subjected to long-term
cultures. The deglycosylated form of PK-treated PrP™ in
T98G cells migrated at approximately 18 kDa. In human
prion diseases, two major types of PrP™ can be identified,
based on electrophoretic migration; the relative molecular
mass of the unglycosylated form is approximately 21 kDa
(described as type 1) or 19 kDa (described as type 2) (Parchi
et al., 1997). Accordingly, PrP™ in T98G cells is similar to
the previously described MV2 phenotypic variant (Parchi
et al., 1999a). However, the size of the deglycosylated PK-
resistant fragment in T98G cells was smaller than that of
the corresponding fragments observed in type 2 PrP™.
Most importantly, the 3F4 antibody, which is a well-
characterized antibody known to target residues 109-112
as its epitope (Kascsak et al., 1987; Matsunaga et al., 2001),
did not react with PK-digested PrP™ in T98G cells, sug-
gesting that the N-terminal PrP region up to residue 109
might be absent in PK-treated PrP™ in T98G cells. Human
PrP™ peptide is divided into three regions that are defined
by their PK-cleavage patterns: an N-terminal region (residues
23-73) that is invariably PK-sensitive, a C-terminal region
(residues 103-231) that is invariably PK-resistant and a
variably digested region (residues 74-102), where the major
cleavage sites are at G82 in type 1 and at S97 in type 2
(Parchi et al., 2000). The 3F4 antibody was used to type
PrP™ (Parchi et al.,, 2000). Therefore, there are striking
differences in the antigenicity, which reflect the PK-cleavage
patterns, between type 2 PrP™ in sporadic CJD brain and
in T98G cells. It is unlikely, but not impossible, that PK

treatment generated conformational changes in the mid-
region of PrP™ that interfered with epitope recognition
by the 3F4 antibody. Further studies are needed to classify
the type of PrP™ in lysates from long-term cultured T98G
cells.

So far, human PrP*® has been analysed on immunoblots
with the 3F4 antibody. Our finding may explain why
previous studies have failed to detect PrP™ in cultured cells.
Interestingly, an N-terminally truncated 18 kDa fragment
of PrP (designated C1) in normal and sporadic CJD brains
has similar properties except that it is PK-sensitive; it is
recognized by the anti-C terminus antibody, but not by
the 3F4 antibody, is cleaved around residue 111 and is
associated with cell membranes (Chen et al., 1995). PrP¢
from human brain homogenates (n=6) originally displayed
a partial PK resistance (20 pg ml~" for 10 min) and has
been detected by the antibody that recognizes residues
145-163, but not by the 3F4 antibody (Buschmann et al,
1998). Taking the data from the various studies of PrP
immunoreactivity into consideration, we believe that it
would be better to incorporate an additional antibody that
recognizes the C terminus of PrP into the standardly used
protease resistance-dependent PrP* assay.

Among the sets of antibodies used in this study, the anti-
N-terminal portion antibodies (HUC2-13 and 3F4) reacted
strongly with the fully glycosylated form and moderately
with the partially glycosylated form. In contrast, the anti-
bodies against the C-terminal portion of PrP (6H4 and
HPC) reacted moderately with the fully glycosylated form
and strongly with the partially glycosylated form. It is
possible that PX digestion induces a conformational change
of digested PrP and enhances its immunoreactivity to the
anti-C-terminal antibodies. Recently, it has been reported
that the amino acid motif Tyr-Tyr-Arg (YYR), located in a
B-sheet, is exposed in PrP%, whilst it is cryptic in PrP€, and
that antibodies recognize YYR in PrP%, but not in PrpP®
(Paramithiotis et al., 2003). Another paper has reported
that PK digestion enhances immunoreactivity to the anti-
PrP antibody that recognizes the epitope YYR, located in a
B-sheet (Brun et al, 2004). These reports suggest that
conformation of the C-terminal portion of PrP*° is essential
for immunoreactivity of anti-YYR antibodies. The 6H4
antibody also recognizes residues 144-152 of PrP, including
a YYR motif that is located in an «-helix, not in a f-sheet
(Korth et al., 1997). Further study is needed to clarify the
immunoreactivity of anti-C-terminal PrP antibodies.

It has been proposed that PrPC is converted into PrP™
either on the cell surface or in endocytic cellular compart-
ments. PrP® is a surface protein that contains a glycosyl-
phosphatidylinositol anchor (Stahl et al,, 1987). A portion
of PrP% is also localized on the cell surface of scrapie-
infected mouse neuroblastoma ScN2a cells (Naslavsky
et al., 1997; Vey et al., 1996), although it is also found in
lysosomes (Taraboulos et al., 1990). Subcellular localization
of PrP™ in long-term cultured T98G cells was similar to
that of PrP%-infected cells, being present on the cell surface.
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PrP* in ScN2a cells is sedimented by centrifugation in
non-ionic detergents (Caughey et al., 1991). Mutant PrP
in stably transfected Chinese hamster ovary cells, which
express murine homologues associated with human inher-
ited prion diseases, is also non-ionic detergent-insoluble
(Lehmann & Harris, 1996). However, the PrP™ in T98G
cells is detergent-soluble. PrP™ in the human neuroblas-
toma cell line M-17 BE(2)C carrying the familial subtype
CID, the glutamic acid to lysine substitution at codon 200
(E200K), is also partially non-ionic detergent-insoluble
(Capellari et al,, 2000). The present study indicates that not
all PrP™ is non-ionic detergent-insoluble.

Many cultured cells that express PrP™ mutants carrying
substitutions of inherited prion disease show considerably
less protease resistance (up to 3-3 pg ml~' for 10 min),
compared with PrP™ mutants isolated from the human
brain (Capellari et al., 2000; Harris, 2001). In contrast, the
PrP™ in T98G cells displayed a high resistance to digestion
with PK (10 pg ml™" for 30 min), but was less resistant
than PrP™ in brain homogenates of sporadic CJD (up to
100 pg ml™" for 24 h). Sporadic CJD is typically character-
ized by widespread spongiform degeneration with loss of
neurons, gliosis and formation of amyloid plaques (Parchi
et al., 1999a). It has recently been reported that six cases of
sporadic fatal insomnia, a prion disease mimicking fatal
familial insomnia, had no coding-region mutation of
PRNP with the 129 M/M genotype and an approximately
19 kDa deglycosylated PrP™*, the same as that of type 2
(Mastrianni et al, 1999; Parchi et al, 1999b). Familial
progressive subcortical gliosis may also be a prion disease,
characterized by astrogliosis at the cortex~white matter
junction (Petersen et al, 1995). All patients from two
families with that disease showed no coding-region muta-
tion of PRNP, the 129 M/M genotype and the 18-1-
19-3 kDa form of deglycosylated PrP™ (Petersen et al.,
1995). T98G cells were grown out of human glioblastoma
multiforma tumour tissue of a 61-year-old Caucasian man
(Stein, 1979). We consider it possible that he also had a
sporadic form of prion disease.

Conversion from PrPC into PrP™ is an important process,
because most prion diseases are characterized by presence
of PrP™. Some knowledge of the conversion mechanism
is based on studies of scrapie-infected cells. Recently, it
has been reported that several conditions can induce the
formation of PrP™ in cultured cells. Proteasome inhibitors
cause accumulation of the unglycosylated form of PrP™ in
treated cells (Lehmann & Harris, 1997; Ma & Lindquist,
1999; Yedidia et al, 2001). PrP that misfolds during
maturation in the endoplasmic reticulum is delivered to
the cytosol for degradation by proteasomes (Béranger et al.,
2002; Ma & Lindquist, 2001; Yedidia et al, 2001). It has
been hypothesized the conversion into PrP™ might occur
when the number of PrP molecules exceeds the capacity of
the cell to degrade them (Ma & Lindquist, 2002). Another
study showed that manganese-treated mouse astrocytes
express the glycosylated form of PrP™ (Brown et al., 2000).

Here, we report for the first time the conversion of PrP®
into PrP™ in the widely used human glioblastoma cell line
T98G; a large number of passages and prolonged incuba-
tion under routine cell-culture conditions are required.
In vitro-generated PrP™ is reportedly not sufficient for the
production of infectivity (Caughey et al., 2001; Hill et al,
1999) and further study is needed to clarify the infectivity
of PrP* in T98G cells (indeed, caution should be taken
with T98G cells in the laboratory). Infectivity assays of PrP™®
in T98G cells are now in progress in transgenic mice.

In conclusion, T98G cells should be a useful model for
studying the mechanisms of PrP® conversion into PrP™.
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